
Qualitative Monitors based on the Connected
Dependability Cage Approach

Felix Helsch∗, Iqra Aslam†, Abhishek Buragohain‡, and Andreas Rausch§
Institute for Software and Systems Engineering

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

Email: { felix.helsch∗, iqra.aslam†, abhishek.buragohain‡, andreas.rausch§ } @tu-clausthal.de

Abstract—Many Autonomous Systems (ASs) have been widely
applied in safety-critical applications like driverless taxis and
financial credit assessment. Due to the integration of machine
learning techniques for functions like environmental perception,
ASs are nowadays a hybrid construction combined with classical
engineered and Artificial Intelligence (AI-) based subsystems.
Such a construction of the hybrid AI-based AS makes it impos-
sible for engineers to guarantee the dependability requirements
during development, since the system cannot be completely tested
and formally verified. Addressing these dependability issues of the
hybrid AI-based AS, this paper provides a transparent overview
of our Dependability Cage approach on different levels of
abstraction. In particular onboard continuous monitoring is com-
bined with remote technical supervision for human intervention
in our approach for Runtime System Observation and Resilience
System Stabilization, forming a Connected Dependability Cage.
The Qualitative Monitor for observing the system’s functional
correctness at runtime is chosen as an implementation example
and is evaluated in the concrete use case of the research project
”VanAssist” which focuses on using AVs for package delivery in
urban areas.

Keywords—Dependable Autonomous System; Connected De-
pendability Cage; Runtime System Observation; Resilience System
Stabilization; Qualitative Monitoring

I. INTRODUCTION

Autonomous Systems (ASs) have recently achieved success
in many application domains, including automated vehicles
(AVs), smart home systems, and autonomous financial agents.
They are getting increasingly useful and beneficial for us. As
a side effect, we as the users rely on the services of such
systems increasingly, even in safety-critical applications such
as driverless taxis and financial credit assessment [1] [2].

Many recent improvements in the performance of AS are
made by using machine learning techniques [3]. Such a
system design makes AS nowadays become hybrid Artificial
Intelligence (AI-) based systems, consisting of classical engi-
neered subsystems and machine-learned subsystems based on
Artificial Intelligence (AI) techniques. Automated vehicles as
an example, the AV’s perception is mainly realized based on
AI and the feedback control is designed as classical engineered
subsystem. Both system parts are integrated on an AV to
perform the expected safety-critical tasks.

A. Motivation

Considering the engineering perspective, there are various
differences between the classical and the AI-based systems

[4]. The classical engineering process for safety critical ap-
plications starts with a (semi-)formal requirements specifica-
tion that must be complete and correct. While this idealized
process is rarely realized to its full extend, the requirements
specification is later used as main input for the system’s testing
and verification. For the development of an AI-based system, a
huge data collection is used instead of the requirements specifi-
cation. Different from the completeness and correctness of the
requirements specification, the data collection is incomplete
and may even contain a small percentage of incorrect data
samples.

Nevertheless, these AI-based systems are widely applied for
the fulfillment of safety-critical tasks. Product liability regu-
lations impose high standards on manufacturers regarding the
safe operation of such systems [5]. Against such a background,
established engineering methods are no longer adequate to
guarantee the dependability requirements (safety, security and
privacy) in a cost-efficient way due to significant limitations.
For instance, they are not able to handle the specific aspects of
AI-based systems, as discussed in [1]. Thus, engineers cannot
completely test and verify AS during development to fully
guarantee the dependability requirements.

In the development of AI-based systems like the AV’s
perception, engineers use labeled training data and machine
learning techniques to train an interpretation function. For
illustration, a simplified perception task that classifies the
traffic signs to the corresponding semantic classes is shown
in Figure 1. For this purpose, a machine learned interpretation
function needs to be trained using the training data to map
a finite set of input data (e.g., traffic sign images) to the
correct output information (e.g., traffic sign classes). Machine
learning abstracts from the given training data examples and
produces the machine learned function that is able to process
an infinite number of different images. Thus, the resulting
machine learned interpretation function can map any kind
of image taken by the camera in a real environment to
one of the known traffic sign classes. Considering the AS’s
operation from a safety perspective, an essential question
is whether the produced output information of the machine
learned interpretation function ifml(x), processing the current
input data x, is sufficiently reliable to be safe.

Different from the AI-based systems, classical engineered
systems are developed by using a (semi-)formal requirements

46Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. Check of Dependability Requirements for AI-based Systems. [6]

specification to describe the systems’ behaviors, as introduced
before. In this case, the behaviors must conform to the speci-
fication and thus it can be verified if the system meets the re-
quirements. Such engineered behaviors are desirable for most
types of systems like information and cyber-physical systems.
However, the classical engineering approach is not applicable
for AI-based ASs due to the use of a huge data collection
instead of the (semi-)formal requirements specification. Even
if a requirements specification is available, AI-based systems
are not only expected to adhere to their specification but
also solve problems more effectively by acquiring new skills
with their online learning capabilities. For this purpose, ASs
need to learn from the experienced situations and accordingly
adapt themselves. In addition, such an adaptation and learning
capability is especially essential for ASs designed for highly
complex tasks, since the problem domains of the automated
driving cannot be fully specified during development due to
their incredible high complexities. An analog example in our
real life to get a rough estimation of the high complexities is
that a human driver needs many years of driving experience
to be able to assess potentially dangerous traffic situations.

In contrast to traditional systems, adaptive and learning
systems also entail risks and challenges. While the classical
system behavior is predictable and comprehensible, the be-
havior of adaptive and learning systems can possibly deviate
from the behavior specified during the system development.

For example, the Twitter bot TayAndYou was launched by
Microsoft in 2016 as an experiment to communicate with
people [7]. It was supposed to learn from the conversations
with Twitter users and adapt itself accordingly. But the bot
only learned to curse and scold other people. Such behavior
were neither planned nor expected by the system designers.

Based on the fundamental concepts of adaptive and learning
systems, it has to be accepted that, we cannot completely
specify and predict the behavior of such kind of systems.
Due to incompleteness of the specification and uncertainty
of the operational environment, as discussed above, it is not
possible to test, verify or validate these systems exhaustively
during development. Thus, we need to identify new ways to
monitor adaptive and learning systems, and develop standard
procedures to verify their behaviors’ correctness. To sum
up, the core challenge is: How can we guarantee safe and
secure behavior for all parts of an AI-based AS (e.g., complex
functions, machine learned functions, sensors and actuators,
and the whole system), if the system operates in an unknown
environment and do behavioral changes due to online learning
have an impact on dependability requirements during opera-
tion?

B. Previous and Related Work

In order to tackle the challenges of engineering dependable
hybrid AI-based ASs the Dependability Cage concept was
proposed [8] [9] [10] [11] [12]. Dependability Cages are
derived by engineers from existing development artifacts. The
derived Dependability Cages are then used both during the
ASs development and operation to check the fulfillment of
dependability requirements. This approach aims to give the
users a transparent view of the confidence level.

The Quantitative Monitor as an essential part in the De-
pendability Cage concept was proposed in [6]. As illustrated
in Figure 1, the Quantitative Monitor intuitively indicates
whether the AS is currently processing actual real input data
x, which are from a reliability perspective similar enough
(semantic similar(x, y) ≥ thresholdsemantic similarity) to
the (ground truth) training input data (y) used for machine
learning techniques, so that the produced actual output infor-
mation of the machine learned interpretation function ifml(x)
can be assumed to be correct and safe. If this is not the case,
the AI-based AS is possibly in an unsafe state.

In this case, providing a measure for the semantic similarity
of input data that serves as an argument for the output
information reliability is a challenge. Novelty detection to
automatically identify new relevant test data differing from
the available training data becomes an interesting approach
to realize such a semantic similarity measure. One promising
novelty detection approach using AI technique called autoen-
coder have been proposed [13].

The basic principle of autoencoder-based novelty detection
was introduced by Japkowicz et al. [14]. In their approach,
the autoencoder is trained to minimize the error between an
input image and a reconstructed input image. Firstly, known
images were used to train the autoencoder. After training,

47Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

the autoencoder was fed with new images. If the difference
between original and reconstructed image was higher than a
given threshold value, the new image was classified as novel
[15] [16].

However, a big structural difference in input data does not
necessarily correlate with a different output information class.
For instance, as illustrated in Figure 2, completely different
traffic situations (output information class) frequently have
similar images (input data). While the AV is free to pass the
zebra crossing in Figure 2a, in Figure 2b it instead has to stop
and let the pedestrians pass the crossing.

(a) AV can pass (b) AV has to wait

Figure 2. Similar camera images of pedestrians represent very different
traffic situations [6] [17].

In the previous sections, different challenges with respect
to the engineering of hybrid AI-based ASs were identified. A
high level concept for these challenges, which we also applied
to our Dependability Cage was set up in [8]: The identified
challenges pointed out two types of risks that have to be con-
sidered through all development phases of the AS: (1) external
risks due to the uncertainties in the system’s real operation
environment, and (2) internal risks caused by the system’s
changing behavior. In the aforementioned Dependability Cage
concept, two categories of Dependability Cages were defined
to safeguard against these risks: (a) Dependability Cages
developed for the system and (b) Dependability Cages for
the system’s environment. In order to use these Dependability
Cages, a distinction is made between several types of behaviors
of the system and its environment both at development time
and at operation time.

At development time a given AS and its environment are
further differentiated into its engineered behavior and its tested
behavior (cf. Figure 3 left).

Similarly to the development time, at operation time a
differentiation is made between the real behavior and the
observed behavior of a given AS and its environment (cf.
Figure 3 right). The real behavior means the behavior at
operation time which may differ from the engineered behavior.
It contains an uncountable number of situations caused by
different influencing factors. For an AS, the real behavior is
based on the system adaptation to the constantly changing op-
erational environment. For the system’s environment, the real
behavior is determined by the environmental uncertainty due
to unforeseeable situations that may occur during operation.
The observed behavior is a subset of the real behavior and

Figure 3. Dependability Cages: Overall approach. [8]

represents the behavior monitored at operation time through
the Dependability Cages.

Once the tests at development time are completed, the tested
behavior is transferred into operation time via a platform
envisioned for this purpose (cf. Figure 3 bottom). In turn,
the observed behavior is channeled back to development time
to augment the development artifacts and contribute the AS’s
evolution, and consequently, the improvement of the system’s
dependability through further training of the Dependability
Cages (cf. Figure 3 top). Thus, the Dependability Cage ap-
proach consists of four major parts:

• Dependability Cages Engineering and Training in System
Development

• Runtime System Observation and Resilience System Sta-
bilization

• Monitored Data Analysis and Goal-Oriented System Evo-
lution for Dependability Improvement

• Platform Architecture for Seamless Development and
Operation of System, Monitor and Environment

Due to the scope of this paper, we will discuss only the
part of Runtime System Observation and Resilience System
Stabilization.

C. Section Overview

This paper is organized as follows: In the following sections
we will describe our connected dependability cage concept
on different levels of abstraction. Section II defines the high
level components of our Dependability Cage which we use
for Runtime System Observation and Resilience System Stabi-
lization and especially also introduces the remote operator for
the Connected Dependabilty Cage concept. Following up on
that, Section III introduces a more concrete architecture with
lower level components for the VanAssist Project. And finally
in Section IV we demonstrate our Connected Dependabilty
Cage concept on the use case of the VanAssist project and
concretize the realised implementation.

48Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

II. THE CORE: RUNTIME SYSTEM OBSERVATION AND
RESILIENCE SYSTEM STABILIZATION

As introduced before, one of the major parts in the De-
pendability Cage concept is the Runtime System Observation
and Resilience System Stabilization. The core element of
this part is an onboard continuous monitoring framework,
as shown in Figure 4. For reasons of simplicity, we depict
the architecture for automated driving systems by following
the input-processing-output pattern along a well-known high-
level reference architecture established previously [18] [19]
[20]. This reference architecture consists of three parts: (1)
environment- and self-perception, (2) situation comprehension
and action decision, and (3) trajectories planning and vehicle
control.

Figure 4. Runtime System Observation and Resilience System Stabilization
in the Connected Dependability Cage approach based on [6].

The monitoring framework focuses on two issues: (a) does
the system show correct behavior in terms of dependability
requirements (Qualitative Monitor) and (b) does the system
operate in a situation and environment that has been trained
or tested during development (Quantitative Monitor)?

Both monitors require consistent and abstract data access
to the system under consideration, with the help of the input
and output abstraction components. They depict the interface
between the AS and the two monitors. Both, the input and
output abstraction components use defined interfaces to access
the AS’s data and transform it into abstract representations.
Abstract representation types and values are derived from the
requirements specification and dependability criteria of the AS.

The Qualitative Monitor evaluates the correctness and safety
of the system’s behavior under the assumption that (a) the
system operates in a situation and environment that conforms
to the requirements specification, and (b) the system consists
of an abstract behavior function and a conformity oracle.
The abstract behavior function calculates a set of correct
and safe actions in real-time for the system in the current
abstract situation. The conformity oracle compares the output
abstraction with the set of correct and safe abstract actions

from the abstract behavior function. For applications of the
Qualitative Monitor, we refer to the work of Grieser et al.
[21] and Mauritz et al. [9] [11].

The Quantitative Monitor observes the encountered abstract
situations. For each situation, the monitor evaluates in real time
if the encountered abstract situation is already known from
development. A knowledge base provides information about
tested situations on an abstract level. A canonical representa-
tion of abstract situations is used in this study. These canonical
abstract situations are considered to be unique situations. For
further details about the Quantitative Monitor, we refer to the
work of Rausch et al. [6].

If one of both monitors either identifies an incorrect and
unsafe system behavior or a novel situation (outliers), safety
measures must be initialized to guarantee dependability re-
quirements. For this purpose, a Fail-Operational Reaction
component is designed in the monitoring framework to im-
mediately transfer the failed system into a safe state with
acceptance of appropriate risks, e.g., following the approach
of a graceful degradation like in [22].

In addition to the initialized safety measure, the system
data are automatically logged, which will be used as artifacts
during the system’s further development, aiming to analyze
and eliminate previously unknown faulty system behaviors and
thus increase the system’s testing scope. Relying on such a
process flow of runtime system observation and a continuous
iterative development process, a so-called resilience system
stabilization is realized.

In the reality, it is utopian that the onbaord continuous
monitoring framework based on the technical system can
handle all critical cases of the automated driving system.
Thus, a redundant monitoring element, a so-called Remote
Technical Supervision and Human Intervention is proposed in
the Dependability Cage concept from the safety perspective.
The Remote Technical Supervision and Human Intervention
plays the role of a complementary consultant of the onboard
continuous monitoring framework, so that a remote human
supervisor can lively access current situations of the AVs
during their operations. In the case that the current problem
cannot be solved locally by the fail-operation activity of the
onboard monitoring framework, a human intervention of the
remote supervisor can be performed, e.g., by manually choos-
ing an appropriate fail-operational reaction. Such a monitoring
and supervision concept with redundancy massively increases
the AV’s safety. Moreover, the Remote Technical Supervision
and Human Intervention also enables to remove the required
onboard safety driver from the AVs, following the draft bill for
the german traffic rule law [23]. Thus, the Remote Technical
Supervision and Human Intervention work together with the
onboard continuous monitoring framework and constitute an
cooperative solution of a so-called Connected Dependability
Cage concept. Since the Remote Technical Supervision and
Human Intervention is not located on the AV, interfaces to
a communication infrastructure are designed, so that we will
now speak about a Connected Dependability Cage.

49Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

III. INSTANTIATION OF THE CONNECTED DEPENDABILITY
CAGE FOR REAL WORLD APPLICATIONS OF AUTOMATED

VEHICLES

The Connected Dependability Cage approach as a gener-
alized concept addresses the safety domains of different au-
tomated mobility solutions. In reality, different domains have
their constraints and boundary requirements like hardware se-
tups, regulations, and physical performance limits. To evaluate
the approach’s feasibility, we applied the concept of Runtime
System Observation and Resilience System Stabilization in the
overall approach by instantiating a more concrete architecture.
The instantiated architecture is designed considering the use
case of the research project VanAssist [24].

A. Use-Case Definition

The project VanAssist aims to develop an integrated ve-
hicle and system technology that enables largely emission-
free and automated delivery of goods in urban centers. This
project focuses on how automated transporters for delivery
of goods can helps to optimise the daily jobs of postmen
by creating optimized routes which are not possible in the
classical manner. For further information about the project
VanAssist, we want to refer to [24] and the VanAssist website
[25]. Since misbehavior of the automated transporter can lead
to hazardous situations, such a system is considered a safety
critical system. In such a safety critical system, an overall
safety architecture is required to guarantee that a so-called
minimal risk condition is reached in case a hazardous situation
happens [26]. However, in such states the monitored system
tends to not be able to continue its mission and might cause
traffic jams for instance. To avoid such undesired behavior
in the project, the previously mentioned Remote Technical
Supervision and Human Intervention is required, which is
implemented as a Remote Command Control Center to acquire
and supervise the AV’s context information and realize the
human intervention if necessary. Thus the Remote Operator
shall always get enough information about the AV’s context,
which is mainly provided by cameras. Within the use case, we
addressed the following safety requirements:

1) The AV shall never drive against or over obstacles
2) Camera data of the AV shall never be invalid
In the project, a goods delivery transporter – the Platform

for Future Urban Mobility and Transport (PLUTO) – with
an automated driving system was developed as an evaluation
platform by the Automotive Research Centre Niedersachsen in
Germany [27]. The PLUTO serves as an evaluation platform
in the project VanAssist and is configured as an automated
goods delivery transporter. For environmental perception four
fish-eye cameras and eight high-performance LiDARs are used
to create a surround view with 360° degrees.

B. Instance Architecture of Dependability Cage in the Use
Case

Since the aforementioned safety requirements address the
functional correctness of the automated system, the Quantita-
tive Monitor concept (cf. Section II) with another safety goal

was not applied in the project. Instead, the Qualitative Monitor
and the Fail-Operational Reaction in the onboard runtime mon-
itoring framework and the remote technical supervision were
derived as the main aspects of the instantiated architecture.

The instantiation of the Connected Dependability Cage is
driven by the use case defined above and thus addresses
automated vehicles using LiDARs and cameras to perceive
local environmental information and is based on the work of
Raulf et al. [28]. The instance of the Connected Dependability
Cage is depicted in Figure 5.

The instantiated system architecture consists of three sub-
systems: (a) A Reconfigurable Modular Automated Driving
System that performs the driving task and provides recon-
figuration interfaces, (b) a Dependability Cage that executes
the onboard Qualitative Monitoring and the Fail-Operational
Reaction at runtime, and (c) a Remote Command Control
Center with HMI for the offboard supervision and human
intervention by a remote Teleoperator. In addition, the Remote
Command Control Center also provides interfaces to external
entities to constitute a more complicated networked architec-
ture consisting of multiple Connected Dependability Cages.

As illustrated in Figure 5, the automated driving system is
the target system under runtime observation by the Connected
Dependability Cage and Remote Command Control Center,
which can be seen as a cooperative human-machine monitoring
system for the safeguard of the automated driving system.
Once the automated driving system detects a hazardous sit-
uation, the monitoring system would trigger an appropriate
reaction and perform a reconfiguration via the interface pro-
vided by the driving system. Depending on concrete cases of
the detected hazardous situations, the responsibilities between
the Dependability Cage for onboard runtime monitoring and
the Remote Command Control Center would be dynamically
changed. Both can also be understood as redundant monitor-
ing systems (respectively onboard and offboard) that aim to
minimize the safety risk as far as possible.

In the following, we will focus on the internals of the
instance architecture from Figure 5. Due to the scope of this
work, we will only focus on the internals of (b). Within (b)
the Qualitative Monitor consists of three components: ”Safe
Zone”, ”LiDAR Detector” and ”Camera Validator”. Whereas
the Fail-Operational Reaction consists of one component: the
”Mode Control”.

The component ”Safe Zone” is designed to determine areas,
in which obstacles shall not occur based on the physical
characteristics like the dynamic driving behavior and stopping
distance based on the steering angle and current speed of the
monitored system. Thus the Safe Zone remarks hazard areas in
which obstacles shall not occur when performing the dynamic
driving task. This component is an generalisation of the work
of Grieser et al. [21] to determine a monitoring area and can
consist of subzones which can correlate with driving modes.

The component ”LiDAR Detector” focuses on the fulfill-
ment of safety requirements relevant to the LiDAR-sensor. It
checks if obstacles are in the Safe Zone or in specific subzones
based on LiDAR point cloud(s). If an obstacle is identified,

50Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 5. Instance of the Connected Dependability Cage based on [28] for automated vehicles using LiDARs and Cameras to perceive local environmental
information.

a trigger is caused, which is consumed by components of the
Fail-Operational Reaction. To safeguard the automated driving
system and the Remote Operator from unusable camera data,
the ”Camera Validator” checks if camera data is valid and
causes triggers for a Fail-Operational Reaction in the case of
invalid data.

The ”Mode Control” was derived as a component of the
Fail-Operational Reaction and is responsible for determining
an appropriate driving mode based on the current situation.
The driving mode can be either a nominal, a degradated or a
safe mode and directly correlates with instances responsible
for overall system safety. The selection is based on triggers
caused by the Qualitative Monitor and other necessary infor-
mation correlating with driving modes.

IV. DETAILED CONCEPTS IN THE INSTANCE
ARCHITECTURE

In the previous section, we introduced a safety architecture
called Connected Dependability Cage for automated vehicles
which uses LiDAR and camera sensors for the environmental
perception. One main part, the Qualitative Monitor, con-
tinuously monitors the selected Automated Driving System.
In this section, we will focus on the Qualitative Monitor
implementation and will explain the motivation and concepts
of the components within this safety architecture(see Figure
5). Additionally, we will provide a proof of concept in the
scope of the two safety requirements presented in the previous
section using PLUTO [27] as a demonstration platform. In the
following, we will call the PLUTO AV.

To fulfill the safety requirements, the Qualitative Monitor
shall (a) detect hazardous situations in the AV’s surroundings
and (b) detect invalid camera data produced by the AV’s
cameras. Once a violation is detected a fail operational reaction
is triggered. Following the safety architecture of the Connected
Dependability Cage in Figure 5, the implementation of the

Qualitative Monitor Mquali can be represented in a functional
description as follows:

Mquali(v, αsteering, Pli, Icam) = f(Zsafe, Dli, Vcam) (1)
Dli(Zsafe, Pli) = f(zstate) (2)

Vcam(Icam) = f(cstate) (3)
Zsafe(v, αsteering) = f(Zclear, Zfocus) (4)

v current AV speed
αsteering steering angle of the outer front wheel

Pli LiDAR point cloud
Icamera camera image
zstate Zone state (free/blocked)
cstate Camera state (valid/invalid)
Zclear Clear Zone (inner zone)
Zfocus Focus Zone (outer zone)

Taking the safety requirements, the AV’s hardware setup and
physical attributes into account, we took the work of Grieser
et al. [21] as a starting point and extended it, resulting in the
development of a ”Safe Zone” component Zsafe, a ”LiDAR
Detector” Dli, a ”Camera Validator” Vcamera and a ”Mode
Control” component.

A. Safe Zone
The purpose of the ”Safe Zone” Component is to calculate a

hazard zone around the AV, as shown in Figure 6 and Figure
7. In addition to the main hazard zone, we also defined an
outer hazard zone, which has larger offsets to all sides. This
was used to demonstrate the concept of graceful degradation
like in [22]. To differentiate between these two zones, we
introduced the terms Clear Zone, for the main hazard zone
and Focus Zone, for the outer hazard zone. The most important
information required to calculate these hazard zones are the
vehicle’s trajectory, its direction of driving and the stopping
distance.

51Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Since the approach for calculating the stopping distance is
the same as in the previous work of Grieser et al. [21], we
only briefly recapitulate this part in the first subsection. In the
later subsections the generalized zone shape and the derivation
of the corresponding parameters are described in more detail.

Stopping Distance

The calculation of the stopping distance of the AV is based
on Ackermann steering geometry. For the basic calculation
of the stopping distance, we are just listing the formulas 5
through 11 and for a more detailed description of this part of
the approach, we refer to Grieser et al. [21].

Stopping distance sstop (and intermediate results) for
straight driving:

sstop = sreaction + sbrake (5)
sreaction = v · treaction (6)

sbrake =
v2

2 · abrake
(7)

sreaction distance travelled during the AV’s reaction time
sbrake distance travelled during the AV’s braking time
treaction estimated worst case reaction time of the AV

v current speed of the AV
abrake braking deceleration of the AV

Stopping angle αstop (and intermediate results) for curved
driving:

αstop = sstop/rmean (8)
rmean = (ro + ri)/2 (9)

ro = daxle/sin(αsteering) (10)

ri =
√
r2o − d2axle − dwheel (11)

rmean mean value of outer and inner radius
ro distance from the center of steering M to the

outer front wheel
ri distance from the center of steering M to the

inner back wheel
αsteering steering angle of the outer front wheel
daxle distance from the center of the back axle to the

center of the front axle
dwheel distance from wheel center to opposing wheel

center

Zone Shape

To accommodate the perception system being able to detect
objects all around the AV, we needed to generalize the concept
of the hazard zone described in the previous work. While one
end of the zone is still placed at the end of the stopping path,
the other end is now placed at the axle opposite to the driving
direction (compare Figure 6 and Figure 7).

For driving straight the resulting zone shape is still a
rectangle; on the other hand for driving curved the shape was
generalized to a circle segment. In the following subsections
the derivation of the zone shapes is described in more detail
for the different cases.

M

ro

ri

αcar

αfront

dr,i

dr,o

δα,front

Figure 6. Forward Driving: Determination of Safe Zone with Clear Zone
(green) and Focus Zone (orange).

M

ri

αfront

αback

dr,i

dr,o

δα,back

ro

Figure 7. Backward Driving: Determination of Safe Zone with Clear Zone
(green) and Focus Zone (orange).

52Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Driving Straight

In the case of driving straight, the width of the zone is
given by the wheel distance dwheel plus a safety offset (on
both sides). Whereas the length of the zone now is the sum
of the axle distance daxle and stopping distance sstop, again
plus a safety offset.

Driving Curved

Overall the zone for driving curved is described by four
parameters: The inner radius ri, and the outer radius ro. The
angle αback, which starts the circle segment at the back side
of the AV and the angle αfront, which ends the circle segment
at the front side of the AV.

Outer radius ro and inner radius ri are always calculated
by formulas 10 and 11, which are already used for the basic
stopping distance calculation. The derivation of the other
parameters is described in the corresponding subsections for
the different cases.

Driving Curved, Forward

For the case of driving forward (see Figure 6) the starting
point of the back angle is placed on the rear axle, so that:

αback = 0 (12)

The starting point for the stopping distance is placed in the
center of the front axle, so that the total front angle αfront is
the sum of the stopping angle αstop and the angle αcar to the
front of the car:

αfront = αcar + αstop

with αcar = atan(ri + dwheel/2)
(13)

Driving Curved, Backward

For driving backwards (see Figure 7) the back angle is
directly equal to the stopping angle, since the start of the
stopping circle segment is directly aligned with the back axle:

αback = −αstop (14)

And the end point of the front angle is placed at the center of
the outer front wheel, which results in the front angle being
equal to the steering angle:

αfront = αsteering (15)

Driving Curved, Safety Offsets

To obtain the final set of zone parameters, we add a safety
distance in all four directions in the following manner:

α′
front = αfront + δαfront

(16)

α′
back = αback + δαback

(17)
r′i = ri + dri (18)
r′o = ro + dro (19)

Where for example the angle δαfront
is the safety offset for

αfront and dri is the safety offset for ri(analogously for the
other parameters). These safety offsets are implementation
specific application parameters.

B. LiDAR Detector

The ”LiDAR Detector” component determines whether
there are any obstacles in the Clear Zone or Focus Zone based
on the Point Cloud from the eight Ibeo solid-state 3D laser
scanners. For this purpose, the method of Grieser et al. [21]
to determine whether there are LiDAR points in the monitoring
area is extended.

Compared to the model vehicle, we faced several additional
challenges for the LiDAR of the AV. The fundamental differ-
ence, is that the AV uses a 3D LiDAR setup, whereas the
model vehicle LiDAR only measures two dimensional in a
horizontal plane.

Consequently the ground is included in the LiDAR data
and also obstacles which are higher then the AV, but still in
LiDAR range. To exclude these areas, we implemented a z-
cutoff, at a certain offset from the ground and a certain offset
above the vehicle. In the resulting data, only z levels which are
relevant for the Safe Zone were included, since we only want
to determine if an object is in the vertical area of the zone
and not where it is. This allowed us to subsequently ignore
the height in the processed data and simplify it from 3D to
2D again.

Another challenge was, that the AV’s LiDAR setup provides
a lot more data with higher amount of details. This also means,
that the data includes more points, which belong to small
particles or diffusely reflected laser beams instead of actual
obstacles. In the following, we will refer to these points as
”ghost points”. To filter out ghost points, we implemented
a clustering algorithm, which clusters neighbouring points
together, if their distance is smaller then our empirically
determined cluster distance. Using this clustering algorithm
enabled us to successfully reduce false emergency stops due
to ghost points.

The result of the clustering algorithm is used in the ”LiDAR
Detector” in the following way: To check the state zstate of
the zone, we determine the largest number of LiDAR points
pcluster, which are inside the rectangle/circle segment and
belong to the same cluster. If this number is below the defined
threshold value tcluster, then the zone is considered as free,
otherwise as blocked:

zstate =

{
free pcluster < tcluster

blocked pcluster >= tcluster
(20)

This test is carried out for Clear Zone as well as Focus Zone
and the result is forwarded to the Mode Control.

C. Camera Validator

The ”Camera Validator” component determines the validity
of the raw data from the onboard camera sensor by checking
whether the camera is covered or not. An algorithm is used
to check the validity of the camera data. This algorithm
determines the sharpness of the incoming stream of camera
images, which detects that the camera is covered when the
level of sharpness value falls below an empirically determined
threshold value.

53Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

D. Mode Control

The ”Mode Control” is a component of the Fail-Operational
Reaction. It decides the current driving mode. It could be either
a nominal, degraded, or safe mode, based on the ”LiDAR
Detector’s” output, ”Camera Detector’s” output and the current
speed of the AV. If the Qualitative Monitor components detect
any problems, the ”Mode Control” changes the mode from
the nominal driving mode to the fail-safe mode (emergency
stop). Once a fail-safe mode happens, the remote operator has
the authority to select an appropriate driving mode, e.g., a
degradaded mode like limited automated driving.

The logic behind the ”Mode Control” is modelled as a
synchronous hierarchical automata in SCADE, enabling veri-
fication of the mode logic.

Fully Autonomous
Driving

Emergency
Stop

Manual
Driving

Limited Autonomous
Driving

Figure 8. Simplified mode diagram of the component ”Mode Control”.

A simplified version of the mode diagram of the ”Mode
Control” can be seen in Figure 8. Due to the scope of
this work, we will not dive deeper into the details of this
component.

E. Implementation Middleware

Each component in the architecture, as seen in Figure 5
is implemented using the decentralized middleware ROS2
[29]. ROS2 is based on the publish-subscribe communication
paradigm and provides the capability of self-adaptation and
component reconfiguration. Since the AV is designed as a
distributed system deployed on different ECUs, it motivated
us to use ROS2. An additional point in favor of ROS2 for a
safety critical system is, that it provides real-time capabilities.

F. Testing of the Qualitative Monitoring Architecture

The Qualitative Monitor is tested in two steps. First, it was
conducted in a controlled environment where a track similar
to the AV’s test track was setup in our mobility lab using a
1:8 scaled ADAS model vehicle (similar to [21]).

As a second step, we reparameterized the Focus Zone and
Clear Zone in the ”Safe Zone” component for the test on the
AV, since the dynamics and hardware setup vary from the
model vehicle. The track considered for the test is located
at the Campus Nord of TU-Braunschweig (Bienroder Weg
95, 38106 Braunschweig – for more information refer to [24]
[27] and the VanAssist website [25]). Multiple test cases were
derived and tested, such as driving straight, driving backward,
driving at different angles, and driving towards static objects
and walls. Two examples from our numerous test cases can
be seen in Figure 9a and Figure 9b. In the images the LiDAR
Point Cloud is visualized by black points and the Focus Zone

(orange), and Clear Zone (green) can be seen around the AV,
which is denoted by a blue box at the center. The indicators
on the top left corner signal if the zones are free or blocked,
respectively with green or red color.

(a) Safe Zone free (b) Safe Zone blocked

Figure 9. Dependability Cage Test.

In the first example (see Figure 9a), we drove the AV within
a curved section of the track, where no obstacles were detected
by the ”LiDAR Detector” within the Focus Zone and Clear
Zone calculated in the ”Safe Zone” component. As a result
the ”Mode Control” does not intervene and the AV stays in
the nominal driving mode.

In the second example (see Figure 9b), The AV drove on
a straight section of the test track surrounded by obstacles.
These obstacles are detected as LiDAR points (black dots)
inside the Focus Zone, but the Clear Zone is still free as
shown in Figure 9b. Since the amount of clustered LiDAR
points detected by the ”LiDAR Detector” component within
the Focus Zone is above the threshold, it resulted in the ”Mode
Control” triggering a fail-safe mode (emergency stop), if the
nominal driving mode uses the Focus Zone for fail-safe checks.

V. CONCLUSION AND FUTURE WORK

In this paper, a short overview of the Connected Depend-
ability Cage approach is provided. As a core part, the meta-
concept of Runtime System Observation and Resilience Sys-
tem Stabilization relying on the onboard continuous monitor-
ing framework and the remote technical supervision allowing
human supervision and intervention is introduced in detail. In
addition, a concrete system architecture of the Runtime System
Observation and Resilience System Stabilization is instantiated
considering the derived safety requirements based on a real-
world application of the AV for package delivery in urban
areas. In the instantiated architecture, the Qualitative Monitor
and Fail-Operational Reaction are deployed to guarantee the
functional correctness of the automated driving system under
runtime observation. The instantiated architecture was imple-
mented and tested on an automated demonstration vehicle
(PLUTO) in the project VanAssist. Detailed insights on the
implementation were included in the paper, too.

On the way towards dependable automated driving, sig-
nificant challenges that we have identified in the Connected
Dependability Cage approach, are remaining. The Connected
Dependability Cage allows an asymmetric assignment of AVs
to the remote operators in the Command Control Center. It

54Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

means that a single remote operator may supervise multiple
AVs in normal operation. But the person would not be able
to remotely solve the safety issues of AVs in problem cases
simultaneously. Thus, an intelligent coordination and assign-
ment between remote operators and the AV having safety
issues needs to be investigated in the Connected Dependability
Cage approach.

In addition, AVs under SAE Level 3+ are fail-operational
[26]. For this purpose, the previously proposed concept of
graceful degradation proposed by [22] for the fail-operational
reaction in the instance architecture still needs to be im-
plemented and tested. Additionally, the automated driving
function shall stay within the specified Operational Design
Domain (ODD) during normal operation [26], another way to
further develop the Connected Dependability Cage would be
the ODD monitoring.

As introduced at the beginning of this paper, ASs are
nowadays AI-based. Therefore the system strongly relies on
the training data without explicit requirements specifications.
Thus, the Qualitative Monitor would reach its limitation to
work against the safety issues due to unknown situations,
which cannot be explicitly described by the requirements
specifications. In this case, the Quantitative Monitor in the
Connected Dependability Cage approach like presented in [6]
would be a meaningful solution and needs to be implemented
and evaluated in the future.

ACKNOWLEDGMENTS

This work results from the joint project ”VanAssist - Interac-
tive, intelligent system for autonomous telemonitored vans in
parcel logistics” and has been funded by the Federal Ministry
of Transport and Digital Infrastructure based on a resolution
of the German Bundestag.

REFERENCES

[1] M. Anderson, James et al., “Autonomous systems: Issues for defence
policymakers,” Headquarters Supreme Allied Commander, Tech. Rep.,
2015.

[2] J. Youtie, A. L. Porter, P. Shapira, S. Woo, and Y. Huang, “Autonomous
systems: A bibliometric and patent analysis,” Exptertenkommission
Forschung und Innovation, Tech. Rep., 2017.

[3] V. C. Müller, Ed., Fundamental Issues of Artificial Intelligence, ser.
Synthese Library. Cham: Springer International Publishing, 2016.

[4] J. Rushby, Quality measures and assurance for AI software, 1988,
vol. 18.

[5] D. Harel, A. Marron, and J. Sifakis, “Autonomics: In search of a
foundation for next-generation autonomous systems,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 117,
no. 30, pp. 17 491–17 498, 2020.

[6] A. Rausch, A. M. Sedeh, and M. Zhang, “Autoencoder-based seman-
tic novelty detection: Towards dependable ai-based systems,” Applied
Sciences, vol. 11, no. 21, p. 9881, 2021.

[7] T. Sickert. (2016, March) From hipster-girl to hitler-bot. Spiegel
Netzwelt. [Online]. Available: https : / / www. spiegel . de / netzwelt /
web/microsoft- twitter- bot- tay- vom- hipstermaedchen- zum- hitlerbot-
a-1084038.html (retrieved: 2022.03.10).

[8] A. Aniculaesei, J. Grieser, A. Rausch, K. Rehfeldt, and T. Warnecke,
“Towards a holistic software systems engineering approach for de-
pendable autonomous systems,” in Proceedings of the 1st International
Workshop on Software Engineering for AI in Autonomous Systems,
R. Stolle, S. Scholz, and M. Broy, Eds. New York, NY, USA: ACM,
2018, pp. 23–30.

[9] M. Mauritz, F. Howar, and A. Rausch, “Assuring the safety of advanced
driver assistance systems through a combination of simulation and
runtime monitoring,” in Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications,
ser. Lecture Notes in Computer Science, T. Margaria and B. Steffen,
Eds. Cham: Springer International Publishing, 2016, vol. 9953, pp.
672–687.

[10] M. Mauritz, A. Rausch, and I. Schaefer, “Dependable adas by combining
design time testing and runtime monitoring,” in FORMS/FORMAT 2014
- 10th Symposium on Formal Methods for Automation and Safety in
Railway and Automotive Systems, 2014.

[11] M. Mauritz, “Engineering of safe autonomous vehicles through seam-
less integration of system development and system operation,” Ph.D.
dissertation, Universitätsbibliothek der TU Clausthal, 2020.

[12] M. Mauritz, F. Howar, and A. Rausch, “From simulation to operation:
Using design time artifacts to ensure the safety of advanced driving
assistance systems at runtime,” in MASE@MoDELS, 2015.

[13] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review
of novelty detection,” Signal Processing, vol. 99, pp. 215–249, 2014.

[14] N. Japkowicz, C. Myers, and M. Gluck, “A novelty detection approach to
classification,” in Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 1, ser. IJCAI’95. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1995, p. 518–523.

[15] C. Richter and N. Roy, “Safe visual navigation via deep learning and
novelty detection,” in Robotics: Science and Systems, 2017.

[16] A. Alexander et al., “Variational autoencoder for end-to-end control
of autonomous driving with novelty detection and training de-biasing.”
IEEE, 2018, pp. 568–575.

[17] R. Brooks, “The big problem with self-driving cars is people,” IEEE
spectrum: technology, engineering, and science News, vol. 27, 2017.

[18] S. Behere and M. Törngren, “A functional architecture for autonomous
driving,” in Proceedings of the First International Workshop on Auto-
motive Software Architecture, P. Kruchten, Y. Dajsuren, H. Altinger, and
M. Staron, Eds. New York, NY, USA: ACM, 2015, pp. 3–10.

[19] S. Behere and M. Törngren, “A functional reference architecture for
autonomous driving,” Information and Software Technology, vol. 73,
pp. 136–150, 2016.

[20] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomes Fahren.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[21] J. Grieser, M. Zhang, T. Warnecke, and A. Rausch, “Assuring the
safety of end-to-end learning-based autonomous driving through runtime
monitoring,” in 2020 23rd Euromicro Conference on Digital System
Design (DSD). IEEE, 2020, pp. 476–483.

[22] A. Aniculaesei, J. Griesner, A. Rausch, K. Rehfeldt, and T. Warnecke,
“Graceful degradation of decision and control responsibility for au-
tonomous systems based on dependability cages,” in 5th International
Symposium on Future Active Safety Technology toward Zero, Blacks-
burg, Virginia, USA, 2019.

[23] German Government. Draft law amending the road traffic act and
the compulsory insurance act - autonomous driving act. Federal
Ministry for Digital and Transport. [Online]. Available: https://www.
bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-
strassenverkehrsgesetz - pflichtversicherungsgesetz - autonomes - fahren .
pdf? blob=publicationFile (retrieved: 2022.03.10).

[24] G. Seber et al. Final report VanAssist. [Online]. Available: https:
//www.vanassist.de/ergebnisse/ (retrieved: 2022.03.10).

[25] VanAssist website. [Online]. Available: https : / /www.vanassist .de
(retrieved: 2022.03.10).

[26] S. International, “SAE J3016 - surface vehicle recommended practice -
taxonomy and definitions for terms related to driving automation systems
for on-road motor vehicles,” 2018.

[27] T. Hegerhorst et al., “VanAssist - integrated safety concept for auto-
mated vans in parcel logistics,” in ACIMobility Summit, Braunschweig,
Germany, september 2021.

[28] C. Raulf et al., “Dynamically configurable vehicle concepts for pas-
senger transport,” in 13. Wissenschaftsforum Mobilität ”Transforming
Mobility – What Next”, Duisburg, Germany, 2021.

[29] ROS2 website. [Online]. Available: https://docs.ros.org/en/foxy/index.
html (retrieved: 2022.03.10).

55Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://www.spiegel.de/netzwelt/web/microsoft-twitter-bot-tay-vom-hipstermaedchen-zum-hitlerbot-a-1084038.html
https://www.spiegel.de/netzwelt/web/microsoft-twitter-bot-tay-vom-hipstermaedchen-zum-hitlerbot-a-1084038.html
https://www.spiegel.de/netzwelt/web/microsoft-twitter-bot-tay-vom-hipstermaedchen-zum-hitlerbot-a-1084038.html
https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile
https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile
https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile
https://www.bmvi.de/SharedDocs/DE/Anlage/Gesetze/Gesetze-19/gesetz-aenderung-strassenverkehrsgesetz-pflichtversicherungsgesetz-autonomes-fahren.pdf?__blob=publicationFile
https://www.vanassist.de/ergebnisse/
https://www.vanassist.de/ergebnisse/
https://www.vanassist.de
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html

	Introduction
	Motivation
	Previous and Related Work
	Section Overview

	The Core: Runtime System Observation and Resilience System Stabilization
	Instantiation of the Connected Dependability Cage for real World Applications of Automated Vehicles
	Use-Case Definition
	Instance Architecture of Dependability Cage in the Use Case

	Detailed concepts in the instance Architecture
	Safe Zone
	LiDAR Detector
	Camera Validator
	Mode Control
	Implementation Middleware
	Testing of the Qualitative Monitoring Architecture

	Conclusion and Future Work
	References

