
Negligible Details - Towards Abstracting Source
Code to Distill the Essence of Concepts

Christian Schindler∗, Mirco Schindler† and Andreas Rausch‡
Institute for Software and Systems Engineering

Clausthal University of Technology
Clausthal, Germany

∗ Email: christian.schindler@tu-clausthal.de
† Email: mirco.schindler@tu-clausthal.de
‡ Email: andreas.rausch@tu-clausthal.de

Abstract—Design and architecture patterns are proven
domain-independent solution approaches for common problems
occurring in the development of software systems. To guarantee
the problem-solving capabilities of patterns, a correct implemen-
tation of the design pattern is essential. As a context-specific
adoption of the design pattern to the software system needs to be
performed by the developers, we argue that their comprehension
plays a crucial role in the creation and maintenance of such
correct implementations over the system’s lifespan. Even with
migration and integration of legacy components into an adaptive
System, where other paradigms are used, for example, must be
compatible on a conceptual level. The primary intent of this
paper is to separate essential syntactic information from varying
aspects, given a set of implementation samples. We introduce an
approach that abstracts given object-oriented implementations
by semantically resolving and splitting an Abstract Syntax Tree
into small paths. In analyzing paths from given samples we build
a shared concept. In this paper, we build the shared concept from
230 example implementations containing the singleton design
pattern and 230 counterexamples to classify new unseen java
classes. The contribution this paper provides is composed of three
parts. (i) A novel approach to abstract object-oriented code, (ii)
an interpretable way to identify common parts extracted from
multiple abstractions, and (iii) a way to classify unseen samples
to implement the same concept.

Index Terms—Software Abstraction, Object Oriented Lan-
guage, Design Pattern, Source Code Comprehension, Software
Architecture

I. INTRODUCTION

Design patterns have been established for reusing proven
solutions to a class of problems. Nevertheless, especially for a
dynamic adaptive system, the correct implementation of adap-
tation mechanisms is essential for the quality of the overall
system. Patterns are described informally or semi-formally as
context-independent solution concepts. As a consequence, in
order to apply a design pattern, it is necessary to embed it
into the actual implementation context; to do so, a common
understanding of the concept provided by the pattern had to
be established [1], [2].

To relate implementation and architecture, the Unified Mod-
eling Language (UML), for example, offers the mechanism of
collaborations within the context of a composition structure
diagram and the context-specific embedding in a given domain.
Here, the description is separated from the actual application

in modeling. Collaborations describe the composition of roles,
which must be linked to specific parts of the application [3],
[4].

Faulty implementations of patterns may produce function-
ally correct solutions but may lack the (mainly) non-functional
properties provided by the pattern, such as specific modularity
goals or specifications from the software architecture [5].
Inaccurate implementations can emerge not only in the initial
implementation of the pattern but also from side effects
introduced with changes, even elsewhere in the codebase
[6], [7]. In particular, in a scenario where system parts and
components are implemented and maintained heterogeneously
and by different companies and development teams, as is
unavoidable in an adaptive Software Ecosystem, for example
[8].

If a legacy system or component is to be migrated and
integrated, for example, to satisfy a specific adaptation mech-
anism, it is necessary to check the current implementation’s
compatibility. For this, it is helpful to find design patterns
in existing code to comprehend the whole system better.
Especially if it is written by other developers or not further
documented. With a focus on code comprehension, it is
necessary to extract more complex architectural patterns from
simple code patterns iteratively. As a starting point, this paper
contributes to recognizing design patterns by generating a
data-driven interpretable representation of the design pattern
from a set of implementation examples and counterexamples.
No formal specification of the design pattern beforehand is
needed.

This paper addresses the following Research Questions
(RQs): RQ1: Is it possible to abstract different concrete
implementations of the same architectural design pattern so
that the abstractions show a similarity? RQ2: Is it possible to
formulate what the shared concept consists of across multiple
samples? RQ3: Is it possible to classify unseen samples using
the introduced formulation mechanism?

Section 2 gives foundations on programming languages
and the construction of the Abstract Syntax Trees (ASTs).
Section 3 introduces the source code abstraction approach
alongside two different levels of abstraction. Section 4 is the
evaluation of the stated RQs with a discussion of the results

22Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

and limitations. Section 5 presents an overview of related
work. Finally, the conclusion and an outline of future work
are given in Section 6.

II. FOUNDATION

This paper investigates the compositionality of abstract con-
cepts. The inputs for the presented approach are syntactically
correct but not executable source code artifacts. The focus is,
therefore, on the static structure of a program. This structure is
defined by the syntactic and semantic rules of a programming
language. Each programming language consists of a set of
programming concepts and specified paradigms, applying to
modern programming languages that do not strictly follow one
paradigm [9].

These concepts, defined by the programming language,
are called atomic concepts in the following and manifest
themselves in the source code by the language’s keywords.
Programming languages are formal languages because they
consist of words over a given and finite alphabet [10]. Thus,
the words are well-formed concerning a fixed and finite set of
formal production rules [11]. Moreover, the lexical grammar
of a programming language is usually context-free [12].

A grammar G consists of a four-tuple.

G(N,Σ, R, S) (1)

with N : finite set of nonterminal symbols,
disjoint with the strings produced from G.
Σ : finite set of terminal symbols, disjoint from N .
R : finite set of production rules: N → (Σ ∪N)∗

where * is the kleene star operator.
S : distinguished start symbol, S ∈ N .

We focus on object-oriented programming languages. Con-
sequently, the type-system plays an important role and can be
understood as an assurance to operations and documentation
that can not be outdated. Types predefined by the programming
language are so-called atomic types. Out of these atomic
types, abstract types are constructed. The step of abstraction,
which is also the foundation of the principle of information
hiding, of abstract types is the structure defined by fields and
an interface specified by the operations.

Since the languages considered here are formal, an au-
tomaton can be specified, which can process the character
stream of the source code artifact. This is also the first step in
compiling a program. Figure 1 shows the steps relevant to this
paper of analyzing a program by a compiler. First, a scanner
transforms the input stream into a language-specific token
stream during lexical analysis. The tokens are also significant
parts of a program, as they contain the atomic concepts of
the programming language. This step reduces complexity,
aggregates character, and identifies keywords. Then, a tree is
generated from the token stream during syntactic analysis. A
tree is a recursive data structure and a particular type of graph
structure (a formal definition can be found in III-D) with a

dedicated root node and containing no cycles. Finally, each
recognized token is converted to a node in the tree. Than, a
semantic analysis is performed since not all rules, especially
context-dependent ones, can be checked during derivation.
This step also resolves the types, names and annotates the
tree’s nodes to reflect this. Therefore, a symbol table is used
to map each symbol with associated information like type and
scope.

Through the instantiation of types, another kind of context-
dependencies arises, which leads to the fact that the semantic
meaning of a word derived by the grammar is no longer
unique.

The challenge in extracting higher-level concepts up to
architectural concepts is that these concepts are not included
as concepts in the programming language. Instead, these can
be understood as the composition of atomic concepts within a
respective context. For program comprehension, it is essential
to get a precise understanding of the concepts used in the
implementation. Therefore with the increasing complexity and
evolution of the program describing the essence of a concept
in a comprehensible way to humans is a critical task.

It follows directly from the chosen class of language type
that the set of generated concepts is countably infinite. Also,
the set of reference implementations is infinite, with the dif-
ficulty that the same concept can be implemented in different
ways. Thus, similarity could not be detected with a simple
comparison of source code snippets.

III. SOURCE CODE REPRESENTATION

The main objective is a way to represent object-oriented
source code samples on an abstract level compared to the raw
source code files to enable interpretability on common parts
and differences. Reducing information such as the naming
of elements (e.g., methods, variables) or the order in which
parts of the snippet (methods, variables) are declared or logic
is handled (e.g., cases in a switch statement) help in this
approach as it distracts from syntactical similarities.

We introduce two different levels of abstraction that both al-
low the expression of smaller parts reoccurring across different
valid code snippets following the language’s grammar rules.
The abstraction level High (section III-B) is more abstract
than level Low (section III-C). The more concrete level of
abstraction has superior expressiveness as it adds constraints
across multiple reoccurring parts and allows for the distinction
of elements (e.g., methods, variables).

We will elaborate on our general approach (section III-A),
being identical for both levels of abstraction first, then elabo-
rating on High(section III-B), and adding in how we use the
concept of uniquely identifying parts in Low. In section III-C
we explain how such constraints are added. In section III-D
we address how abstractions of different samples can be
compared. Section III-E introduces the shared concept and how
to construct it based on given code samples.

A. Source code abstraction approach
The approach, as illustrated in Figure 2, takes source code of

arbitrary size as an input to generate an abstract representation

23Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Programming

Character Stream
int foo(int x)
{

return x + 1;
}

Lexical Analysis

Token Stream

<int> <foo> <(> <int> <x> <)>
…

Syntactic Analysis

Concrete Syntax Tree (CST)

compilation unit

“foo” params

param

int {}

int“x”

return

+

“x” 1

compilation unit

“foo” params

param

int {}

int“x”

return

+

“x” 1

int

int -> int

int

int

int

int

int

Semantic Analysis

Abstract Syntax Tree (AST)

…

Symbol Table

Fig. 1: First steps of a compilation process [12]

{
…
…

}

10

74 5

8

6

32

1

9

10

7

4

5 6

32

1

9

{
4_2_1
5_2_1,
4_6_3_1,
10_9_6_3_1,
7_3_1

}

Path information

Source Code Abstract Syntax Tree (AST) Aggregated Graph Abstraction

Parsing Aggregation Flattening

Fig. 2: Overall approach of the source code abstraction

in the form of a set of Strings that represent its syntax
with additional information from the semantic analysis and
aggregation. The Strings are sequences of tokens retrieved
while processing the input that does not need to be exact
sequences of the Lexical Analysis, as shown in Figure 1. A
detailed walk through example can be found in sections III-B
and III-C, Figure 1 contains only an illustrative one.

We analyse the code snippets AST to get a syntactic repre-
sentation of the sample. The AST tokens get resolved during
the aggregation phase constructing an Aggregated Graph. By
combining the ASTs paths and the Aggregated Graph, we
create the flattened Abstraction.

Subsequently, we formalize the required representations
(AST, Graph, and the Abstraction) and concepts (path, ag-
gregation function). Based on these definitions, we introduce
the idea of a shared concept.

We define the graph g ∈ GRAPH by the following
signature:

g(V,E) := {V = {v1, v2, . . . , vn} , E ⊆ V × V } (2)

with V : finite indexed set of nodes.
E : finite indexed and ordered set

of directed edges {vi, vj}

and a tree t ∈ GRAPH being a special cycle-free graph
with a root node vroot and a set of leaf nodes Vleaf

t(V,E, vroot, Vleaf) := {g(V,E), vroot, Vleaf} (3)

with Vleaf ⊂ V ∧ vroot ∈ V

∀v ∈ V ∄v | {vroot, v} ∈ E

∀vleaf ∈ Vleaf ∄v | {v, vleaf} ∈ E

A path p in a tree t is a sequence of nodes V connected by
edges E. The first node needs to be a leaf node and the final
node needs to be the root node vroot of t.

p(V,E) := {V,E} (4)

with V := {vi | 1 ≤ i ≤ n}
v1 ∈ t(Vleaf) ∧ vn = t(vroot)

E := {{vj−1, vj} | 2 ≤ j ≤ n}

In the Aggregation step, the nodes of the AST get mapped
to nodes of a resulting Aggregated Graph, by an aggregation
function faggregate(t) := Vt → Vg .

To construct the abstract representation a a concrete aggre-
gation function combines the information of all paths P of the

24Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

1 public class FooBar {
2 public void foo() {…}
3 public void bar() {…}
4 }

Fig. 3: Java implementation of a class with two methods -
program 1

tree and the graph g itself. P is the set of paths containing
each path from every leaf node of Vleaf to the root node vroot.
It is defined by the following signature:

P :={p | p(v1) ∈ t(Vleaf) ∧ p(vn) = t(vroot)∧ (5)
∀vleaf ∈ t(Vleaf)∃!p | vleaf ∈ p(V)}

An abstraction is defined by the function fabstract :

fabstract(t, faggregate(t)) := (Vt, Et)× (Vg, Eg) → P (6)

To obtain the flattened abstraction, we combine the path
information from the tree and the node information from the
aggregated graph. The structure of the flattened Strings in
the abstraction comes from the Paths P in the AST. The
information of the relevant nodes results from applying the
faggregate function to the nodes of the paths p ∈ P . The final
abstraction is a set of all distinct flattened Strings. In the
example Figure 2, the aggregation merges the nodes 4 and
8 (from the AST). Those nodes represent the same semantic
unit (e.g., the same literal) In this case p is ”8 6 3 1”, after
applying faggregate the flattened String is ”4 6 3 1”.

B. Abstraction level High

The nodes (tokens) in an AST have additional traits. We
utilize the type of the node, which indicates what part of the
language the node reflects (e.g., the declaration of a class or
the call of a method). In addition, we use the information
of more basic nodes (e.g., keywords, primitive operators) to
represent individual nodes per manifestation (e.g., TRUE and
FALSE for Boolean values) and one node per Modifier (e.g.,
PRIVATE, PUBLIC, and STATIC). On High, the aggregation
step summarizes all nodes of the same type (e.g., all nodes
that declare methods) into a single node.

Figure 3 shows a short code snippet that we will use for both
abstraction levels to illustrate the approach and the resulting
representations. The sample consists of a public class FooBar
containing two methods (foo and bar). The content of the
methods is left out, as it would be hard to display the resulting
ASTs and graphs. As illustrated in Figure 2, we start with
traversing the AST. The resulting tree is shown in Figure 4.
In the tree, we can see the individual statements reflected
by nodes and corresponding edges. Each node contains the
information of the type of the node (e.g., ClassDeclaration
for the root element) and, if available additional information
such as the reflecting values associated with the nodes (e.g.,
SimpleNames reflecting the name of the class FooBar and the

names of the methods foo and bar) or the proper modifier (in
this case PUBLIC in all instances).

The higher-level aggregation rules of nodes are: (i) resolve
keywords from the language. This includes Primitive Opera-
tors, Primitive Types, Modifiers, TRUE, FALSE, and (ii) reduce
other nodes to the assigned types.

Figure 6a shows the resulting graph by applying the aggre-
gation rules. Our abstraction aims to (i) consist of multiple
small parts (ii) likely to be contained in multiple samples.
From the tree (Figure 4), the graph (Figure 6a), and the aggre-
gation rules , it is possible to construct the paths in Figure 5.
Here underscore separates the nodes in a flattened path.

Carried information High: The paths extracted carry
certain information enabling reasoning about the original
program. For example, the second path states that there is
a PUBLIC ClassDeclaration (line 1 of the code sample in
Figure 3). The third path states a PUBLIC MethodDeclaration
in a ClassDeclaration. From the information contained in the
abstraction, we cannot tell which methods foo or bar this
particular path represents.

On High, we cannot conclude across multiple paths. For
example, it is impossible to state that the MethodDeclaration
from paths 3 and 4 are part of the same Method. On the
one hand, this shows that the abstraction level is capable
of reflecting general structures of the original code while
being able to ignore the order of appearance in the original
implementation. On the other hand, the abstraction lacks the
distinction of different elements and the ability to connect
multiple paths related to each other.

C. Abstraction level Low

The stated drawbacks of High get addressed at Low,
containing more information from the original sample. The
overall approach (Figure 2) still holds, with different steps in
the aggregation phase. Semantic analysis of the AST is utilized
to resolve elements. We introduce indices to those resolved
elements, allowing the distinction of multiple nodes (of the
same type and even across multiple types). The aggregation
rules are as follows: (i) exactly as the first rule on High; (ii)
identification of Classes and Methods by their signature; and
(iii) resolution (Simple)Names with an index per unique name.

According to the stated rules, aggregation of the AST leads
to the graph illustrated in Figure 6b. The indices allow the
identification of elements. For example, we can still refer to
the methods using index 1 and 2. The index is attached in the
flat representation of the paths, separated by a hash symbol.
The resulting paths of the code sample on Low are given in
Figure 7. All the information of High is still contained in this
representation, as it is possible to remove all the indices and
remove the duplicated paths resulting in Figure 5.

Carried information Low: The indices allow (i) to con-
clude across multiple paths, (ii) to distinguish multiple ele-
ments of the same type (e.g., the two Methods), and (iii)
to express constraints that join different types seen in the
aggregation process to superior entities (e.g., using one index
for a specific MethodDeclaration and MethodCallExpression).

25Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

ClassDeclaration

SimpleName Modifier MethodDeclaration

ReturnType

MethodDeclaration

Modifier SimpleName ReturnTypeModifier SimpleName

“FooBar”

PUBLIC

PUBLIC

PUBLIC“foo” “bar”VOID VOID

Fig. 4: AST of program 1

1 SimpleName_ClassDeclaration
2 PUBLIC_ClassDeclaration
3 PUBLIC_MethodDeclaration_ClassDeclaration
4 VOID_MethodDeclaration_ClassDeclaration
5 SimpleName_MethodDeclaration_ClassDeclaration

Fig. 5: Abstraction High of program 1

In Figure 7, all the paths are in the context of to the
same ClassDeclaration(#1). We can draw conclusions about
MethodDeclaration(#1) from paths 3 and 4 and state that it is
PUBLIC and has the return type (VOID). The same holds for
paths (6 and 7 respectively for the second MethodDeclaration).
To distinguish elements across multiple paths the indices can
be used similarly. We can tell that paths 5 and 6 are not
belonging to the same MethodDeclaration.

D. Abstraction alignment

In the sections above, we introduced abstraction levels High
and Low for one single code snippet, both providing a set
of paths representing the snippet. We showed how to reason
across multiple paths of one abstraction. The next step in
making use of the representation is to reason across multiple
abstractions of different snippets x and y, by considering the
sets of paths Px and Py , respectively, that they generate. We
propose a Jaccard Similarity (Formula 7) based measurement,
leading to a high similarity if a lot of paths are in both sets
Px and Py , and little paths only in either set Px or Py .

jaccardSim(Px, Py) :=
| Px ∩ Py |
| Px ∪ Py |

(7)

On High it is easy to be calculated without further steps
needed, as no instance (e.g., multiple methods) are distin-
guished. On Low, the calculated similarity will depend on
the indices assigned to the individual parts in the aggregation
step, as the following example in Table I illustrates. The table
is two-parts, with the upper part containing different paths
(left-hand side) and three abstractions (Pa, Pb1, and Pb2). An
x in the respective cell means that the path is part of the
abstraction. The lower part of the table contains the pairwise
Jaccard similarity. The similarity calculated differs between
jaccardSim(Pa, Pb1) and jaccardSim(Pa, Pb2) regardless of
both Pb1 and Pb2 being equally valid representations of a Class
having one PRIVATE and one PUBLIC Method.

In the presented approach (Figure 2) the indices get assigned
in order of node processing. If a node (e.g., a Method-
Declaration) has been seen before, the assigned index is
reused, otherwise, the next available index (per node type)
gets assigned. This could lead to Pb1 or Pb2 for the same
code sample, that are equally valid abstractions.

The idea to counteract this is by aligning the samples
to improve the similarity measured without alternating the
information contained in the abstractions. We achieve this
by looking for (sub)graph isomorphism and corresponding
permutations. In this example, a similarity-maximizing permu-
tation of Pb2 regarding Pa would be to swap the indices of the
two MethodDeclarations. An important remark is that such a
swap of indices needs to conform to the permutation rules (i)
the swap of indices needs to be done for all occurrences to not
invalidate a constraint and (ii) entities need to be respected, so
the index of such related types need to be aligned uniformly.

The isomorphism between two graphs is a bijection (one-
to-one correspondence) between the nodes of the given graphs.
As the graphs in our case are not guaranteed to be of the same
size, we need to look into subgraph isomorphisms of the size
of the smaller graph. A subgraph m of a graph g is denoted
by:

m ⊂ g ⇐⇒ Vm ⊂ Vs ∧ Em ⊂ Es (8)

Finding such a bijection (candidate) of a subgraph consists
of two steps, (i) fixing a suitable subgraph and the (ii) one-to-
one correspondence. The verification of such a candidate can
be done with the Formula 9. The graphs q and m are converted
to adjacency matrices (see Formula 10) and the bijection is
formulated as a permutation matrix Q. Q is constructed with
the nodes of one graph as rows, and nodes of the other graph
as columns, the cells representing a correspondence are filled
with 1, all others with 0. An adjacency matrix Dm contains a
row and column for each node of the graph m, the respective
cell is filled with 1 if there is an edge between those nodes,
with 0 otherwise.

Let q be a graph isomorphic to m, for some permutation
matrix Q:

q ∼= m ⇐⇒ ∃Q,Dm = Q×Dq ×QT (9)

Let Dm be the adjacency matrix of m, with:

Dmij :=

{
1 if {i, j} ∈ Em

0 otherwise
(10)

26Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

ClassDeclaration

MethodDeclaration

VOIDPUBLIC SimpleName

(a) Abstraction level High

ClassDeclaration#1

MethodDeclaration#1

VOID

PUBLIC

SimpleName#1

SimpleName#2 SimpleName#3

MethodDeclaration#2

(b) Abstraction level Low

Fig. 6: Resulting graphs by aggregating nodes and edges of the example AST

TABLE I: SAMPLE ABSTRACTIONS AND CORRESPONDING PAIR-WISE JACCARD SIMILARITIES

paths on low abstraction level Pa Pb1 Pb2

PUBLIC ClassDeclaration#1 x x x
PUBLIC MethodDeclaration#1 ClassDeclaration#1 x x

VOID MethodDeclaration#1 ClassDeclaration#1 x x x
PRIVATE MethodDeclaration#1 ClassDeclaration#1 x
PUBLIC MethodDeclaration#2 ClassDeclaration#1 x

VOID MethodDeclaration#2 ClassDeclaration#1 x x
PRIVATE MethodDeclaration#2 ClassDeclaration#1 x

jaccardSim with Pa 1 0.6 0.33
jaccardSim with Pb1 0.6 1 0.429
jaccardSim with Pb2 0.33 0.429 1

1 SimpleName#1_ClassDeclaration#1
2 PUBLIC_ClassDeclaration#1
3 PUBLIC_MethodDeclaration#1_ClassDeclaration#1
4 VOID_MethodDeclaration#1_ClassDeclaration#1
5 SimpleName#2_MethodDeclaration#1_ClassDeclaration#1
6 PUBLIC_MethodDeclaration#2_ClassDeclaration#1
7 VOID_MethodDeclaration#2_ClassDeclaration#1
8 SimpleName#3_MethodDeclaration#2_ClassDeclaration#1

Fig. 7: Abstraction Low of program 1

After an isomorphism has been found, the indices can be
aligned according to the permutation, allowing for the final
check to see if the resulting paths match. This is needed as g
(and Dm) do not contain the information of the original paths,
so the graph will accept possible paths not contained in the
abstraction.

E. Shared concept

We define a shared concept cshared as the set of similarities
and differences between a set of code snippets. The abstrac-
tions of code snippets, which contain the concepts cshared are
elements of the set Ain and code snippets, which are not an
implementation of the concept cshared , represent an element of
the set Aex.

Out of these two sets of abstractions of examples and
counterexamples, the representation of the shared concept is
derived as follows:

c(Ain, Aex) := {Pin, Pex} (11)

with Pin ∩ Pex = ∅
∀pin ∈ Pin ∧ ∀ain ∈ Ain | pin ∈ ain

∀pex ∈ Pex∃aex ∈ Aex | pex ∈ aex

∀pex ∈ Pex∄ain ∈ Ain | pex ∈ ain

Related to the above definition, a shared concept is de-
scribed by two sets of paths Pin and Pex. Each path pin ∈ Pin

is included in every single abstraction of Ain. Pex consists
of paths pex retrieved by the set of abstractions Aex. For
a path to be included in Pex it needs to be in at least one
abstraction of Aex and must not be in any abstraction of Ain.
The idea of those exclusion paths is to handle paths seen in
the programming language that have never been seen in a
positive example that is expected to include the shared concept.
By including samples from different repositories and business
domains into the sets Ain and Aout we hypothesize that
the shared concept is containing business-domain-independent
overlap.

IV. EVALUATION

The evaluation starts with describing the data set, which
was collected, and annotated by the authors. The second part
introduces the singleton design pattern, as this is the case study
through the evaluation of the paper. The rest of the section
addresses the stated RQs. We start by finding similarities
on the abstraction levels (RQ1) calculating pair-wise jaccard
similarities on the abstraction levels and analyze how the
similarity compares on pairs that are both singletons, one of
the samples being a singleton and non of the samples being
a singleton. We formulate the shared concept as RQ2, by
including all paths Pin we have seen in all samples (of the

27Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE II: ANALYSIS OF THE AMOUNTS OF PATHS IN
THE ABSTRACTIONS

min # of paths max # of paths avg. # of paths
low high low high low high

singleton 17 17 2379 646 247.26 88.61
non singleton 6 4 2856 983 421.16 157.37
all samples 6 4 2856 983 334.21 122.99

singleton), in addition, we formulated an exclusion set of paths
Pex, by specifically excluding paths that we have only seen in
non-singleton samples.

Classifying new samples on the abstraction levels using the
formulated shared concept (RQ3) is done as the last part of
the evaluation.

A. Results

1) Preprocessing of the data set: The data set (java-
singleton) collected and used to evaluate the abstraction ap-
proach consists of 230 java code samples labeled as part
of this paper, containing the singleton design pattern and
230 additional samples that do not implement the singleton
design pattern. The classes originate from different projects.
The labels were applied by two authors, only containing
samples that were confirmed by both authors. We chose the
singleton pattern as a concept to evaluate as it combines
a few criteria we consider beneficial as a showcase in this
paper. The purpose of the pattern is widely understood and
used in practice. The implementation is all in one place (the
singleton class), leaving aside large search spaces [13]. Making
it reasonable to identify samples in existing code, but leaving
room for the implementation to vary. It introduces manageable
complexity to the task at hand while enabling us to collect a
data set to evaluate the presented work, although the presented
approach of abstraction is not limited to the scope of a single
class, file, or pattern. We abstracted all the samples on both
levels of abstraction. Table II gives insights into the resulting
abstractions. The table contains the minimum, maximum, and
average amount of paths all abstractions of a given set of
abstraction. The sets show that the range on how many paths
are in the samples varies a lot for each given set inspected.
The average is also significantly higher than the minimum
amount of paths of a sample, indicating that on average there
are things in the samples than they can share (as this is what
at most can be overlap).

2) Results RQ1: As described in section III-D we are going
to measure similarity using the Jaccard Similarity (Formula 7).
Table III summarizes details on the calculated similarities.
Each row represents ten percent incremental thresholds, with
the corresponding amount of sample pairs that are at least as
similar as the threshold requires. The reported numbers are
broken down into how many pairs are (i) both singletons, (ii)
one of them is a singleton and, (iii) none of them is a singleton.
This is done for both abstraction levels. The comparison of the
samples with itself is excluded from the table.

The data shown in the table support the assumption that the
abstractions embody similarity related to the singleton design

pattern. From the columns both singleton on both abstraction
levels we take that the stated RQ1 holds and that it is possible
to abstract different concrete implementations of the same
design pattern to show a similarity. As the similarity observed
is significantly higher compared to the other columns in the
table.

3) Results RQ2: We built a shared concept as introduced
in our Definition 11. This part of the evaluation is limited
to High as no complete alignment of all samples has been
calculated, leading to inaccurate results on Low. More on this
is addressed in the limitations and future work section of the
paper.

We follow common practice in Natural Language Process-
ing (NLP) (compare stop word removal [14]) and trim the
data so that we do not rely on too (un)common paths. We
only keep paths in at least 5 percent and at most 95 percent
of the samples of the dataset.

Table IV distinguishes the (non-)trimmed abstractions. It
displays the number of paths belonging to specific subsets
of the data set. For the non-trimmed row, many paths are
exclusive to (non-)singletons (4644 + 12813) compared to a
1996 part shared. As the collected data set is small, con-
tributing to infrequently observed paths, we focus on the
trimmed column of the table. There are no paths left that are
exclusive to the singleton samples. Allows us to ascertain,
that there are no language constructs exclusively used to
implement the singletons. In addition, eight paths are exclusive
to non-singleton samples, which indicates that they are part
of the programming language but not used to implement the
singleton design pattern. No paths are seen across all non-
singleton samples. The majority of paths are seen across both
singletons and non-singletons. The shared concept retrieved
from the data set java-singleton consists of twelve paths in
Pin and eight paths in Pex.

4) Results RQ3: To evaluate if it is possible to use the
shared concept for classification of unseen code, we use a
dataset [15] providing annotations of used design patterns.
The dataset contains annotations for the following nine java
projects: QuickUML 2001, Lexi, JRefactory, Netbeans, JUnit,
MapperXML, Nutch, PMD, and JHotDraw.

The authors of this paper validated the annotations. From
the 13 annotations, we rejected seven, finding six additional
singleton implementations that were not annotated as such
before. Resulting in a total of 12 instances.

We conducted three experiments (Table. V)(i) High incl.
only looking to include all the Pin paths, (ii) High refers
to in addition looking that none of the exclusion paths Pex

are present, and (iii) Low we used the inclusion paths Pin

and associated indices that conform to the singleton pattern
(described in Section 5.2.). Here we then aligned the indices
of the samples (using subgraph isomorphism).

As a given sample can be classify containing a singleton
(Positive) or not (Negative) and the ground truth label can
tell if it is a singleton or not, we end up with the resulting
combinations True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). In our context, the

28Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE III: NUMBER OF SIMILAR PAIRS ABOVE 10 PERCENT INCREMENTAL THRESHOLDS

Low High
threshold both singleton one singleton none singleton both singleton one singleton none singleton

0.0 26335 52900 26335 26335 52900 26335
0.1 4843 389 31 22628 21859 7950
0.2 1444 4 4 10395 1630 600
0.3 372 0 1 3737 118 73
0.4 135 0 1 1589 9 28
0.5 73 0 0 669 0 16
0.6 43 0 0 289 0 8
0.7 32 0 0 153 0 1
0.8 28 0 0 95 0 1
0.9 27 0 0 63 0 0
1.0 25 0 0 30 0 0

TABLE IV: SUB SETS OF THE DATA SET AND THE AMOUNT OF THEIR EXCLUSIVE PATHS

paths only in # paths in all # paths seen
singletons non-singletons (Pex) singletons (Pin) non-singletons in both sets

trimmed 0 8 12 0 279
not trimmed 4644 12813 12 0 1996

classes mean: TP: prediction and ground truth agree on single-
ton; TN: prediction and ground truth agree on non-singleton;
FP: prediction says singleton but it is not a singleton; and FN:
predict says non-singleton but it is a singleton. To evaluate the
performance of our classification of unseen samples we stick
to the metrics of a confusion matrix used for the evaluation
of Machine Learning (ML) models. Table V shows the results
for the conducted experiments. Calculations of Precision also
known as Positive Predictive Value (PPV), Recall also known
as True Positive Rate (TPR), Accuracy (ACC), and F1 are
also calculated. A general remark is that the files were not
changed or preprocessed. In the case of data set java-singleton,
we isolated one class per code sample, contrarily those files
used for the prediction are still untouched and possibly contain
multiple classes.

B. Discussion

We have seen that abstractions produced by samples of
various origins (different projects) carrying the same design
pattern still carry a certain degree of similarity on the different
levels of abstraction introduced in this paper. In terms of
formulating the shared concepts, we were able to formulate a
set of paths included in all samples and exclude a set of paths
that we have only seen in other implementations that do not
contain the same design pattern in the first place. The inclusion
set Pin contains twelve paths, and the minimum number of
paths seen in the set of singletons (see Table II) is only 17.
This allows drawing the conclusions that at least one sample
contains almost the bare minimum needed to implement a
singleton in java.

TABLE V: RESULTS OF THE PREDICTION TASKS

TP TN FP FN TPR PPV ACC F1
High incl. 12 1914 13 0 1.0 .48 .993 .649
High 8 1919 8 4 .6 .5 .994 .571
Low 12 13 0 0 1.0 1.0 1.0 1.0

The exclusion set Pex serves another important purpose,
as it helps to explicitly describe what should not be part
of the concept. In the case of the conducted evaluation, we
reduced the exclusion set by trimming all paths that were in
less than five percent of the samples, which allowed us to
reduce the set from 12813 to only eight paths. We argue that
this is useful because of the rather small sample size. We have
not found another approach that similarly describes a concept
by explicitly stating what is not part of the desired concept.
Paths contained in Pex were contrary to the definition of a
singleton, as they contain paths for Public Constructors, and
paths for creating new objects in the return statement of a
method (which would bypass the singleton object, if it would
be the getInstance method).

Also, the approach of the formulation of such a shared
concept is flexible and adapts to the considered samples, and
the more the samples share, the more is included. As the paths
are interpretable, the abstraction levels introduced in this work
also allow a formulation of such shared concepts from scratch,
or to use only one example as a template to start with.

Both runs on High have a PPV around 0.5, while the TPR is
higher, not making use of the exclusion paths Pex. The ACC
of both approaches is also nearly identical at 0.99. Caused
by the data having a lot of Negative cases, in which both
approaches are good at predicting. By comparing both runs, it
is indicating that High lowers the prediction of singleton (TP
and FP) while introducing FN. The last part of the evaluation
has been performed on Low. In this case, we introduced
indices to the paths in Pin. We then aligned the indices of
the samples, according to a valid permutation. The results
have a PPV, TPR, and ACC of 1. This classification task
was only performed on the 25 samples predicted as TRUE
on the most permissive other approach (High incl.). As of two
main reasons, (i) the computation needed to find a subgraph
isomorphism is NP-complete [16], and (ii) the previous check
on High for all Pin excludes all the other samples for not
having all the needed paths. By knowing not all paths are

29Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

present in the other samples (regardless of indices) it is not
possible to find indices for those samples so that all paths are
included afterward.

In terms of the classification performed, we have shown
predictions with simple models, checking the exact inclusion
and exclusion of specific paths on the High and the same
thing (after the computational intense subgraph isomorphism
checking) on Low, with a perfect result as a reward. The
prediction on High is prone to overestimate the concept to be
included, which is indicated by a precision around 0.5 for the
not preprocessed unseen samples. Nevertheless, High serves
a valuable purpose in filtering the relevant samples to further
look at Low.

C. Limitations

Although the approach introduced gives promising results in
terms of the stated RQs, we have encountered some limitations
on which we want to elaborate.

The design pattern chosen is rather simple in terms of the
variety the implementation offers. Looking at more complex
structures (e.g., using general parts and specific refined parts
could implement those as interfaces or (abstract) classes), in
terms of the shown abstraction levels this would lead to not
being reflected in Pin as of the current approach on building
the inclusion set.

Assigning index-values to the shared concept Low was the
only time (except the labeling) we relied on understanding the
concept (of the singleton). To address that, the indexing can be
seen as the maximum common subgraph problem [17](being
NP-Hard [16]). We do not have an implementation of this in
our prototype.

V. RELATED WORK

A similar approach to the one we propose is code2vec [18],
[19], also working with an abstraction based on a set of paths.
The main difference is the structure of the extracted path.
All pairwise paths between the leaf nodes are examined and
limited to a maximum number and length. They define the
path-context by a triplet < xs, p, xt >, where xs is the start
leaf, xt is the target leaf, and p the path between these nodes
with the additional information whether a traversal takes place
upwards towards the root element or downwards in the tree.
The approach is presented here all paths from each leaf to the
root are taken into account. Another limitation of code2vec
is the abstraction context, which is one method. They argue
that the order of source code statements is not relevant, valid
for this scope and the defined task. But as shown in [20],
the relation between source code elements for higher concepts
(like classes) is essential to perform structural or behavioral
related tasks. As shown in [21] another limitation of code2vec
is its sensitivity to naming. For tasks like those described in
code2vec, where names of methods are predicted, names are
of course essential, but for the extraction of abstract concepts
the uncertainty of the correct name is too high.

Yarahmadi et al. [20] have conducted an extensive and
systematic literature review on how design patterns can be

detected in code and therefore abstract the code to perform this
task. The main findings of this study relevant to this paper are:
Many of the approaches have been tested and evaluated only
on small data sets or on limited code samples. The principle
in almost all approaches that were reviewed is to reduce the
search space by abstraction. Most approaches were limited in
their ability to recognize different types of patterns. Another
problem of many approaches is to detect different variants
of a pattern. To make this possible, ML methods are often
used. However, these methods require good data preprocessing
because it is not possible to decide in a general way which
parts should be selected for learning. A common approach
to this problem is, as implemented in [22], a semi-automatic
approach in which a human takes over feedback or labeling.

Another principle often used in addition to using the syn-
tactic concepts of programming languages is to analyze the
identifiers (e.g., classes, methods, or variable names) using
natural language processing techniques [23], [24]. In Schindler
et al. [24] demonstrated that these methods are well suited for
project-specific domain models but not for identifying general
patterns. Natural language identifiers can be an indication but
not a robust criterion. An example on how the AST is able
to be enriched by additional features, e.g., by using ML, is
described in [25] and [26].

In addition, tools and frameworks should also be mentioned,
which could also be applied, though in part with restrictions.
For example, jQAssistent [27] is a tool that transfers the AST
into a Neo4j graph database, offers the possibility of manually
enriching this graph with further information, and then using
the query-language Cypher to define concepts and identify
them in the graph. In contrast to the approach presented in this
paper, a query needs to be formulated covering the concept for
which the sample should be retrieved.

ArchUnit [28], Structure101 [29], and Dependometer [30]
are based on the same principle of formulating rules that are
checked automatically afterward. However, the creation and
management of rules is costly with the increasing complexity
of the concept, requires substantial expert knowledge. All of
the mentioned approaches do not assist in expressing rules
applying to a given set of samples.

The major problem in this kind of approach and any other
approach based on a specific formal language is that it is
difficult to define the concrete rules describing a pattern
correctly. Rasool et al. [31] describe it as a lack of standard
specification for design patterns.

The field of code clone detection is related to the approach
presented in this paper since the input data is identical.
Wang et al. [32], four types of code clone detection are
characterized, (i) syntactically identical code fragments, (ii)
syntactically identical except names and literal values, (iii)
syntactically similar fragments that differ in some statements
but can be transformed to each other by simple operations
and (iv) syntactically dissimilar code fragments but sharing
the same functionality. In contrast to code clone detection,
we do neither want to find syntactically identical fragments
(i)-(iii) nor functionally identical ones (iv). Because of the

30Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

domain-specific adaptation, we are not interested in finding
direct copies.

VI. CONCLUSION AND FUTURE WORK

We have shown how to extract the essence of a shared
concept, driven by available implementations, so that the
formulation is interpretable by humans. Moreover, what we
have not found in the literature, is the formulation of what
should explicitly not be part of the implementation. Future
work planned includes addressing the stated limitations and
collecting a high quality and high quantity data set of different
design patterns, including also different variants of a pattern.

The abstraction presented in this paper produces a set of
paths from a semantically aggregated syntax graph. We plan
on utilizing the shown approach as a preprocessing step in the
direction of ML techniques. For example, to train classifier
or cluster samples to identify variants or the inner parts of a
pattern, e.g., roles.

In Herold et al. [33] and Knieke et al. [34], a holistic
approach is described to mitigate architecture degradation
using ML. For such approaches, it is essential to have relevant
training data available and to understand which expected
patterns are not present in the implementation. This would
also be a use case supported by the method presented here.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object-oriented software, 2nd ed., ser. Addison-
Wesley professional computing series. Boston: Addison-Wesley, 1997.

[2] J. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.
[3] K. Bergner, A. Rausch, and M. Sihling, Using UML for Modeling

a Distributed Java Application, 1997. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.6797

[4] G. Sunyé, A. Le Guennec, and J.-M. Jézéquel, “Design patterns applica-
tion in uml,” in European Conference on Object-Oriented Programming,
2000, pp. 44–62.

[5] S. Hussain, J. Keung, and A. A. Khan, “The effect of gang-of-four design
patterns usage on design quality attributes,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2017, pp. 263–273.

[6] C. Deiters and A. Rausch, “Assuring architectural properties during com-
positional architecture design,” in International Conference on Software
Composition. Springer, 2011, pp. 141–148.

[7] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 95–105.

[8] M. Schindler and S. Lawrenz, “Community-driven design in software
engineering,” in Proceedings of the 19th International Conference on
Software Engineering Research & Practice, Las Vegas, NV, USA, 2021.

[9] M. L. Scott, Programming language pragmatics, 4th ed. Amsterdam
and Boston and Heidelberg and London and New York and Oxford and
Paris and San Diego and San Francisco and Singapore and Sydney and
Tokyo: Morgan Kaufmann/Elsevier, 2016.

[10] N. Chomsky and D. Lightfoot, Syntactic structures, 2nd ed., ser. A
Mouton classic. Berlin: Mouton de Gruyter, 2002.

[11] N. Chomsky, “Three models for the description of language,” IEEE
Transactions on Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[12] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
techniques, & tools, 2nd ed. Boston: Pearson Addison Wesley, 2007.

[13] J. Niere, J. P. Wadsack, and L. Wendehals, “Handling large search
space in pattern-based reverse engineering,” in 11th IEEE International
Workshop on Program Comprehension, 2003. IEEE, 2003, pp. 274–
279.

[14] A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive
Datasets, A. Rajaraman and J. D. Ullman, Eds. Cambridge: Cambridge
University Press, 2011, pp. 1–17.

[15] P-mart pattern-like micro-architecture repository. [retrieved: 03, 2022].
[Online]. Available: https://www.ptidej.net/tools/designpatterns/index
html

[16] M. R. Garey and D. S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, ser. A series of books in the
mathematical sciences. New York u.a: Freeman, 1979.

[17] V. Kann, “On the approximability of the maximum common subgraph
problem,” in Annual Symposium on Theoretical Aspects of Computer
Science. Springer, 1992, pp. 375–388.

[18] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 404–419.

[19] ——, “code2vec: Learning distributed representations of code,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, no. POPL,
pp. 1–29, 2019.

[20] H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern detection
approaches: a systematic review of the literature,” Artificial Intelligence
Review, vol. 53, no. 8, pp. 5789–5846, 2020.

[21] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 243–253.

[22] G. Rasool, I. Philippow, and P. Mäder, “Design pattern recovery based
on annotations,” Advances in Engineering Software, vol. 41, no. 4, pp.
519–526, 2010.

[23] P. Warintarawej, M. Huchard, M. Lafourcade, A. Laurent, and P. Pom-
pidor, “Software understanding: Automatic classification of software
identifiers,” Intelligent Data Analysis, vol. 19, no. 4, pp. 761–778, 2015.

[24] M. Schindler, A. Rausch, and O. Fox, “Clustering source code ele-
ments by semantic similarity using wikipedia,” in Proceedings of 4th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), 2015, pp. 13–18.

[25] J. He, C.-C. Lee, V. Raychev, and M. Vechev, “Learning to find
naming issues with big code and small supervision,” in 2021 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI ’21). ACM, 2021, pp. 1–16.

[26] M. Schindler and A. Rausch, “Architectural concepts and their evolu-
tion made explicit by examples,” in ADAPTIVE 2019, The Eleventh
International Conference on Adaptive and Self-Adaptive Systems and
Applications, vol. 11, 2019, pp. 38–43.

[27] jqassistant — your software . your structures . your rules. [retrieved:
03, 2022]. [Online]. Available: https://jqassistant.org

[28] Unit test your java architecture - archunit. [retrieved: 03, 2022].
[Online]. Available: https://www.archunit.org

[29] Structure101 software architecture development environment (ade).
[retrieved: 03, 2022]. [Online]. Available: https://structure101.com

[30] Dependometer. [retrieved: 03, 2022]. [Online]. Available: https:
//github.com/dheraclio/dependometer

[31] G. Rasool and D. Streitfdert, “A survey on design pattern recovery
techniques,” International Journal of Computer Science Issues (IJCSI),
vol. 8, no. 6, p. 251, 2011.

[32] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[33] S. Herold, C. Knieke, M. Schindler, and A. Rausch, “Towards improving
software architecture degradation mitigation by machine learning,” in
ADAPTIVE 2020, The Twelfth International Conference on Adaptive
and Self-Adaptive Systems and Applications, 2020, pp. 36–39.

[34] C. Knieke, A. Rausch, and M. Schindler, “Tackling software architecture
erosion: Joint architecture and implementation repairing by a knowledge-
based approach,” in 2021 IEEE/ACM International Workshop on Auto-
mated Program Repair (APR). IEEE, 6/1/2021 - 6/1/2021, pp. 19–20.

31Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

