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Abstract—Complex Responsive Processes (CRP) focus on the 
interaction between agents, where they exchange knowledge, 
opinions, experience, and values. In decentralized decision 
making, this could accelerate the monitoring, analysis, 
planning and execution process, as defined in a control 
mechanism like MAPE-K. For Multi-Agent Systems with a 
decentralized or hybrid architecture the gesture (e.g., agent 
expression) and response dynamics of complex responsive 
interaction could be valuable to reduce the entropy of a system. 
Until today, the CRP mechanisms have not been formalized in 
Multi-Agent decentralized decision making as it lacks a formal 
model to express inter-agent dialectics. This position paper 
discloses the area where an extension of the MAPE-K control 
cycle  can be made to include the formalized CRP processes. 
This extension consists of a set of methods that include the 
responsive processes of multiple agents and will be used to 
update the Knowledge base in the MAPE-K model. 

Keywords: Complex Responsive Processes of Relating; 
MAPE-K; Multi-Agent Systems; Complex Adaptive Systems; 
Beer Game. 

I.  INTRODUCTION 
In the summer of 1988, the premium beer producer 

Heineken launched a promising new alcohol-free beer called 
Buckler. After an initial successful market entrance, the 
sales figures were dropping dramatically since January 1990 
and there was a very clear reason why this happened. In a 
live TV show on New Year’s Eve 1989, a famous Dutch 
comedian claimed that Buckler consumers were “losers” 
and lack masculinity. Nobody could imagine that this single 
statement could result in a tremendous loss of market share 
and even a premature exit of the brand in the Dutch market. 
The “Buckler-effect” has become a worst-case practice 
marketing case on Dutch business schools [1]. 

Demand and supply in logistics are difficult to align as 
temporal and spatial differences should be bridged. 
Traditionally, forecasting and planning techniques were 

powerful mechanisms to control the logistic chain, to bring 
demand and supply together in the most efficient way [2]. 
However, situations like the Buckler-effect, or recently the 
blockage of the Suez Canal by the Ever-Given shows that 
the external factors can suddenly impact the behavior of 
market players and will have a critical role in decision-
making [3].  

A marketplace is a place where cooperation or 
collaboration and competition of players result in dynamic 
behavior [4][5], which can be characterized as a Complex 
Adaptive System (CAS) [6] and where Complex 
Responsive Processes (CRP) [7] occur. The emergent 
behavior that results from cooperation is difficult to control, 
and the non-linear characteristics will make predictions 
about the players’ behavior difficult [8], even when 
information is shared throughout the supply chain. Recently, 
the use of Multi-Agent Systems (MAS) has gained 
improved insight in complex behavior in decentralized 
decision making in logistic processes. However, current 
models in decentralized, multi-agent collaborative decision 
processes within supply chains are still not efficient, precise 
and lead to poor operability [9]. Research in the field of 
Supply Chain Networks is promising when traditional 
supply chains are conceptualized as CAS [10]. To achieve a 
better alignment of demand and supply, more advanced 
techniques are required, which take the emergent 
characteristics of the market into account, like the bull-whip 
effect or social influencing [11]-[13]. The impact of gesture 
and response dynamics in multi-agent knowledge exchange 
is lacking at the moment.  

In this paper the rationale for research is elaborated, 
followed by a description of related work. After that, the 
Multi-Agent Control Cycle structure is clarified and the 
extended control cycle mechanism will be described. This 
will be the foundation for a possible further extension of the 
model into Complex Responsive Processes.  
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II. RATIONALE FOR RESEARCH 
In multi-agent knowledge creation, each single agent 

will update its Knowledge Base (KB), for each cycle in 
runtime. Process patterns, data analysis algorithms, system 
data or environmental data can be stored in its own 
knowledge base. This knowledge will then be available for 
individual agent analysis and decisions. Decentralized 
decision making in Multi-Agent Systems is a useful 
resource to challenge complexity. Theories of knowledge 
sharing in Multi-Agent Systems still lack the emergent 
behavior of collaborating agents, more specifically the 
dynamics of the group in open Multi-Agent systems [60]. 
What happens when we add the exchange of knowledge and 
dialectics between agents based on trust and group logic to a 
Multi-Agent System?  Or in other words, what is the role of 
Complex Responsive Processes in a Self-Adapting Multi-
Agent System with decentralized decision making? This 
area of multi-agent behavior needs to be investigated in 
more detail to understand the emergent characteristics of 
symbiotic relations between agents. This paper describes the 
area of research to extend the current Multi-Agent control 
cycles with dialectical relation between agents. To 
understand the dialectics between agents, a formal model 
should be developed that will describe the exchange of 
gesture and response to support decentralized decisions. The 
research should result in a clear extension of the MAPE-K 
model to facilitate the dialectic behavior between multiple 
agents. 

III. RELATED WORK 
In the last decades, the digitization of markets and the 

availability of ‘big data’ enabled a quicker understanding of 
the space, in which economic decisions are made [14]. For 
companies to be successful, it has become critical to acquire 
knowledge from outside the organization [15]-[18], and to 
have the ability and strength to execute processes based on 
the capacities to interpret these data [18]-[21]. For 
companies, like the beer brewer mentioned earlier, the 
decisions to efficiently sell and distribute their bottles of 
beer to consumers should be heavily influenced by detailed 
understanding of their own capabilities and the information 
of the environment, in which they operate [22]. Recent 
developments in the knowledge of network dynamics, 
which can be applied to economic markets as complex 
systems [23], shows that not only the environment dictates 
how agents should act but also agents can influence the 
environment in their own favor [24]. At the same time, the 
dominant logic can be influenced by tight collaboration. 
Hence, as Banisch et al. [25] demonstrated, the logic of the 
dominating group could be challenged by the minority and 
even become the majority themselves, which has been 
described as the Social Feedback Theory. Critical for this 
domination is the strength of the agents in the group. The 
stronger the bonds between the agents, the higher the chance 

that they will become the majority. In economics, this has 
been labelled as the “bandwagon effect” [26]. 

Multi-Agent Systems with decentralized decision 
making can positively contribute to the added value of 
products and services in the supply chain [27] when they 
improve the degree of collaboration between them. From an 
architectural approach, an important principle for a resilient 
and adaptable supply chain network is self-organization 
[28]. Approaches for self-organization, defined as Self 
Adapting Systems (SAS), are described by Krupitzer et al 
[29], where a profound taxonomy is proposed. With this 
taxonomy, SASs are described in a few dimensions: time, 
level, reason, technique, and adaptation logic. According to 
Krupitzer et al, most approaches are reactive and exclude 
the impact of the action on its context, which requires 
further research on proactive and context-altering system 
architectures. 

A recognized system for self-adaptation is the MAPE-K 
model [29]. Within MAPE-K the adaptation decision 
criteria are based on models, policies/rules, goals, or 
utilities. MAPE-K is a useful control model as it is 
formalized and supports multi-agent abstract state machines 
[61]. The control mechanisms in MAPE-K will be applied 
in a centralized, de-centralized or hybrid models. For MAS 
solutions, the decentralized model is appropriate to support 
self-adaptation [30]. An external implementation approach 
for the MAPE-K control loop, which is loosely coupled 
from the managed system, is superior in most cases [29]. 
Also, the adaptation decision criteria should be considered, 
based on models, policies/rules, goals, or utilities. Several 
models to exchange knowledge about the environment, 
system, goals and possibilities of adaptations between 
agents has been developed by Fisch et al. [31], where agents 
can learn from each other in a MAS setting. More work 
should be done on collaborative data mining and experience 
exchange.  

When we focus on the collaboration between agents, it is 
important that all agents share the same language. In the last 
three decades, formal languages have been developed for 
MAS solutions. However, the acceptance level of MAS 
languages is still poor, as mainstream development 
platforms could to the job as well, with only small efforts. 
[32]. Nevertheless, several agent programming languages 
could improve the development of MASs and contain 
valuable concepts to use in MAS architectures. At the time, 
there is no MAS language that has been adopted as a de 
facto standard [32].   

To be able to describe the formal model, the building 
blocks should be clarified: 1) MAPE-K model. 2) MAPE-K 
architecture, 3) Adaptation logic of the knowledge base and 
4) The complex responsive processes of relating between 
agents. 

IV. MULTI-AGENT CONTROL MECHANISMS 
Multi-Agent Systems could be based on human or 

virtual agents, both capable of autonomous action and 

15Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications



interaction with each other. As MAS is developing in the 
domain of Artificial Intelligence (AI), the semiosis of the 
human and virtual agents is gaining attention [33][34]. 
Formal theories of human intention, reasoning and decision 
making could be valuable to improve the mechanisms in a 
virtual MAS [35]. 

A. The MAPE-K model 
To gain grip on organizational processes constituted of 

temporal actor behavior, control cycles are required [36]. 
These control cycles use knowledge of the environment and 
the internal state of the system to decide on the actions to be 
taken. In Multi-Agent Systems (MAS), the knowledge of 
the environment is embedded in the MAS architecture.  A 
well-known control cycle process for MAS is MAPE-K. 
The MAPE-K architecture model structures the governance 
of a MAS system in five components, which constitute the 
control system. The environment is Monitored (M) and 
Analyzed (A), actions are Planned (P) and Executed (E). All 
these activities are based on an agent-specific Knowledge 
Base (K or KB) [37]. This KB includes data such as 
topology information, historical logs, metrics, symptoms, 
and policies, which are fed by the Monitoring component 
and updated by the Execution component. MAPE-K could 
be applied to several levels of the processes, both on a 
central and decentralized level. Decentralized control is 
managing the execution of the subsystem for each agent to 
achieve domain specific goals and will impact the 
environment [38] and shapes the behavior of higher-level 
processes. Centralized control on the other hand will take 
care of synchronization of these activities. Weyns et al. [39] 
describe several patterns for the interaction between 
centralized and decentralized control. 

B. The Frameself Architecture for MAPE-K 
The complexity of a distributed Multi-Agent System 

with MAPE-K control loops will lead to self-adaptation, -
deployment and -configuration of information systems. This 
requires a clear architectural framework, on which agents 
will act and processes emerge. One of these architectures is 
the “Frameself” Architecture [40]. This architecture 
contains a fine-grained model of a MAPE-K loop, including 
related interfaces, where the environment is monitored, 
analyzed and changes are planned and implemented, based 
on an agent-specific knowledge base. As this architecture is 
fully integrated in the Unified Modelling Language (UML) 
it gives a clear approach for pragmatic solution. Frameself 
has been developed for Machine to Machine (M2M) 
behavior, but is suitable for use in a generic MAS context as 
well. The architecture fully embeds the MAPE-K loop and 
can be seen as a “mapping” solution from the theoretical to 
the pragmatic domain. The architecture consists of the five 
MAPE-K processes, Monitor, Analyze, Plan, Execute and 
Maintain Knowledge Base, which communicate via web 
services. The KB is used as a source for information sharing 
to facilitate process execution and decision making. 

When autonomic systems use the MAPE-K architecture 
to decide in runtime, a detailed understanding is required 
about what, where, when, how, and with what tools data are 
collected from the environment. Hence, the way the data are 
dimensioned, classified, and translated should be clarified 
before a proper analysis can be done. When these data are 
analyzed, a suitable benchmark or expectation should be 
available to evaluate the performance of the system and 
applicability of business rules [41]. Based on this 
evaluation, the next operational process configuration is 
selected. The question raises if the existing rules and 
processes are appropriate for the state of the system in its 
context? This requires the need for a meta-adaptation layer, 
in which higher level evaluation, learning and verification is 
possible [42]. 

C. Monitoring 
The monitoring process (Figure 1) consist of  methods 

which will scan the environment on relevant events, 
aggregate, masks and normalize these and creates symptoms 
which will be send to the Analysis process. Often, these 
event handlers are also called receptors. All methods are 
managed by the Monitoring manager and knowledge is used 
from the KB or will be updated by the Knowledge Base 
Communicator (KBC). The methods used are identified as 
public (+) or private (-). 

 

Figure 1.  Frameself Monitoring Model. 

D. Analysis 
The symptom is received from the Monitoring process 

and a policy is validated and applied with separate methods. 
The Analysis phase (Figure 2) will take care of the 
evaluation of environmental phenomena and draw clear 
conclusions, based on policies. This will lead to the 
generation of a Request for Change (RfC), which is 
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communicated to the Planner process. All knowledge about 
the policies is interfaced bi-directionally with the KB. 

Figure 2.  Frameself Analyzing Model. 

E. Planning 
When the RfC is received, it will be transformed in a 

policy and interpreted be able to plan the change in the 
operational system using the KB (Figure 3). When this has 
been done, the plan will be sent to the Execution process. 
The Planner Manager method is taking care of the 
coordination, while the KBC shares the effectors and 
policies to apply. 

Figure 3.  Frameself Planning Model. 

F. Execution 
After the planning activities have created and a plan is 

shared to change the operational system, the Execution 
process will translate the plan into specific actions 

(interpreted). These actions are embedded in a workflow 
and the process execution is triggered by the Workflow 
Engine, scheduled, and dispatched for execution. A process 
orchestrator method takes care of the monitoring according 
to the plan. Again, the Executor manager method will take 
care of a smooth process and the KBC is used for 
knowledge exchange. The Execution elements are shown in 
Figure 4. 

Figure 4.  Frameself Execution Model. 

G. Knowledge Base 

In the KB, entities are created, changed read, and 
deleted. For each entity, a method is available, to do the job 
The Frameself architecture does not explicitly define how 
these methods are used. Also, the dynamics between the 
MAPE processes and the KB is related to each unique agent 
(Figure 5). Group learning or exchange of knowledge is not 
explicitly specified. This area of agent-interconnectedness 
needs to be studied in more detail. 

Figure 5.  Frameself Knowledge Base Model. 
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When autonomic systems use the extended MAPE-K 
architecture to decide in runtime, a detailed understanding is 
required about what, where, when, how, and with what tools 
data are collected from the environment. Hence, the way the 
data are dimensioned, classified, and translated should be 
clarified before a proper analysis can be done. And when 
these data are analyzed, a suitable benchmark or expectation 
should be available to evaluate the performance of the 
system and applicability of business rules [41]. Based on 
this evaluation, the next operational process configuration is 
selected. But are the existing rules and processes appropriate 
for the state of the system in its context? This question 
requires the need for a meta-adaptation layer in which 
higher level evaluation, learning and verification is possible 
[42]. 

V. THE EXTENDED MAPE-K MODEL 
In current research on the MAPE-K, attention for the 

influence of environmental factors is limited. More 
specifically, how does environmental factors like the 
participation of agents in a group influence the perception of 
environmental data and the evaluation principles of each 
single agent? Especially when the MAPE-K model is 
applied to distributed control loops with decentralized 
decision making, it could be interesting to see how the 
adaptation rules and results are shared amongst the other 
agents. 

Recent initiatives aim at fine-tuning the MAPE-K model 
and dives into the characteristics of the KB. Research by 
Kloes et al. [42] show a MAPE-K extension, where the KB 
is described with four adaptation mechanisms: the 
Environment model KEnv, System model KSys, Goal model 
KGoal and Adaptation model KAdapt. Also, they added two 
components to enable meta-adaptation: Evaluation and 
Learning. Recently, they also added the Verification 
component to this [43]. With these extensions, the MAPE-K 
model logic becomes adaptive and applies dynamic, context 
specific rules. The first results from this study show that the 
adaptability of the process improves but should be validated 
to a higher extent to achieve generic applicability. 

Within the Knowledge component, two mechanisms are 
subject to external factors: Knowledge of the Environment 
and Knowledge of Goal, while two other mechanisms are 
internal oriented: Knowledge of the System and Knowledge 
on the Adaptation actions. The Extended MAPE-K [43] 
shows how autonomous decision-making techniques in a 
runtime environment can be used to adapt to continuously 
changing environments in a quantitative manner. Guards 
monitor the environment and activate or de-activate specific 
system- or sub-goals. So, these guards are trained to make 
the system context sensitive. In the study of Kloes et al [43], 
a model for Goal requirements definition is proposed, where 
a parent goal can consist of sub-goals. These sub-goals 
could mutually reinforce and measured as weighted 
contributors to the parent-goal but can also be exclusive 

contributors. Together, the joint success rates of the set of 
sub-goals will determine the total success of the parent-goal 
and therefore the success of planned actions. 

Figure 6.  Extended MAPE-K model [43]. 

Taking notice of the agent driven decisions, how do we 
integrate the dominant logic of the group [62] in monitoring 
and adaptation activities in the extended MAPE-K control 
loop when applied to business processes? Previously, we 
saw that guards activate or de-activate goals, based on the 
state of the environment. But how are these guards 
positioned in the MAS model? Will they be event handlers 
or connectors that are triggered externally? And what about 
the data, which are stored in the Logical Operational 
Environment [45] and analyzed during decision making? 
These data are applied in the decision-making process, 
where the environmental-state, (sub)goals and guiding-
principles come together [62]. What if the guiding-
principles are influenced by the dominant logic of the 
group? Where do we store and maintain those principles? 
And how does an agent identify itself with a group, 
understand their rules of engagement and gain the required 
trust level? Or in other words, how could the environment 
be influenced to each actor’s own advantage? A complex 
responsive process view on MAS control-cycles should take 
these considerations into account. 

VI. COMPLEX RESPONSIVE PROCESSES OF RELATING 
Organizations operate in a complex environment, which 

is characterized by emergence, nonlinearity, and self-
organization [46][47].  In organization science, the 
organization, as the locus of attention, has been studied as a 
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Complex Adaptive System (CAS), where micro-dynamics 
of local interactions between the organizational actors result 
in global patterns [48][49]. Although this approach distinct 
the several steps of complexity [50], the single 
organizational actor is constituted as a rule-driven agent 
[51]. However, the full range of human experiences is 
hardly captured [52] while the environment is perceived as 
social and complex patterns, in which behavior of human 
actor is both physical and cognitive. Complex intelligence, 
where knowledge is created out of the social interaction, 
includes this human factor, but lacks a suitable integration 
with the idea of CAS [53]. This has been identified by 
Stacey et al as Complex Responsive Processes of Relating 
(CRP) [54], where activity of actors is influenced by the 
behavior of other actors, individuals, or groups. CRP, 
however, is taking both perspectives on human interaction 
and emergence in consideration [7]. 

According to Homan [55, p. 495] “the complex 
responsive process perspective does not assume the [agents] 
to be more or less mechanistic entities (automatons) reacting 
in a rule-driven fashion to their neighbors, but ‘endows’ the 
[agent] with thoughts, reflections, emotions, anxieties, 
ambitions, socialization, history, political games, 
spontaneity, unpredictability, and uncertainty, also 
understanding (human) interactions with others as intrinsic 
power relations.” In the CRP setting, actors will search for 
others to create a critical mass or are complementary in 
capabilities or skills [56] to overcome uncertainty. These 
groups are formed around shared themes, which is shared, 
repetitive and enduring in its values, beliefs, traditions, 
habits, routines, and procedures [54]. 

From the Social Feedback Theory [57] we learned that 
the behavior of the agent is influenced by the group the 
agent belongs to. Agents perceive their environment 
through the lens of the group and act accordingly, based on 
its dominant logic [62]. Gergen describes this behavior as 
social constructionism [58]. According to Gergen, 
relationships  in the group and the reality of group members 
are socially constructed and are limited by culture, history, 
and human embeddedness in the physical world. Not the 
individual mind but the relationship becomes the main 
driver for dynamics. The gesture and response dynamics in 
group activities are triggered by environmental artifacts and 
lead to the application and creation of patterns and the 
disclosure of new artifacts to the environment, which is, 
according to Stacey [59] the true source of knowledge 
creation.  So, according to the CRP theory, to understand 
the dynamics of a system, one should focus on the 
interaction of actors in groups instead of individual behavior 
[54].  

VII. CRP AS ACCELERATOR FOR A SELF-ADAPTING 
MULTI-AGENT SYSTEM 

The effort to include CRP in a MAS system architecture 
will start with the meta model definition of a MAS. A 
pragmatic model for MAS architecture is the SARL 

metamodel [63], which describes the entities that construct 
the building blocks for a MAS system. Each agent will act 
in its context, composed of one or multiple spaces. Within 
this meta model, the interaction model is created, that is 
derived from the Physical and Social space. The interaction 
model will group together the several agents and describes 
the interaction patterns with use of relevant information 
flows. These information flows are based on the relevant 
dimensions (descriptions of artifacts) in its environment and 
influenced by the dominant group logic and semiotics in the 
system space. Environmental knowledge is perceived 
through guards and actions are taken to effectuate agent 
behavior in its environment. This will result in emergent 
interaction patterns within the Opportunity Space [44]. 

The adaptive process of a MAS is described by the 
(extended) MAPE-K model. Environmental events trigger 
the control cycle, resulting in the execution of the sub-
system and a super-system learning cycle (Evaluation, 
Learning, Verification). Each step in the extended MAPE-K 
model is probably be influenced by the interaction with 
other agents and knowledge is shared [42]. The share of 
knowledge could catalyze the decision-making process in 
MAS platforms and could be a possible solution to reduce 
uncertainty in time critical, runtime environments. Also, it 
will stimulate the coherence of group actions and 
controllability of MAS behavior. But what elements in the 
KB are shared and how will this influence the behavior of 
the agent in the MAPE-K control cycle? Especially the 
effectiveness and timeliness of the agent’s response is an 
interesting element in knowledge exchange. 

 

Figure 7.  MAPE-K CRP model. 
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The solution will be a dialectics platform, where groups 
of agents apply gestures and respond to that. On this 
platform, a set of formal patterns is available to support 
these processes. Agents will raise questions and receive 
feedback from other agents. This will result in dialectics, 
where new entities are created that could be used in the 
agent’s own knowledge base. Based on this concept, the 
research should investigate how the meta model and 
architecture should look like. Also it has to describe the 
formalize methods for information exchange. This extension 
can be labelled as the “MAPE-K CRP model”, that includes 
the CRP Exchange of Gesture and Response between agents 
(Figure 7). 

VIII. CONCLUSIONS AND FURTHER WORK 
In this position paper the control cycle for Multi-Agent 

Systems is described, including possible extensions. Current 
models lack the social dialectics between agents. The 
instance in which the gesture and response between agents 
takes place should be added to the model. Further research 
is required to include social elements of emergent behavior 
in a Multi-Agent setting. This could accelerate the exchange 
of knowledge and ability to adapt. The next steps will be the 
development of the CRP MAPE-K extension architecture 
and the translation into a meta model including formal 
methods for development. 
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