
Context-Aware Security Intelligence of Vulnerability
Scanners in Cloud-native Environments

Simon Ammer, Jens Krösche
Mobility & Energy

University of Applied Sciences Upper Austria
Hagenberg im Mühlkreis, Austria

email: firstname.lastname@fh-hagenberg.at

Markus Gierlinger, Mario Kahlhofer
Dynatrace Research

Linz, Austria
email: firstname.lastname@dynatrace.com

Abstract—Even as black-box web vulnerability scanners help
identify security vulnerabilities of web applications, they still have
problems with false alarms, as they lack insight into the context
of applications. Without this supplemental information like the
topology of the underlying application or the runtime, scanners
cannot precisely assess a threat’s actual severity, leading to false
alarms and a challenge for security experts to prioritize vulnera-
bilities. Especially with the increasing popularity of microservices
and highly dynamic cloud environments, this prioritization task
becomes more difficult due to this environment. This paper
bridges this gap by enriching web vulnerability scanner reports
with context information to understand security threats better
and reduce false positives. To this end, we developed a rule-based
system that is extensible for multiple use cases, and we propose
a framework to evaluate the approach’s effectiveness using the
insecure web applications Unguard and Open Web Application
Security Project (OWASP) JuiceShop.

Keywords—cloud computing; web application security; dis-
tributed systems security; context-awareness; rule-based adap-
tation.

I. INTRODUCTION

Cloud computing is a fundamental building block for to-
day’s digital transformation, and a cloud-first strategy is be-
coming the norm, according to Taleb and Mohamed [1]. How-
ever, according to Behl [2], cloud computing also adds new
risks of being vulnerable to cyber-attacks and demands more
than traditional security solutions. Even as cloud providers
ensure security on a certain level based on the shared respon-
sibility model like the ones from Amazon [3] and Microsoft
[4], still, according to the models, the customers also have se-
curity responsibilities depending on the service model. Several
methods exist to improve security. The Amazon Web Services
(AWS) DevSecOps reference architecture from Manepalli [5]
of AWS and also the DevSecOps primitives for a reference
platform from Chandramouli [6] of the National Institute of
Standards and Technology (NIST) list the following methods:

• Software Composition Analysis (SCA): Identify poten-
tial risks when using third-party software (i.e., libraries,
packages, etc.).

• Static Application Security Testing (SAST): Analyze the
source code during development to find issues.

• Dynamic Application Security Testing (DAST): Examine
the outside security posture.

• Interactive Application Security Testing (IAST): Com-
bine the working principle of SAST and DAST.

• Runtime Application Self Protection (RASP): Monitor
applications in run-time to detect threats and block some
execution paths if necessary.

Dynamic web application vulnerability scanners are in the
category of DAST tools. These tools need minimal human
interaction and have the advantage that they are programming
language independent. Especially, the automatic aspect is
vital with the growing number of web applications where
penetration tests are limited due to resource and time con-
straints. Such tools can also support the DevSecOps approach
of companies by running security scans automatically in a
continuous integration and delivery (CI/CD) pipeline before
releasing applications. The scanners themselves search for
vulnerabilities by attacking and probing the application’s web
and API interfaces from an outside perspective.

Offered scanners also report false positives according to
Bau, Bursztein, Gupta, et al. [7] and Alsaleh, Alomar, Al-
shreef, et al. [8], which adds to the challenge of security
experts to prioritize vulnerabilities correctly. For example,
false-positive Structured Query Language (SQL) injections
where the detected technology does not match the actual
technology. Some research, exemplified in Section II, tries
to create new scanners that provide better results, whereas
others emphasize techniques that combine static and dynamic
security testing elements. The higher complexity of modern
web applications and microservice architectures make this
undertaking even more challenging because they use different
technologies at different abstraction layers. Also, with the
ever-changing nature of cloud environments, the prioritization
of vulnerabilities for security experts becomes even more
complex.

This work proposes a technique to support this prioritization
and reduce false positives of security tools in a cloud-native
environment by utilizing inherent contextual information of the
environment, like topology and runtime. The proposed method
is generally applicable, but the implemented prototype focuses
on the open-source web application security scanner OWASP
Zed Attack Proxy (ZAP), utilizes Kubernetes as container
orchestration service, and uses Dynatrace as an observability
software. However, other observability platforms can also be

10Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 1. The proposed architecture of the system.

used if they offer data like the expected data structure shown
in Section III.

Specifically, our contributions are:
• Context-aware ruleset engine: DAST is known to report

false-positive alerts according to Doupé, Cova, and Vigna
[9]. A context-aware rule-based filtering supports the pri-
oritization of threats and the reduction of false-positives.

• Graph-based security posture visualization: The method
of visualizing the relationship between application assets
and topology information from an attacker’s perspective.
This visualization assists security experts in prioritizing
threats.

Second, we propose a framework to evaluate the methods
using the insecure web application Unguard (not public at the
time of this writing) and OWASP JuiceShop.

The rest of the work is organized as follows. Section II
discusses related work. The proposed concept is described
in Section III. Section IV presents a framework to evaluate
the approach with two insecure web applications. Finally, in
Section V, we summarize and discuss, and give an outlook for
future work.

II. RELATED WORK

As proposed to Doupé, Cova, and Vigna [9], web applica-
tion scanners are comprised of three modules in most cases: a
crawler, an attacker, and an analysis module. The crawler tries
to find all the reachable pages and input points of an applica-
tion by following redirects and links. The attacker module then
uses the result to generate values that may trigger a vulnerabil-
ity. As last step, the analysis module analyzes the application’s
responses to detect vulnerabilities. A systematic review by
Seng, Ithnin, and Said [10] analyzed the methodology of ex-
isting academic manuscripts for quantifying scanners’ quality
and found no standard methods. Only a common practice,
namely calculating the number of detected vulnerabilities,
was found. Mburano and Si [11] used additional metrics like

the True Positive Rate (TPR) and False Positive Rate (FPR)
and carried out a benchmark of open-source scanner results
using the Open Web Application Security Project (OWASP)
Benchmark and the Web Application Vulnerability Scanner
Evaluation Project (WAVSEP).

Studies from 2010 of Bau, Bursztein, Gupta, et al. [7] and
Doupé, Cova, and Vigna [9] show that scanners offer good
results for simple historical vulnerabilities but have difficulties
with advanced or second-order forms. Another finding was
that the cost of a scanner and the provided functionality have
no strong correlation. False positives occurred due to the
disclosure of server paths and absolute paths of anchors, but
there were also genuine ones. More recent studies provided
similar results with Alsaleh, Alomar, Alshreef, et al. [8]
recommending better verification checks of reported false
positives of investigated open source scanners to simplify
the manual verification process. Also, Anhar and Suryanto
[12] state that further research is necessary for modern web
applications based on frameworks like React, Angular, and
similar ones.

According to Gartner [13], context-aware security (CAS) is
described as the usage of additional contextual information to
improve security decisions, which is used in our work. To the
best of the authors’ knowledge, there is not much research
on web application scanners utilizing CAS. Even so, some
work on intrusion detection systems (IDS) like the following
relies on contextual information. Chergui and Boustia [14] list
the following information for compromised entities as helpful:
network configuration, protocols, operating system, services,
and applications. The latter three are also used in the prototype
of this work. Eschelbeck and Krieger [15] use a similar
approach by including services, ports, operating systems, and
vulnerabilities as information to eliminate noise from IDS.

11Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

III. METHODOLOGY

This paper utilizes the two chosen context information,
topology and runtime, relying on the monitoring and ob-
servability platforms or systems to provide the necessary
information. Such systems know about the topology of the
applications but do not necessarily have access to the actual
code. Therefore, SAST and IAST are not the focus of this
work. The main focus is DAST because they attack an appli-
cation from the outside and do not have run-time information
which the observability platform can provide.

A. Architecture

Our system Themis, shown in Figure 1, consists of four
main components. The orchestration automates the scheduling
of security testing tools in Kubernetes. The observability
platform collects all contextual information. The ingest fuses
data and integrates multiple data sources afterwards, and the
visualization displays the information for security experts.

1) Orchestration: Runs different security scans, either on
demand or in a specified interval. It also extracts the scan
result and parses it to a unified format finding format of the
secureCodeBox project [16]. Afterwards, the data is sent to
the receiving ingest components using a webhook.

2) Observability Platform: The observability platform has
constant ‘insight’ into the applications and collects the mon-
itored data, for example, from OpenTelemetry. Listing 2
shows the expected data structure of such an observability
platform as a JavaScript Object Notation (JSON) object.
The attributes toRelationships and fromRelationships
contain the connections of an application to others. The
softwareTechnologies attribute shows the application’s
technologies like C# and Java.

[{
” hos tname ” : ” j s h o p . j u i c e s h o p . svc ” ,
” t o R e l a t i o n s h i p s ” : {

” c a l l s ” : [
”APPLICATION−C46735D64G092C8H”

]
} ,
” s o f t w a r e T e c h n o l o g i e s ” : [{

” t y p e ” : ”NODE JS (1 4 . 1 8) ”
}] ,
” f r o m R e l a t i o n s h i p s ” : {

” runsOn ” : [
”PROCESS GROUP−FQVDC6732B412233”

]
}

}]

Fig. 2. Data structure for the topology and runtime information.

3) Ingest: The core part of this work, the ingest, is split
into three parts: Middleware, Wrangler, and Datastore. The
first part, the Ingest Middleware, transforms the result of the
orchestration component and potential external vulnerability
scanners to the DAST report format of Gitlab [17], partially
seen in Figure 3. The Wrangler then uses this report to

correlate the results with the data of the observability platform.
The correlation is performed based on the hostname of the
application, which is present both in the topology data and the
scan result. The aggregated data can then be used to filter the
scan results with pre- and user-defined rules, which are saved
in the Datastore. Security experts manually create these rules,
but the architecture could be used to enable problem-specific
rule sets automatically based on specific characteristics of
applications in further work.

” v u l n e r a b i l i t i e s ” : [{
”name ” : ”SQL I n j e c t i o n − SQLite ” ,
” i d e n t i f i e r s ” : [{ ”name ” : ”CWE−89” }] ,
” s e v e r i t y ” : ”HIGH” ,
” l o c a t i o n ” : {

” hos tname ” : ” h t t p : / / j s h o p . j u i c e s h o p . svc ” ,
}

}]

Fig. 3. Data structure for the found vulnerabilities of a scan result.

4) Visualization: A penetration tester can view the ingested
data on a web application. Furthermore, it has a rule editor
for custom user rules defined in Rego [18], a query language
inspired by Datalog. A sample rule is shown in Listing 4 that
filters the false-positive SQL injections, mentioned in Section
I, where the detected technology does not match the actual
technology. For example, possible injection of MySQL, while
the application itself does not use this technology.

deny [msg] {
i n p u t . v u l n e r a b i l i t y . t y p e == ”SQLi”
n o t i n p u t . v u l n e r a b i l i t y . t e c h n o l o g y == \

t o p o l o g y . d a t a b a s e . t y p e
msg : s p r i n t f (” SQLi v u l n e r a b i l i t y %s does \

n o t match t h e u n d e r l y i n g d a t a b a s e . ”)
}

Fig. 4. A user-defined rule to avoid false positives of SQL injection alerts.

IV. DISCUSSION

Previous research from Seng, Ithnin, and Said [10] and
Doupé, Cova, and Vigna [9] shows that quantifying the results
of web application security scanners is complex and common
practice is to run the scanner against multiple testbeds. One
important metric is the TPR of discovered vulnerabilities of
such tests. As this paper does not improve the internals of web
application security scanners but aims to improve the produced
results by reducing false positives, spurious vulnerabilities
are the most important metric. This section outlines the used
methods for evaluating the proposed technique.

The proposed approach is evaluated by running one open-
source (OWASP ZAP) and one commercial scanner (Tenable
Web App Scanning), against two web applications. One of
these testbeds is the monolith application OWASP JuiceShop,
which includes real-world applications’ security flaws and
vulnerabilities from the OWASP TopTen. The second insecure

12Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

application is a custom testbed called Unguard from the
company Dynatrace that contains hand-inserted vulnerabilities
with proven attack patterns. These two applications have
different application architectures to analyse which contextual
information is helpful in which architecture.

False Positives: Whether the false positive rate improved
with the proposed approach still needs to be evaluated. Never-
theless, it is assumed that the results with Unguard will be
better than the ones with OWASP JuiceShop. Because the
latter application is a monolith, the topology does not provide
much value here. Only the information of the application’s
technology will therefore be beneficial for the results, which
will result in a worse filter result.

Visualization: The graph-based visualization of the context
seems to provide value in the mitigation process. Still, this
result is hard to measure as it is subjective based on the
application’s user. Nevertheless, it is shown that vulnerability
and topology information can also be merged and presented
graphically.

V. CONCLUSION

In this paper, we presented a system that tries to reduce
false positives of scanners in a cloud environment. Although
there is much research on improving the functionality of web
application scanners, utilizing contextual information is not
much examined to the authors’ knowledge. To this end, an
architecture to combine scanner results and topology informa-
tion has been proposed, and a prototype called Themis with
a rule-based filtering approach and graph-based visualization
of found vulnerabilities was shown. The effectiveness will be
thoroughly evaluated in the near future with the two projects,
Unguard and OWASP JuiceShop, using the FPR as a metric.
It is assumed that results with OWASP JuiceShop will be
restricted due to the monolithic architecture of the application.
Better results are expected for microservice-based applications
where topology information is beneficial. Additionally, the
effectiveness of the rule-based filtering and the graph-based
visualization’s helpfulness for security experts has to be further
evaluated in a production environment.

ACKNOWLEDGMENT

This research was partially supported by Dynatrace. We
thank our colleagues from the Cloud Application Security
Protection department.

REFERENCES

[1] N. Taleb and E. A. Mohamed, “Cloud Computing Trends: A
Literature Review,” Jan. 16, 2020. DOI: 10.36941/ajis-2020-
0008.

[2] A. Behl, “Emerging Security Challenges in Cloud Computing:
An Insight to Cloud Security Challenges and their Mitigation,”
in 2011 World Congress on Information and Communication
Technologies, Dec. 2011, pp. 217–222. DOI: 10.1109/WICT.
2011.6141247.

[3] Amazon. (Apr. 2022). Shared Responsibility Model, Amazon
Web Services, Inc., [Online]. Available: https://aws.amazon.
com / compliance / shared - responsibility - model/ (visited on
04/04/2022).

[4] Microsoft. (Mar. 1, 2022). Shared Responsibility in the Cloud,
[Online]. Available: https : / / docs . microsoft . com / en - us /
azure/security/fundamentals/shared-responsibility (visited on
04/04/2022).

[5] S. Manepalli. (Jun. 25, 2021). Building an End-to-end
Kubernetes-based DevSecOps Software Factory on AWS,
Amazon Web Services, [Online]. Available: https : / / aws .
amazon . com / blogs / devops / building - an - end - to - end -
kubernetes - based - devsecops - software - factory - on - aws/
(visited on 04/04/2022).

[6] R. Chandramouli, “Implementation of DevSecOps for A
Microservices-based Application with Service Mesh,” Sep. 29,
2021. DOI: 10.6028/NIST.SP.800-204C.

[7] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of
the Art: Automated Black-Box Web Application Vulnerability
Testing,” in 2010 IEEE Symposium on Security and Privacy,
Oakland, CA, USA: IEEE, May 2010, pp. 332–345. DOI: 10.
1109/SP.2010.27.

[8] M. Alsaleh, N. Alomar, M. Alshreef, A. Alarifi, and A.
Al-Salman, “Performance-Based Comparative Assessment of
Open Source Web Vulnerability Scanners,” Security and Com-
munication Networks, vol. 2017, pp. 1–14, May 24, 2017. DOI:
10.1155/2017/6158107.

[9] A. Doupé, M. Cova, and G. Vigna, “Why Johnny Can’t Pen-
test: An Analysis of Black-Box Web Vulnerability Scanners,”
in Detection of Intrusions and Malware, and Vulnerability
Assessment, C. Kreibich and M. Jahnke, Eds., vol. 6201, Bonn,
Germany: Springer, Jul. 8, 2010, pp. 111–131. DOI: 10.1007/
978-3-642-14215-4 7.

[10] L. Seng, N. Ithnin, and S. Said, “The Approaches to quantify
Web Application Security Scanners Quality: A Review,” In-
ternational Journal of Advanced Computer Research, vol. 8,
pp. 285–312, Sep. 28, 2018. DOI: 10 . 19101 / IJACR . 2018 .
838012.

[11] B. Mburano and W. Si, “Evaluation of Web Vulnerability
Scanners Based on OWASP Benchmark,” in 2018 26th In-
ternational Conference on Systems Engineering (ICSEng),
Sydney, NSW, Australia: IEEE, Dec. 2018, pp. 1–6. DOI: 10.
1109/ICSENG.2018.8638176.

[12] A. A. Anhar and Y. Suryanto, “Evaluation of Web Application
Vulnerability Scanner for Modern Web Application,” presented
at the International Conference on Artificial Intelligence and
Computer Science Technology, Yogyakarta, Indonesia: IEEE,
2021, pp. 200–204. DOI: 10 . 1109 / ICAICST53116 . 2021 .
9497831.

[13] Gartner. (Apr. 2022). Definition of Context-aware Security,
Gartner, [Online]. Available: https : / / www. gartner. com / en /
information - technology / glossary / context - aware - security
(visited on 04/04/2022).

[14] N. Chergui and N. Boustia, “Contextual-based Approach to
reduce False Positives,” IET Information Security, vol. 14,
no. 1, pp. 89–98, 2020. DOI: 10.1049/iet-ifs.2018.5479.

[15] G. Eschelbeck and M. Krieger, “Eliminating Noise from
Intrusion Detection Systems,” Information Security Technical
Report, vol. 8, no. 4, pp. 26–33, Apr. 1, 2003. DOI: 10.1016/
S1363-4127(03)00004-9.

[16] secureCodeBox. (Apr. 2022). Finding Format, Finding, [On-
line]. Available: https://docs.securecodebox.io/docs/api/finding
(visited on 04/04/2022).

[17] Gitlab. (Mar. 29, 2022). DAST Report Format, GitLab, [On-
line]. Available: https : / / gitlab . com / gitlab - org / security -
products / security - report - schemas/ - /blob / master / dist / dast -
report-format.json (visited on 04/04/2022).

[18] Open Policy Agent. (Apr. 2022). Policy Language -
Rego, Open Policy Agent, [Online]. Available: https : / /
openpolicyagent.org/docs/latest/policy- language/ (visited on
04/04/2022).

13Copyright (c) IARIA, 2022. ISBN: 978-1-61208-951-5

ADAPTIVE 2022 : The Fourteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://doi.org/10.36941/ajis-2020-0008
https://doi.org/10.36941/ajis-2020-0008
https://doi.org/10.1109/WICT.2011.6141247
https://doi.org/10.1109/WICT.2011.6141247
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://aws.amazon.com/blogs/devops/building-an-end-to-end-kubernetes-based-devsecops-software-factory-on-aws/
https://aws.amazon.com/blogs/devops/building-an-end-to-end-kubernetes-based-devsecops-software-factory-on-aws/
https://aws.amazon.com/blogs/devops/building-an-end-to-end-kubernetes-based-devsecops-software-factory-on-aws/
https://doi.org/10.6028/NIST.SP.800-204C
https://doi.org/10.1109/SP.2010.27
https://doi.org/10.1109/SP.2010.27
https://doi.org/10.1155/2017/6158107
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.19101/IJACR.2018.838012
https://doi.org/10.19101/IJACR.2018.838012
https://doi.org/10.1109/ICSENG.2018.8638176
https://doi.org/10.1109/ICSENG.2018.8638176
https://doi.org/10.1109/ICAICST53116.2021.9497831
https://doi.org/10.1109/ICAICST53116.2021.9497831
https://www.gartner.com/en/information-technology/glossary/context-aware-security
https://www.gartner.com/en/information-technology/glossary/context-aware-security
https://doi.org/10.1049/iet-ifs.2018.5479
https://doi.org/10.1016/S1363-4127(03)00004-9
https://doi.org/10.1016/S1363-4127(03)00004-9
https://docs.securecodebox.io/docs/api/finding
https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dast-report-format.json
https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dast-report-format.json
https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dast-report-format.json
https://openpolicyagent.org/docs/latest/policy-language/
https://openpolicyagent.org/docs/latest/policy-language/

	Introduction
	Related Work
	Methodology
	Architecture
	Orchestration
	Observability Platform
	Ingest
	Visualization

	Discussion
	Conclusion

