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Abstract—Estimating energy expenditure from heart rate
usually relies on population-based multiple linear regression
equations, taking heart rate, age, gender, mass, height and, if
available, VO2max into account. In this paper, we show that
non-linear models, such as random forests and regression trees
are suited for the deployment on memory constrained wearable
devices and assess physical activity more accurately than linear
regression models. We fitted linear regression models, regression
trees, and random forests with data from 892 graded exercise
tests on a treadmill with 857 participants and evaluated their
performance, as well as memory consumption on a PineTime
smartwatch and an Apple Watch. A regression tree with a tree
depth of 11 performed the same (R2 = 0.825) as a widely
used linear model by Keytel (R2 = 0.821) but does not depend
on VO2max, which can be relevant for amateur athletes. The
additional memory on the PineTime smartwach needed to store
the tree increased the the original firmware size of 390 KiB to
416 KiB. If VO2max is available, then a tree with a depth of 11
achieves a coefficient of 0.877, and the total memory size is 418
KiB.

Keywords—energy expenditure; heart rate; regression tree;
random forest regressor; wearable device

I. INTRODUCTION

The importance of physical activity resulting in energy
expenditure (EE) [1] for the prevention of non-communicable
diseases, such as cardiovascular diseases and type 2 diabetes,
as well as the link between exercise and longevity has long
been well documented [2] [3] and validated over many decades
[4]. The protective effects of exercise also enhances the
immune response against bacteria and viruses [5].

Assessing EE as accurately as possible is not only relevant
in the global context of health, but also for the automatic
generation and adaptation of nutrition plans for athletes [6]
and for individuals planning and tracking weight loss [7] [8].

Besides indirect calorimetry, heart rate measurement and
accelerometry, or a combination of both, are popular methods
for estimating EE [1] [9], and consequently, physical activity.
Based on the assumption of a linear relationship between heart
rate and oxygen consumption (VO2), EE can be estimated from
heart rate. Such a relationship is obtained by deriving a linear
regression equation with EE being the dependent variable, and
heart rate, age, gender, body mass, height, etc., the independent
ones which can then be used to estimate VO2 or EE in day-
to-day living conditions [1].

Since this relationship is not always linear [10], it seems
promising to investigate whether non-linear regression meth-
ods, such as random forests and regression trees which,
from a computational point of view, are still feasible for the
deployment on wearable devices, allow to more accurately
predict EE rather than linear regression models.

The remainder of this paper is structured as follows: in
Section II we review the related work, in Section III we
describe the study design, then we continue with a discussion
of results in Section IV, and conclude with Section V, in which
we briefly summarize our findings and discuss possible future
work.

II. RELATED WORK

Keytel et al. [11] provide two equations for predicting EE
based on heart rate, age, gender, body mass, and optionally
VO2max. The first equation K1 takes into account VO2max, with
which the results – not surprisingly – have a higher coefficient
of determination (R2 = 0.821). The second one, K2, without a
fitness measure might be more universal, however, at the cost
of a lower coefficient (R2 = 0.737).

Additionally, taking resting heart rate into account, Charlot
et al. [12] achieve a coefficient of determination which is
higher (R2 = 0.809) than the Keytel equation without VO2max,
but slightly lower than the Keytel equation with VO2max.
However, incorporating resting heart rate and real-time running
speed resulted in R2 = 0.919. Even using running speed with-
out heart rate outperforms the Keytel equations (R2 = 0.913).
However, this obviously limits the applicability to only running
activities.

While the previous described approaches rely solely on heart
rate and linear regression, Ellis et al. use values from hip
and wrist mounted accelerometers and measured heart rate to
train a regression forest [13]. In addition, they also perform
activity classification. In their evaluation, Ellis et al. focus on
performance only and leave the question about tree depth and
the number of estimators in a random forest and consequently
memory consumption unanswered.

III. TOOLS AND METHODS

As a starting point and to define a baseline, we fitted two
linear regression equations using scikit-learn (version 0.22)
[14], a Python library and compared it with the approaches
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described by Keytel et al. [11] and Charlot et al. [12].
Subsequently, we trained random forest and decision tree
regressors and evaluated their performance, not only in regards
to the obtained coefficients of determination and mean absolute
error, but also in terms of memory demand. To that end,
using an open-source code generation tool, m2cgen [15], we
generated C-code from the previously trained regressors for
the open-source smartwatch PineTime [16], which resembles
a contemporary wearable device with an ARM Cortex-M4
CPU with 512 KiB of Flash and 64 KiB of RAM, capable of
measuring heart rate based on photoplethysmography; other
sensors include an accelerometer.

In addition, to investigate which coefficient of determination
can be achieved on a fairly unconstrained device, we also
deployed the previously trained models to an Apple Watch
SE (2020) running watchOS 8.3. The watch is considered a
powerful device in comparison to the PineTime because of its
1 GiB of RAM and as 32 GiB of storage capacity and a custom
dual core CPU which also contains dedicated hardware which
can help streamline machine learning tasks. Like the open-
source watch, it is also capable of measuring heart rate with
an optical sensor; an accelerometer is present here as well.

A. Participants and Graded Exercise Tests

In our study, we used a publicly available database provided
by the Exercise Physiology and Human Performance Lab
of the University of Malaga [17] [18] [19]. In addition to
other measurements, the database contains heart rate, oxygen
consumption, carbon dioxide generation, and treadmill speed
from 857 amateur and professional athletes (149 females, 708
males) performing 992 graded exercise tests. After a warm-up
period of 5 minutes with 5 km/h, treadmill speed was peri-
odically increased by 0.5 or 1 km/h intervals until exhaustion
after which the speed was reduced back to the initial 5 km/h.
The demographic characteristics of the participants are given
in Table I.

TABLE I
DEMOGRAPHIC CHARACTERISTICS.

Variable Range Median Interquartile
Range

Age (years) 10 - 63 27.1 15.2
Body mass (kg) 41 - 135 73.0 14.0
Height (cm) 150 - 203 175.0 10.0
VO2max (ml/kg/min) 22.4 - 86.9 52.4 12.7

B. Fitting the Regressors

Before splitting the data into a training (75 %) and test data
set (25 %) we calculated EE in KJ from O2 and VO2 according
to the Weir formula [20]. Next, with different combinations
of the independent variables listed below, we fitted two linear
models to predict EE:

• LM1: heart rate, age, weight, and gender; this is compa-
rable to K2.

• LM2: same as LM1, additionally VO2max; comparable to
K1.

Regression trees were first fitted using the default hyper
parameters provided by scikit-learn to determine the maximum
tree depth which, as expected, exceeded the available memory
on the PineTime. Therefore, we reduced the tree depth to a
value that gave the same, or even a slightly better performance
than linear model LM1. From that point on, we increased the
tree depth until the available memory was exhausted again.
During that process we not only observed the influence of the
tree depth based on our test data set, but also on the training
data set to assess possible over-training (see Figure 1):

• RT1: Regression tree with sckikit-learn default hyper
parameters.

• RT2, same as RT1, but with a tree depth of 6 (equal or
better performance than LM1).

• RT3, same as RT1, but with a tree depth of 10 (equal or
better performance than LM2).

• RT4, same as RT1, but with a tree depth of 11 (equal
or better performance than Keytel’s regression equation
with VO2max (K1).

• RT5, same as RT1, but with a tree depth of 12 (a deeper
tree would exceed the available memory on the PineTime
smartwatch).

• RT6, same as RT4, but with VO2max as additional feature

As can be seen in Figure 1, a tree depth of more than 20
does not lead to a smaller mean absolute error. Furthermore
it becomes visible that at a tree depth of approx. 15, errors
obtained with the test data set begin to differ slightly from
those obtained with the training data set, which could be a
possible indication for over-training.
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Figure 1. Tree depth vs. mean absolute error.

Along the same lines as with regression trees, we first
trained a random forest with default parameters, resulting in
a promising performance, yet unmanageable code size for the
PineTime smartwatch:

• RF1: Random forest with scikit-learn default parameters;
heart rate, age, weight, and gender.

• RF2: same as RF1, tree depth of 6, 10 trees.
• RF2: same as RF1, tree depth of 9, 10 trees.
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C. Code Generation and Deployment

After the models had been trained using the scikit-learn
library inside a Python environment, we used m2cgen to create
C code which we then cross-compiled for the C++-based In-
finiTime operating system [21] (version 1.8.0) running on the
PineTime smartwatch. For regression trees and random forests,
m2cgen generates a function double score(double*
input) which contains sequences of hard-coded if/else state-
ments, therefore just consuming ROM and only little RAM.

Similiar to Sudharsan et al. [22], in an effort to reduce mem-
ory demands, all double keywords and as double literals were
substituted in the generated code using regular expressions,
furthermore instead of floating point numbers, we employed
fixed point arithmetic numbers by multiplying with a factor of
1000, resulting in the overall use of integer numbers.

The InfiniTime OS is based on FreeRTOS and therefore
employs multiple tasks, one of which is responsible for per-
forming heart rate measurements. We therefore extended the
void HeartRateTask::Work() method so that when-
ever a heart rate measurement is available, the score()
function containing the code for the regressor is called to
predict EE. As suggested by [21], we make use of puncover
[23] to analyze the mapfile written by the C/C++ compiler
(ARM-GCC, version 9-2020-q2-update) and determine the
amount of ROM and RAM required by each regressor.

Due to the generous amount of memory, the Apple Watch is
capable of running more complex models with more memory
available to them. We therefore deployed RT1 and RF1 on the
Apple Watch. The two regressors were trained using the same
Python code as for the PineTime. The m2cgen code generation
utility is not necessary, since the watch is programmable
directly in Swift and can also use the trained models as
resource files. The models need to be converted however, this
is achieved using Apple’s Core ML Tools library [24] [25].
The conversion is from a scikit-learn (version 0.19.2) trained
model to a mlmodel file, which can then be easily integrated.
In contrast to the PineTime, where code is executed in place,
on the Apple Watch, once the app is executed, the model code
runs in RAM to make predictions.

For a detailed analysis of the memory usage on the Apple
Watch we used Instruments (version 13.0) as another tool
inside the Xcode bundle (version 13.1) with which informa-
tion can be collected regarding but not limited to memory
leaks, time profiling, memory allocation statistics etc. We
documented the amount of heap memory that was allocated
by the watch application needed to perform a prediction, as
well as the entire application size.

IV. RESULTS AND DISCUSSION

Figure 4 compares the determined coefficients
of determination. Our linear regression model LM1

(EE = −122.52022356 + 0.53176246hr + 0.26039323a +
0.23666578m+ 0.39951689h− 7.88144777g) is on par with
Keytel’s second equation (R2 of 0.735 vs. 0.737) and also LM2

(EE = −103.97232241 + 0.54302212hr + 0.34344245a +
0.08775421m+0.10690366h− 0.14505558g+0.01021273o)

which perform quite similar (R2 of 0.805 vs. 0.821) (EE:
energy expenditure in KJ; hr: heart rate in beats/minute;
a: age in years; m: body mass in kg; h: height in cm; g:
gender (0 = male, 1 = female); o: VO2max in ml/kg/min).
Also the regression equation with basic parameters (e.g., age,
height, mass, bodymass index (BMI), age-predicted HRmax)
by Charlot et al. [12] (R2 = 0.809) is similar; however, they
use resting heart rate as an additional feature.

Figure 2. EE vs. predicted EE by LM2.

RT2, a regression tree with a depth of 6 exhibits R2 = 0.748
which is similar to Keytel’s equation without VO2max.

RT3 with a tree depth of 10 is comparable to LM2. A tree
size of 11 leads to a coefficient of determination of 0.825
which is almost the same as Keytel’s equation K1. However,
both regression trees do not use VO2max and perform the same
as linear regression models, they are of particular interest
to amateur athletes who do not know their VO2max. Finally,
increasing tree depth to 12 leads to R2 = 0.840, which is
better than Keytel’s first equation, again without using VO2max.
Incorporating VO2max into a tree of depth 11 gives an even
higher coefficient (R2 = 0.877).

Figure 3. EE vs. predicted EE by DT1.

The scatter plot in Figure 2 indicates that the linear model
underestimates EE for submaximal and maximal efforts and
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can result in negative values near resting heart rate – something
that is better taken care of by the regression tree model (see
Figure 3).

Random forest models, which are also less prone to overfit-
ting, perform best. However, for the PineTime smartwatch the
biggest model we could accommodate had a maximum tree
depth of 6 and used 10 estimators which led to a coefficient
of (R2 = 0.800) which is comparable to RT3, again with
the benefit of not using VO2max. Increasing the number of
estimators or tree depth then exceeded the available memory.

LM1 K2 RT2 RF2 LM2 RT3 K1 RT4 RT5 RF6 RF1 RF1
0.0

0.2

0.4

0.6

0.8

R2

Figure 4. Coefficients of determination.

Table II summarizes the obtained regressor performances,
as well as memory needs on the PineTime and Apple Watch.
Despite performing more favorably than the linear models,
tree-based regressors need more memory. Without any regres-
sor, the code size needed for the heart rate task is 402 Bytes,
the rest of the InfiniTime OS occupies 397434 Bytes, which
means that 80.9 % of the available flash memory is used (only
480 KiB are available for applications). For the comparisons
on the PineTime we used a release build environment, whereas
a debug build environment was used for the Apple Watch. On
the Apple Watch, the memory needed to hold the tree-based
models is around 5.5 MiB, and the size of the application
occupies approx. 20 MiB on the nonvolatile storage.

TABLE II
PERFORMANCE AND MEMORY REQUIREMENTS – PINETIME (PT) AND

APPLE WATCH (AW).

Model R2 MAE
PT
ROM
(Bytes)

PT
Flash
%

AW
Model
MiB

AW
Size
(MiB)

LM1 0.735 8.43 456 81.0 – –
LM2 0.805 7.26 446 81.0 – –
RT1 0.914 3.51 – – 5.54 19.3
RT2 0.748 8.09 1222 81.1 – –
RT3 0.807 6.87 14970 83.9 – –
RT4 0.825 6.49 28732 86.7 – –
RT5 0.840 6.10 54194 91.9 – –
RT5 0.877 5.33 30912 87.2 – –
RF1 0.917 3.53 – – 5.21 19.8
RF2 0.800 7.06 65576 94.2 – –

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described how to estimate energy expendi-
ture from heart rate with a higher coefficient of determination
using tree-based regressors than commonly used linear models.
Using data from 892 graded exercise tests we trained various
models and selected one which not only performed better than
the linear model but also fitted in the flash memory of the
open source smartwach PineTime. Our tree-based model does
not need to know VO2max but achieves a comparable result as
the linear model with VO2max making it especially interesting
for amateur athletes. The additional memory on the PineTime
smartwach needed to store the tree increased the the original
firmware size of 390 KiB to 416 KiB. If VO2max is available,
then a tree with a depth of 11 achieves a coefficient of 0.877,
and the total memory size is 418 KiB.

When considering the Apple Watch as another amateur
athlete tool the memory constraint becomes irrelevant, since
the regressors used in this paper can be utilized on the watch
with no difficulty and result in an acceptable memory usage
of less than 10 MiB.

In contrast to the linear model, our regression tree-based
model seems to predict EE for sub-maximal, maximal and
light efforts better. However, this still needs to be further
investigated by defining limits of agreement and performing
an ANOVA. Because the database contains data from treadmill
tests only, it is not possible to validate how our model
performs in other contexts, e.g., cycling or nordic walking.
Consequently, we plan to extend the database in the future.
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