
Smart Self-Adaptive Cyber-Physical Systems: How can Exploration and Learning
Improve Performance in a Partially Observable Multi-Agent Context?

Ana Petrovska, Malte Neuss, Sebastian Bergemann, Martin Büchner, M. Ansab Shohab
Department of Informatics

Technical University of Munich
email: ana.petrovska, malte.neuss, sebastian.bergemann, martin.buechner, ansab.shohab@tum.de

Abstract—Cyber-physical systems (CPSs) are software-
intensive systems that are embedded in the physical world to
monitor, control and coordinate a variety of processes in both the
physical and the digital world. As a result, they often operate in
complex, dynamic, and unanticipated environments with various
potential sources of run-time changes and uncertainties, that
could potentially lead the CPSs to faults, and even to complete
system failures. To cope with these changes, the systems should
have the capabilities to self-adapt in order to continue meeting
their functional specifications. In this paper, we investigate how
creating self-adaptive CPSs which are able to collaborate and
learn in a dynamic, partially observable, multi-agent context,
can not only preserve but also improve the performance, despite
all the changes introduced to the system at run-time. We evaluate
the proposed methodology on an in-house developed, multi-agent
system from the robotics domain.

Keywords—self-adaptive systems, cyber-physical systems, collab-
oration, learning, partial observability

I. INTRODUCTION

In recent years, the widespread availability of cost-effective
embedded systems with increasing computation power and
the expansion of wireless networks have led to a solid
foundation for emergence and advancement of the pervasive
Cyber-Physical Systems (CPSs) in a multitude of different
domains, with progressively increasing technological and so-
cial influence. Modern CPSs, which lie in the intersection
of the control, computation and communication area [1], are
composed of many interacting and interconnected components,
while inheriting all the complexities of large-scale distributed
systems [2]. Also, they need to be able to operate efficiently
and reliably within a continually changing, uncertain, and
unanticipated environments or execution contexts [3] [4] [5].
Furthermore, they need to be able to collaborate and cooperate
with another CPSs towards realizing common goals, which a
single system or agent itself would not be able to achieve on
its own. To successfully cope with the change introduced at
run-time (and cannot be predicted during the design of the
system), these systems should be therefore engineered with
properties to learn, and to automatically and independently
modify themselves without any external human involvement
[6] [7] . The run-time changes can originate from 1) the CPSs
themselves and 2) from the context where these agents are
operating.

A. Motivation

The need for self-adaptive systems stems from the ideas
initially introduced in “The Vision of Autonomic Computing”

[8] by Kephart and Chess, where the authors envision the sys-
tems from the future to only manage themselves accordingly to
high-level business goals given by human administrators. In a
future world, where the present-days engineers and developers
become obsolete, systems organize and manage themselves in
a completely autonomous manner. These ideas, anticipating
fully autonomous self-engineering and self-managing systems,
still remain “ideas that are not science fiction, but elements
of the grand challenge [8]”. From a current time-point, it
is impossible to argue on how the systems from the future
will be engineered, but instead, continuous step-by-step inte-
gration of the contemporary concepts and ideas is necessary.
Consequently, self-adaptive systems can be considered as an
intermediate step toward complete autonomicity.

On a conceptual level a self-adaptive system, is comprised
of a managed element and adaptation logic, as shown in
Figure 1. The managed element is the entity that acquires
self-adaptation capabilities, given by the adaptation logic. A
common approach to realize the adaptation logic of a self-
adaptive system is through the MAPE-K (Monitor, Analyze,
Plan, Execute) [8] feedback loop, with shared Knowledge
among all the components of the loop. The self-adaptive
system interacts with the context, which is the relevant part
of the environment, or the external world, for that particular
system.

5

Developers/ Engineers
Human administrators/

Users

Self-adaptive system

Adaptation logic

Managed element

Context

Knowledge

Context

model
Mang. el.

model

Adapt.

goals

M A

PE

𝐼 𝑂

Figure 1. Updated conceptual model of a self-adaptive system from [4].

The internal changes in the managed element(s)—in our
case CPS(s); and/or changes in the context during run-time,
are triggers for the system to self-adapt. Additionally, it is

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

essential for the system to know why it is adapting for, or what
the adaptation goals are. As a result, as shown in the figure,
the knowledge in the adaptation logic presents an abstraction
of relevant aspects of the managed element(s), the context and
the system’s adaptation goals.

B. Background

Russel and Norvig in [9] categorize environments, or
contexts (as we refer to in this work) accordingly to a
few informally defined dimensions: fully observable vs. par-
tially observable, single-agent vs. multiagent, deterministic
vs. stochastic, episodic vs. sequential, discrete vs. continuous
and known vs. unknown. Unknown context does not refer
to the context itself, but it refers to the robots’ knowledge
about the laws of physics of the context [9]. These defined
dimensions, to a large extent, determine the appropriate system
design and implementation. According to the authors, the
hardest case is designing and implementing solutions for
systems operating in partially observable, multiagent, stochas-
tic, sequential, dynamic, continuous and unknown [9], or
abbreviated, PMSSDCU context. This exactly how we would
classify the context in which our multi-agent systems are
operating. In this paper, we propose a methodology that
provides an engineering solution for self-adaptive multi-agent
CPSs operating in PMSSDCU context.

C. Gaps and Contributions

The majority of the previous works in the self-adaptive
systems community provide approaches where 1) the adap-
tation logic is predetermined and its structure does not change
over time, e.g., [10], or 2) the operational context in which
the self-adaptive CPSs operate is predetermined and static,
and does not change during run-time, e.g., [11]. Having an
adaptation logic that is predefined at the design of the system
and does not improve over time, cannot provide adequate and
accurate adaptation, when the self-adaptive systems and the
context in which they operating are dynamic and changing
in an unpredictable manner during run-time. As a result, the
adaptation logic should have mechanisms to modify itself in
order to reflect the run-time changes in the context where the
agents are operating. In this paper, we tackle this issue by
proposing a methodology for building adaptation logic for self-
adaptive CPSs that operate in a dynamic, partially observable,
multi-agent context. Precisely, we focus on building a self-
adaptive system, for multi-agent CPSs, with shared adaptation
logic, in which the knowledge in the adaptation is continuously
updated at run-time. In our work, the adaptation logic does
not only adapts the behaviour of the systems (the managed
elements), but it changes its own knowledge during run-time.
The contributions of the paper are the following:

1) We propose an approach for modeling the context in
the knowledge of the adaptation logic, based on globally
aggregated observations of from all the agents. It is based
on learning two probabilistic maps by storing the past
contextual encounters, which enable the agents to over

time gain knowledge about the laws of physics of the
context.

2) For multi-agent tasks allocation, which provides close-
to-optimal solution, is computationally feasible, and is
dynamically adaptable during run-time, we apply Prim
Allocation algorithm using minimum spanning forests
(MSF), proposed in [12].

3) We propose local path planning that minimizes the dis-
tance to the assigned task and maximize the context
exploration.

4) Additionally, for evaluating the ideas, in this paper,
we have developed an in-house, ROS-based, multi-agent
simulated system from the robotics domain. The robotic
system is based on a reference problem proposed in the
following section, which explains and motivates the need
for self-adaptivity.

The paper is organized as follows: Section II explains the
reference problem and motivates the need for self-adaptation.
The reference problem is additionally used as a running
example throughout the paper. Section III elaborates in more
depth the challenges that we are addressing in this work. The
three-step methodology is proposed in Section IV. The details
of the implementation of the multi-agent system are presented
in Section V. Subsequently, the benefits of collaboration,
exploration, and learning are evaluated in Section VI. In
Section VII we conclude the paper.

II. REFERENCE PROBLEM

Our reference problem comes from the robotics domain, and
aims to motivate and support the need for self-adaptivity. The
reference problem is used as a running example in the paper.
Additionally, based on the reference problem, we have built
the robotic system presented in Section V.

The setting of our reference problem consists of the follow-
ing: (1) the context: a room with static obstacles (for example,
walls and interior) where dirt appears perpetually in different
places at different points in time; and (2) agents—CPSs:
autonomous, ground robots. The robots need to explore and
detect dirt tasks in the room, and attain them in the most
efficient way (in the shortest period of time) despite different
run-time uncertainties [13], including the limited sensor range
(see Figure 2). Namely, the sensors of the robots have a limited
sensing range and they observe the context or the room where
they are deployed only partially. Consequently, the agents can
detect dirt that is only within their range of observations. Once
the dirt locations are detected and identified, they become
goals for the robots. Additionally, each robot is equipped
with a map of the room, and they use Adaptive Monte Carlo
Localization (AMCL) for navigation and localization.

In our reference problem, the robots monitor or observe
the context, and discover new tasks in a distributed manner.
There is no global view of the room, meaning that the
robots only discover tasks which are within their range of
observation. In this case, the agents not knowing what is
happening in the local surroundings of the other agents, brings
inefficiency to the overall performance, for example, when one

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 2. View of the room and the deployed agents.

part of the room is getting dirtier than the other. The effects
of having a partially observable context, is that as a result
only a local performance maximum is possible. To achieve
global performance maximum, a cooperative aggregation of
the contextual observations of all the robots deployed in the
room is necessary.

A self-adaptive system has business or mission goals, re-
lated to the functional requirements of the agents; and self-
adaptation goals related to the quality objectives or the non-
functional requirements [6]. The business goal of the system
in our reference problem is keeping the room clean by first de-
tecting, and then removing the dirt. The self-adaptation goals
are the following: 1) increasing the performance by minimize
the time needed for the room to be cleaned and be kept clean,
and 2) increasing its fault-tolerance by avoiding failures (for
example, collision with other robots) and deadlocks. The self-
adaptation goals need to be satisfied despite the internal or the
external (contextual) changes and uncertainties that emerge
at run-time. In our specific reference problem the following
changes trigger the need for self-adaptation:

Internal changes: Imperfect sensors. As explained above,
the sensors have restricted range of observation; therefore,
the agents have only a partial view of the physical space
or the room in which they operate. Furthermore, they can
detect new dirt task only if it appears within their range
of observation. Additionally, there are sensor uncertainties
that originate from hardware and software limitations of the
sensors, for example, sensor imprecision, noise, ambiguity,
inconsistency and inaccuracy, and even sensor failures [13].
This means that even if a robot observes dirt (subsequently
referred to as task) within the range of its sensor, we cannot
be 100% certain in the accuracy and the precision of the
observation.

Context-changes: Multiple agents operating in the same
room. For CPSs, it is highly probable and more realistic
scenario to have multiple agents deployed in a relative prox-
imity, for instance, a platoon of autonomous cars or a fleet
of robots. In our example, when the agents need to localize
themselves and navigate in a room, the other agents deployed
in their relative proximity indirectly influence their actions.
This can potentially lead to different AMCL localization and
navigation issues, which can later result as sources of failures.

For example, collisions or deadlocks that directly impact the
overall system performance.

Context-changes: Continuous appearance of new dirt. As
previously explained in Section I-B the agents do not have
knowledge about the laws of physics of the context. In our
case that would mean that when new tasks are continuously
spawned in the room, they will be spawned at random loca-
tions, with location patterns unknown to the robots in advance.
The run-time decisions on how the new tasks are assigned to
the agents, and what path the robots take to reach to those
tasks can significantly influence the system performance.

To sum up, our reference problem introduces and identifies
run-time changes and uncertainties that are characteristic of
a real multi-agent robotic systems. These changes and un-
certainties trigger the self-adaptation, and cannot be specified
beforehand during design time of the system. However, they
need to be dealt with during the run-time, without affecting
the system performance and system’s functional goals, as well
as the quality objectives.

III. CHALLENGES

In this work, we make our contributions by addressing
the following challenges and the corresponding emerging
questions:
Challenge 1: Distributed observation and reliable detection
of continuously appearing tasks in a partially observable
context, and learning the context by collaboratively building
aggregated context models in the knowledge of the adaptation
logic based on the previous observations.

All the agents deployed in the room observe the context in
a distributed manner. As explained in the previous section, the
CPSs have limited sensor range, and therefore, they make only
partial observations of the room. Consequently, when a new
task or dirt is being spawned, it can only be detected once it
is within the range of observation of at least one of the agents.
Additionally, there are other run-time sensor uncertainties, like
sensor imprecision, and sensor ambiguities, which imply that
we cannot be fully sure in the true position of a task, even
when a task is detected by the agents. Furthermore, if there is
no mechanism for the robots to share their observations with
each other, then achieving a global performance maximum
is not possible due to the likelihood of one part of the
room getting dirtier than the other. Hypothetically, developing
more complex adaptation logic—through collaboratively built
knowledge—based on globally aggregated context models
built jointly by all the agents, could enables us to achieve
a global maximum of the performance of the overall system
(in combination with close-to-optimal solutions from the other
challenges).

In our reference problem, learning the context (the room)
would mean storing the past context states, which potentially
lead towards learning the patterns in which the tasks appear
in the context. The built knowledge of the context in the
adaptation logic can be considered as an input to the local
path planning (further explained in Challenge 3), which, for
example, would enable the CPSs to choose paths with higher

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

probabilities of new tasks appearing, over paths with lower
probabilities.

Question 1: How to ensure reliable task detection?
Question 2: How to build global aggregated context

models from what the robots are independently observing
from the context?

Challenge 2: Global multi-agent task allocation that has a
close-to-optimal solution, which is computationally feasible,
and dynamically adapts during run-time.

Once the dirt tasks are detected, they become goals and
they need to be assigned to the CPSs in the most optimal
way. The requirements are the following: 1) the algorithm
should suffice optimality criteria and 2) it should exhibit high
efficiency concerning distance and time travelled. Since we
need to ensure a true real-time capability of the goal allocation
(new task gets detected, or assigned goal is reached), the algo-
rithm should be dynamically adaptable during run-time. The
problem of computational feasibility needs to be considered,
since we cannot assume the complexity of the environment
and the number of dirt locations beforehand, and they can
increase during run-time. Also, the notion of completeness
is also essential since we need to consider all possible goal
locations detected, and finally, find a suitable path to reach
the locations. Thus, the algorithm should terminate with a
solution when one exists. According to Lagoudakis et al. [12]
finding an allocation of goals to multiple agents, as in our
setting: identical robots, symmetric and uniform traversing
costs, operating on the Euclidean plane; where the total cost
(the sum of the travel costs of all robots over time) of all the
paths that the robots traverse to their goals is minimized, is
an NP-hard problem, because it is the multi-agent version of
the Euclidean Traveling Salesman Problem [14].

Question 3: How to allocate continuously appearing tasks,
as goals to many agents in a close-to-optimal, computationally
feasible and dynamically adaptable during run-time way?

Challenge 3: Local path planning to the assigned goal that
minimizes the traversed distance and maximizes the context
exploration.

Once the goals (the explored tasks) are assigned to the
CPSs, the agents should plan how to reach to the locations
of their goals in a way that maximizes the space exploration
while traversing paths that have the highest probability of new
tasks appearing. Maximizing the space exploration is essential,
due to the partial observability of the context, as explained in
Challenge 1. Having partially observable context might lead
to situations where the agents have enough tasks to complete
in the parts of the room that they have already observed and
explored; but maybe the other unobserved parts of the room
get dirtier with a higher rate. As a result, in this case, exploring
and accomplishing tasks the unexplored parts of the room
brings better the performance-time ratio. Consequently, the
robots should be incentivized to explore more space.

Additionally, as previously explained in Challenge 1, the
knowledge from the past context situations should be taken

into consideration during the local planning towards the cur-
rently assigned goal. Namely, even if the robots do not observe
any tasks on a particular path, but the knowledge tells that
there is a high probability of new dirt a appearing, then this
path should be preferred over the others.

Question 4: What local path planning can minimize the
distance to the assigned task and maximize the context explo-
ration?

IV. METHODOLOGY

Our methodology for engineering the adaptation logic in
self-adaptive CPSs that operate in PMSSDCU context is
shown on Figure 3. In our proposed solution, we address the
challenges described in the previous section, in three different
phases: two local (i.e., decentralized and distributed in every
CPSs), and a global phase shared among all the CPS, e.g..,
robots. Every phase in the proposed solution is performed
by the self-adaptive CPS autonomously. In the following
subsections, we address the three challenges, respectively.

Managed elements (CPSs)

Environment (Context)

Sensors Actuators

Adaptation logic

Comparison

Possible dirt
pool

Optimal path
planning

 (weighted map)

Global map
update

Goal
allocation

(global) (local)(local)

Self-adaptive system

Context observations
(measured context map)

Next goals

Goal status

Learned map

Reliable dirt
task promoted

to Goal

Current global context map

Possible
dirt task

Move to the optimal
assigned goal

C. Local path planning

B. Multi-robot goal
allocation

A. Task detection

A. Context models

Figure 3. General overview of our methodology.

A. Tasks detection, knowledge representation and context
models (Addressing Challenge 1.)

1) Reliable tasks detection: Once new dirt or task is
sensed it is considered as a new potential goal object. In
our implementation, the new potential goal object is stored
in a list, with a unique identifier, a pose (containing the x,
y coordinates of the detected task in the map), and an initial
confidence value. We chose the initial confidence value for
every new goal object stored in the list to be 10%. If the same
task is detected again (with a small position tolerance, due to
sensor uncertainties), by the same or the other agents in the
room, then the confidence value is increased by 10% more.
The potential goal object is published as a reliable goal, once
the confidence value exceeds 90%.

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

2) Context models and knowledge representation in the
adaptation logic: In Section I-A, we explained that the knowl-
edge in the adaptation logic presents an abstraction of several
relevant aspects, including the context where the system is
operating. We model the context as a global, centralized grid
map with a size equal to the size of the room. Each cell in
the grid is either free or occupied. The occupied cells are
occupied either by static obstacles, for example, the walls;
or by dynamic obstacles: the agents deployed in the space,
or the continuously appearing dirt or tasks. Additionally, in
our solution, each cell can hold multiple tasks. The motion
of the robots is discretized, and with each time-stamp the
robots can move up, down, left and right to the centre of their
neighbouring cells. As mentioned before, the operation of the
robots is limited to their sensor capabilities, meaning that the
agents only hold a partial observation of the context at a given
point in time. As the robots move in the room, they gather
their partial observations in the centralized grid map, where
the multiple observations from the robots are aggregated to
produce a new, common, global knowledge about the context
in the adaptation logic. The global aggregated knowledge
contains all the tasks detected by the partial observations of
all the agents that are operating in the room.

3) Updating context models based on probabilistic models:
In the following section, we explain how we build the knowl-
edge and update the context models during runtime, based on
two probabilistic maps. In order to minimize the time taken for
detection and completing the tasks, a probabilistic analysis of
the environment is necessary. Using this, a mechanism for pre-
dicting where the next dirt patch is most likely to appear will
be developed. Such predictions will help in minimizing the
time needed to clean the room, thus improving the efficiency
of the system. The approach for carrying out a probabilistic
analysis of the room consists of maintaining two probability
maps, which we call Probability Map and Cumulative Map.

Probability Map. The Probability Map associates with every
cell of the grid-map a value quantifying the probability Pi,j
of dirt appearing in that location in the next time step. It is
updated accordingly to Algorithm 1, where Ni,j is the number
of tasks in a respective cell ij, T is the number of time-steps
until a specific point in time, and ∆t is the frequency in which
new tasks appear. Ni,j

T is the division of the number of dirt
tasks found since t = 0 with the number of time steps until that
point in time, resulting in the probability for a specific cell. In
case no dirt task has appeared in a specific cell, the expected
value for that cell is calculated, and we check whether its value
is less than 1 or not. The calculation performed under the else
statement is meant to reduce the probability but to never let it
reach zero.

Cumulative Map. The Cumulative Map is calculated by
making use of the Probability Map. It measures the probability
CPi,j(T) that there is at least one task in a specific cell, and
it is calculated by the following equation:

CPi,j(T) = 1− (1− Pi,j(T − 1))(1− CPi,j(T − 1))

Algorithm 1 Update Probability Map
For every cell ij:
if Ni,j = 0 then

if
∑T
t=0 Pi,j(t) ·∆t < 1 then

No Change
else
Pi,j(T) =

Pi,j(T−1)
2

end if
else
Pi,j(T) =

Ni,j

T
end if

where (1 − Pi,j(T − 1))(1 − CPi,j(T − 1)) calculates the
probability that there is not a single of task in a cell.

B. Multi-robot goal allocation (Addressing Challenge 2.)

For the multi-robot goal allocation, we need to find a goal-
allocation algorithm, which apart from the fact that it can be
centralized (and the means and the cost of communication are
neglected), we can undoubtedly say that it needs to provide a
solution to a problem of utmost complexity. Namely, in our
approach, to minimize the overall sum of travel costs of all
robots when visiting all detected targets (the identified goals)
where finding an optimal allocation is an NP-hard problem,
we employ a greedy principle termed Prim Allocation. This
auction-based approach, derived from operations research and
adapted to a multi-agent context, provides the following guar-
antee on the quality of its allocations [12]: in the worst-case,
the total cost of this principle is at most twice the cost of the
optimal solution, but in average-case it is close to the optimal
solution.

Figure 4. Minimum Spanning Forests

The pseudo-code is given in Algorithm 2, and in a nutshell,
it works as follows: an interconnected graph between all
the tasks (shown in red pentagons) is woven, and the robot
locations in close vicinity to this graph are determined. Then
the algorithm finds the shortest connecting link to a tree,
initially starting only contains the robot itself. The shortest
links are then pair-wise compared and the minimal cost-link is
returned and added to the particular tree. This step is repeated
until all tasks or dirt locations are assigned. According to this
principle, the minimum-spanning trees that grow together form
minimum-spanning forests, as shown in Figure 4. Finally, the

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

last step is to determine optimal trajectories to the previously
allocated goals by the Prim Allocation, per agent. In our case,
we use a depth-first search algorithm for finding the paths
from the sub-trees (marked with green-dashed directed arrows
in Figure 4).

Algorithm 2 Prim Allocation from [12]
1) For each robot i, construct a tree Ti that contains
only the corresponding robot vertex from VR
2) While (VT 6= ∅) do

a) For all i, ci = minv∈VT
minw∈Ti {c(v,w)}

b) j = argmini ci
c) vj = minv∈VT

minw∈Tj
{c(v,w)}

d) Attach vj to Tj
e) VT = VT - {vj}

3) For all i, use the MSF heuristic on Ti to construct the
path for robot i.

C. Local path planning (Addressing Challenge 3.)
We model the explorational aspect of local planning as

a local optimization problem. The local path planning tries
to find the optimal path between the current position of the
robot and its next assigned goal. The optimality depends
on two factors: 1) minimization of the distance traveled by
the robot to the allocated goal, and 2) maximization of the
context exploration. For the local path planning we use the
probabilistic models previously explained in Section IV-A.

Similarly as the grid-map, the vision of the robot is also
discretized as shown in Figure 5. The red circle represents the
range of the sensors of the robot and the area in which the
robot can detect new task, and the shaded grid is the discretized
region corresponding to this area. Using the discretization of
the motion of the robot, mentioned previously in the paper, one
can construct a search tree (shown in Figure 6) that iterates
through the robot’s possible actions: starting from the robot’s
current position until the robot reaches its next assigned goal,
looking for the optimal path. For the path search in this case
we use uniform cost search.

Figure 5. Robot’s ob-
servation range

Figure 6. One possible representation of the
search tree.

The costs for each transition C is calculated with the
following formula:

C = d(action)− α ∗ E(x, y, action, t)

where d(action) calculates the Euclidean distance of perform-
ing a certain action, for example, left right, up and down; and

E(x, y, action) is a function that calculates the exploration
gain based upon the current position (x, y) and the action
taken.

We further introduce a constant α which we can use to
empirically tune the relative magnitudes of the Euclidean
distance and exploration gain. This allows us to determine
the relative importance of the two factors and hereby the path
taken by the robot.

For quantifying the exploration gain we use the following
formula:

E(x, y, action, t) =
∑
i,jεS

CPij(t)

which sums all the cumulative probabilities of a set S, where
S is the set of currently unseen grid cells that will become
visible when a specific action is taken.

V. IMPLEMENTATION

In this section we discuss the implementation of the ROS-
based, multi-agent system based on the reference problem,
which was previously explained in Section II. We have created
simulated, yet realistic implementation of a multi-robot sys-
tem, which itself presents a challenge. In our implementation,
the entire communication is based on Robot Operating System
(ROS), and Gazebo [15] [16] is used for simulating the
robotics system. Gazebo relies on well-established physics
engines, which enables high physical, functional and visual
fidelity. In this paper, we evaluate all the concepts considering
only two robots, in particular two Turtebots 3 Burger [17].
However, our implementation allows increasing the number of
robots deployed in the room. Additionally, we simulate 360
degrees 2D LIDAR sensor is mounted on top of the robots. The
laser scanners can detect obstacles up to a distance of 3.5 m.
[18] and [19] contain the source code of the implementation,
together with installation instructions, more detailed archi-
tecture of the implementation for each of the sub-tasks, the
complete ROS computation graph and illustrative concepts—
videos of the implementation and some of the results. The
robotic system can serve as a basis for various experiments
for other researchers, and can be modified accordingly to their
distinct scientific needs.

VI. EVALUATION

In this section we show some of the preliminary results.
For data collection and analysis, a series of rosbag-records
were performed. rosbag-records subscribe to topics and enable
recording of the content of all the messages published on
those topics. We have conducted one long-term experiment of
approximately 40 minutes, and seven shorter 10-minute exper-
iments. During all the experiments, the exploration parameter
α (explained in Section 4.3), the time-interval of dirt spawned
∆t, and the use of prior learned knowledge gained in time
T are varied. Specifically, the prior learned knowledge comes
in the form of probability task distribution that is learned for
1000 time-steps before the actual measurements are collected.
Furthermore, the start-time is used to denote the recordings.
The parameter specifics are given in the Table 7.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

SSACPS | Sync 4 | Team 2

α = 0, T = 0 α = 0.75, T = 1000

Δt = 10s Δt = 15s Δt = 10s

α = 0.75, T = 0

Figure 7: Spawned vs. detected tasks.

minutes experiments. During all the experiments the explo-
ration parameter α, the time-interval of dirt spawned ∆t and
the use of prior learned knowledge are varied. The prior
learned knowledge comes in form of probability task dis-
tribution that is learned for 1000 time-steps since the begin-
ning, before the actual measurements are collected. Further-
more, the start-time is used to denote the recordings. The pa-
rameter specifics are given in Table . It is important to point
out that for testing purposes and for a better replication of the
scenarios in the experiments, we have fixed frequency with
which the dirt appears ∆t and used a random seed for the
appearance of the tasks. Additionally, the multi-robot global
task allocation node runs at 1Hz, meaning that the newly de-
tected task are considered as goals and Minimum Spanning
Forests are re-calculated every second.

Sample α ∆t start-time knowledge
LONG TERM

#1 0.0 10-10 15-49-49 FALSE

EXPLORATION

#1 0.75 10-10 17-15-00 FALSE
#2 0.75 25-25 17-27-12 FALSE
#3 0 25-25 17-39-28 FALSE
#4 0.75 25-25 17-58-57 TRUE
#5 0.75 25-25 19-12-42 FALSE
#6 0.75 15-15 19-31-39 FALSE
#7 0.75 10-10 14-09-16 TRUE

Table 1: Experiments parameters specifics.

In the following, we are showing results for three different
cases: 1) no exploration α = 0, and no prior knowledge
T = 0; 2) exploration α = 0.75, and no prior knowledge
T = 0; and 3) exploration α = 0.75, and prior knowledge
T = 1000.

Figure 7 shows whether the robots have a good coverage
in the partially observable context with regards to the de-
tection of tasks. In the graphs on the figure we compare the
spawned vs. detected tasks. In comparison with the first two

graphs in the figure, we can see that the advanced approach,
combining the exploration and the prior knowledge together,
shows a much better approximation of the spawned tasks by
the detected tasks over time.

The graph in Figure 8 tells how many goals are currently
assigned to both robots. From the graph we can see that with
time, the number of assigned goals when we have explo-
ration and prior knowledge improves, in comparison when
there is no exploration and no prior knowledge given.

Figure 8: Number of currently assigned goals.

The succeeded goals graph in Figure 9 accumulates the
number of succeeded goals over minutes. The results show
that the approach which combines the exploration and the
prior knowledge performs the best over time, in average
completing 5 goals/minute, following the approach with no
exploration and no prior knowledge with 3.75 goals/minute,
and at the end with only 2 goals/minute, the approach with
exploration but no prior knowledge. Interestingly, our ex-
periments revealed that exploration impulsion only bene-
fits when combined with the previously learned knowledge
about the context.

Figure 7. Experiments parameters specifics.

It is important to point out that for testing purposes and
better replication of the scenarios in the experiments, we
have fixed the frequency ∆t and used a random seed for the
appearance of the tasks. Additionally, the multi-robot global
task allocation node runs at 1Hz—detection and allocation of
new goals are re-calculated every second. In the following, we
are showing results for three different cases:

1) no exploration α = 0, and no prior knowledge T = 0;
2) exploration α = 0.75, and no prior knowledge T = 0;
3) exploration α = 0.75, and prior knowledge T = 1000.
Figure 8 and Figure 9 show whether the robots have good

coverage in the partially observable context with regards to
the detection of tasks, with α = 0, T = 0 and α = 0.75,
T = 1000, respectively. Concretely, in both of the graphs,
we compare the amount of spawned (in orange) vs. the
amount of detected tasks (in blue color). We can see that the
advanced approach combining exploration α = 0.75 and prior
knowledge T = 1000, shows a much better approximation of
the spawned tasks by the detected tasks over time.

Figure 8. Spawned vs. detected tasks (α = 0, T = 0).

The graph in Figure 10 shows how many goals are assigned
to both of the robots over time. From the graph, we can
see that with time, concretely in the second half of the
simulation time, the number of assigned goals increases when
we have exploration and prior knowledge (depicted in orange),

Figure 9. Spawned vs. detected tasks (α = 0.75, T = 1000).

in comparison, when there is no exploration and no prior
knowledge given (depicted in blue).

Figure 10. Number of currently assigned goals.

The succeeded goals graph in Figure 11 shows an accu-
mulated number of succeeded goals over time. The results
show that the approach which combines the exploration and
the prior knowledge (in green color) performs the best over
time, in average completing 5 goals/minute, following the
approach with no exploration and no prior knowledge (in
blue color) with 3.75 goals/minute, and at the end with only
2 goals/minute, the approach with exploration but no prior
knowledge. Interestingly, our experiments revealed that the
exploration benefits are only noticeable when the exploration
is combined with the previously learned knowledge about
the context. Otherwise, when the system explores without
prior knowledge, it performs almost half worse than when the
system did not explore and did not learn. From the results, we
can conclude that a self-adaptive system benefits by a more
extensive exploration of the partially observable context, only
if the exploration is guided by the previous learning of the
system.

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 11. Succeeded goals (cumulative).

VII. CONCLUSION AND FUTURE WORK

The objective of this work was to investigate how self-
adaptive systems that establish their adaptation on incorpo-
rating human-like activities like collaboration and learning
can preserve or even improve their performance—despite the
continuous, run-time changes in the context that could not
be specified during the design time. The systems operate in
partially observable, multi-agent contexts. We proposed an
approach for building adaptation logic, which improves over
time and tackles different challenges of self-adaptive cyber-
physical systems. The collaboration was enabled through run-
time cooperative aggregations of the contextual observations
and run-time collaborative tasks assignment. The learning was
achieved by storing the past contextual encounters, which later
were reused in a predictive manner, to help the systems make
better, smarter decisions. To evaluate our approach, we built a
self-adaptive system testbed from the robotics domain. As part
of our future work, we intend to evaluate the applicability of
the methodology on another use case from a different domain.
Additional future enhancements should also comprise learning
and optimal hyper-parameters search for different parameters,
and changing the number of robots, for different contextual
setups.

REFERENCES

[1] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

[2] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber-
physical systems: a systematic literature review,” in Proceedings of the
11th international symposium on software engineering for adaptive and
self-managing systems, pp. 75–81, 2016.

[3] P. Jamshidi, J. Cámara, B. Schmerl, C. Käestner, and D. Garlan,
“Machine learning meets quantitative planning: Enabling self-adaptation
in autonomous robots,” in 2019 IEEE/ACM 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 39–50, IEEE, 2019.

[4] D. Weyns, “Software engineering of self-adaptive systems: an organised
tour and future challenges,” Chapter in Handbook of Software Engineer-
ing, 2017.

[5] A. Petrovska, S. Quijano, I. Gerostathopoulos, and A. Pretschner,
“Knowledge aggregation with subjective logic in multi-agent self-
adaptive cyber-physical systems,” in SEAMS ’20: IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Seoul, Republic of Korea, 29 June - 3 July, 2020,
pp. 149–155, ACM, 2020.

[6] A. Petrovska and A. Pretschner, “Learning approach for smart self-
adaptive cyber-physical systems,” in 2019 IEEE 4th International Work-
shops on Foundations and Applications of Self* Systems (FAS* W),
pp. 234–236, IEEE, 2019.

[7] M. Broy, M. V. Cengarle, and E. Geisberger, “Cyber-physical systems:
imminent challenges,” in Monterey workshop, pp. 1–28, Springer, 2012.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[9] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[10] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[11] V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model
problem and testbed for experiments with adaptation in smart cyber-
physical systems,” in 2016 IEEE/ACM 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 82–88, IEEE, 2016.

[12] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
vol. 1, pp. 698–705, IEEE, 2004.

[13] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, “A taxonomy of
uncertainty for dynamically adaptive systems,” in Proceedings of the
7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pp. 99–108, IEEE Press, 2012.

[14] E. L. Lawler, “The traveling salesman problem: a guided tour of
combinatorial optimization,” Wiley-Interscience Series in Discrete Math-
ematics, 1985.

[15] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3, pp. 2149–2154, IEEE, 2004.

[16] C. E. Agüero et al., “Inside the virtual robotics challenge: Simulating
real-time robotic disaster response,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 494–506, 2015.

[17] W. Garage and T. Foote, “TurtleBot 3 Burger.” https://www.turtlebot.
com/, 2016. [Online; accessed 19-July-2018].

[18] A. Petrovska, “Smart Self-Adaptive Cyber-Physical Systems Simula-
tion.” https://github.com/tum-i4/ssacps simulation, 2019. [Online; ac-
cessed 08-Sept-2019].

[19] A. Petrovska, “Smart Self-Adaptive Cyber-Physical Systems Packages.”
https://github.com/tum-i22/ssacps packages, 2019. [Online; accessed
08-Sept-2019].

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-848-8

ADAPTIVE 2021 : The Thirteenth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://www.turtlebot.com/
https://www.turtlebot.com/
https://github.com/tum-i4/ssacps_simulation
https://github.com/tum-i22/ssacps_packages

	Introduction
	Motivation
	Background
	Gaps and Contributions

	Reference problem
	Challenges
	Methodology
	Tasks detection, knowledge representation and context models (Addressing Challenge 1.)
	Reliable tasks detection
	Context models and knowledge representation in the adaptation logic
	Updating context models based on probabilistic models

	Multi-robot goal allocation (Addressing Challenge 2.)
	Local path planning (Addressing Challenge 3.)

	Implementation
	Evaluation
	Conclusion and Future Work
	References

