
Cooperation Strategies in a Time-Stepped Simulation of Foraging Robots

Liam McGuigan, Catherine Saunders, Roy Sterritt, George Wilkie

School of Computing, Faculty of Computing, Engineering and the Built Environment

Ulster University

Jordanstown, N. Ireland

email: mcguigan-l8@ulster.ac.uk, c.saunders@ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk

Abstract—Large robotic swarms may be used to carry out

tasks, such as space exploration, mining, search & rescue

operations and more. To enable their use in these fields, the

individual robots within a swarm will need to be autonomic,

capable of making their own decisions and adjusting their

behaviour without relying on regular human intervention. This

paper demonstrates the potential for autonomic self-adaptation

within a swarm of foraging robots by investigating the

performance of different cooperation strategies in different

scenarios. The results show that the performances of the

strategies are affected by operational conditions that can

change over the course of a mission, and that the autonomic

capability to self-adapt would prove beneficial. Additionally,

the time-stepped simulation used here is compared to the

performance of a previous approach using real-time

simulation, with a view to identifying which approach is more

suitable for embedding within a robot as a means of aiding that

autonomic process through simulating potential options. The

time-stepped simulation is found to be faster and more

efficient, and therefore more suited to embedding.

Keywords- Swarm robotics; Self-adaptation; Autonomic

Computing; Simulation.

I. INTRODUCTION

The use of robotic swarms consisting of a large number

of robots operating in concert can benefit applications, such

as space exploration [1][2], search & rescue [3] and mine

clearance [3][4] among others, taking advantage of a robot’s

ability to operate in conditions where human involvement is

too dangerous or difficult.

The individual craft in a robotic swarm will need to be

capable of managing themselves without requiring constant

supervision. They may be required to make quick decisions

to protect themselves or to act on opportunities, and will

need to adapt to best suit the conditions of the task being

carried out [5]. This can be achieved by making the swarms

autonomic.

Autonomic computing concepts will embody the swarm

with the properties of self-configuration, self-healing, self-

optimization and self-protection, ensuring that the swarm

[6] is implemented by including an autonomic component

running a Monitor, Analyse, Plan, Execute, with a shared

Knowledge (MAPE-K) control loop to monitor and analyse

the situation, and plan and execute any changes to behaviour

aided by a knowledge base of pre-set or previously acquired

information [7]. Autonomic robotics combines the concepts

of MAPE-K from autonomic computing, with Intelligent

Machine Design (IMD) from robotics [8][9].

Due to the cost and impracticality of using real hardware

during the development of large-scale swarm behaviour

with real hardware, simulators are often used in the process

[10], able to create artificial swarms of hundreds or even

thousands of robots engaged in tasks, such as foraging,

surveillance and exploration of unknown environments.

The research presented in this paper has two objectives.

The first is to investigate the potential for self-adaptation

through selection of a cooperation strategy during a foraging

task, through analysis of the performance of three different

strategies over the course of the task. The second objective

is to identify which of two simulation approaches used

would be most suitable for deploying on an individual agent

within the swarm as a means of using simulation-in-the-loop

to help with the decision to switch.
The rest of this paper is organised as follows. Section II

discusses related work on self-adaptation in swarm robotics,
and the varying use of simulations in development. Section
III describes the cooperation strategies developed in a
previous study [11], and the implementation of an alternative
simulation for exploring them, setting out the test scenarios
to be run. Section IV presents these results and the
implications, including a comparison of the two simulation
approaches used. Section V concludes the paper with a
summary and indicates the future research directions.

II. RELATED WORK

The following subsections discuss current research in

swarm self-adaptation, and the use of simulations within

swarm development.

A. Swarm Self-Adaptation

Self-adaptation of a robotic swarm concerns the ability

of the swarm to adjust its behaviour in response to external

or internal conditions, such as a foraging swarm choosing to

abandon a depleted deposit in order to find newer deposits,

or a surveillance swarm organizing itself so as to provide

maximum coverage of the target area.

Swarm self-adaptation can be considered based on two

factors – the approach to adaptation, and the location within

the swarm where this is applied. Approaches to swarm

adaptation include engineering emergent processes where

adaptation arises naturally out of the agent behaviour [12],

reasoning and learning approaches where the swarm

explicitly reasons about the decision being made [13] and

135Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

may learn from experience [14], and evolutionary

approaches which explore alternatives through genetic

algorithms [15].

Regarding location, a lot of the research focuses on

applying adaptation to individual agent behaviour [16]–[18].

This low-level adaptation results in a bottom-up approach to

swarm behaviour, with the resulting performance of the

swarm arising from the aggregate performance of the

individual agents. This can allow for more specific

adaptation, such as balancing an individual’s conflicting

objectives [19], which may be difficult to apply at the

swarm level. Agent behaviour adaptation can have the most

direct impact on the swarm’s performance, but it is difficult

for an agent to make an individual decision on aspects of

collaboration or coordination between multiple agents.

Adaptation through the selection of swarm-level

cooperation strategies can be used to address the problem of

collaboration. In this approach, agents within the swarm can

collectively determine an alternative approach which is

swapped with the existing agent behaviour either in part or

in whole. This selection may be driven by an autonomic

component that assesses the suitability of alternative

strategies [11][14], and may be employed with in a subset of

the entire swarm [20].

This research is focused on identifying the potential for

swarm-level adaptational changes by assessing the

performance of a selection of candidate strategies in a set of

scenarios. Through noting any effect the scenario has on the

performance of a particular strategy, the benefits of the

ability to select an alternative strategy will become apparent.

B. Use of Simulations in Swarm Development

Simulation has long been employed as a tool for the

development of robotic and swarm simulations, providing

the means to test and analyse systems in an artificial

environment. Simulators range in complexity, from detailed

physical simulations of actual robots [10][21], to abstract

approaches where robots move within a grid-based

environment. The difficulty of producing an accurate

simulation of the real world can manifest as the “reality

gap” [22], where results obtained in simulation are not

replicated in reality. Nonetheless, it is not necessary for the

results of a simulation to be precisely reproducible in the

real world for the simulation itself to prove useful.

Simulation need not be restricted to the offline

development phase. It may be used to assist the decision

making process [23][24], trying out “what-if” scenarios in

order to assess the effects of potential actions or strategies

ahead of time. For this to be effective, a simulation must be

detailed enough to provide useful information, while

remaining lightweight enough to be able to run on an

individual agent within the swarm.

When choosing or designing a simulator for researching

robotic swarms, the accuracy of the physical simulation

required will depend on the impact specific hardware has on

the research being conducted. Developing a robotic

controller without a suitably accurate physical simulation

can lead to the robots in the simulation carrying out

behaviour that is impossible with the actual robots [25], but

when researching purely software based systems,

abstractions can be used to trade accuracy for a faster

execution time [21].

Further gains in execution time may be made by

simplifying the world representation. Grid based approaches

need not produce markedly different results to continuous

space [26], and can be used in cases where the specific

motion of agents can be abstracted.

The majority of multi-robot simulators available make

use of discrete time when updating their simulations, in

which all agents and physical reactions are updated in

sequence with a small time step, rather than independent

execution in real time, such as assigning a robot its own

execution thread. This ensures synchronous execution of

robots [21] and simplifies physical interactions.

The research conducted in this paper abstracts physical

movement using cell-based movement within a grid, and the

performance is contrasted with a real-time, multi-threaded

approach used in previous research [11].

III. TIME-STEPPED SIMULATION OF COOPERATION

STRATEGIES

This research makes use of a simulation of a

heterogeneous swarm of agents engaged in a variant of a

foraging task. The 30x30 world is seeded with 100 each of

two different types of items, and 200 robots are divided into

two equal groups based on which item they can process.

Items are processed in-situ, rather than returned to a home

base – the process is analogous to applications, such as mine

deactivation, analysis of mineral deposits or environmental

clean-up. The task is considered complete when all items

have been successfully foraged.

The world is represented as a grid of equal sized cells,

one unit square, with items and robots each occupying a

single cell. During world generation, items are placed so as

not to share cells, but there is no restriction on robots

sharing a single cell. Figure 1 shows the world at the

beginning of a simulation.

Figure 1. Initial setup of the simulation. The colour of a robot (face) or

item (X) indicates its type.

136Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

A. Previous Implementation

The performance of the time-stepped simulation
presented here will be compared with that of the threaded
implementation in the previous work [9].

In the threaded implementation, each robot was run on an
independent CPU thread, with a reliance on real-time delays
when messages required a response, as in the One Responder
strategy. Each robot’s progress was also artificially delayed
in order to allow the task to be viewed within the simulation
program. The updating of the individual robots is thus
subject to the CPU’s thread scheduling, and cannot be
predicted.

This reliance on real-time delays is not present in the new
time-stepped approach where a unit of time is defined by a
single tick of the simulation during which each robot is
updated in sequence.

B. Cooperation Strategies

Cooperation during the task is determined by the use of
one of three strategies, as developed in [11]. When a robot
encounters an item that it cannot forage, it broadcasts a help
request with a range of 5 units. The behaviour of the robots
is then determined by the strategy:

1) Multiple Responders: A receiving robot, if not

already engaged in foraging or responding to a previous

request, will respond to the request by moving towards the

item if it is able to forage it. All receivers, whether they can

forage the item or not, will rebroadcast the message. In this

way, the message will filter throughout the swarm. The

robot initiating the help request plays no further part in the

cooperation and returns to exploration.

2) Selective Responders: Behaviour is similar to the

Multiple Responders approach, but the message is only

rebroadcast if the receiving robot cannot help. This works to

reduce the number of robots responding to the request.

3) One Responder: The robot initiating the request waits

for offers of help, which are sent by receiving robots that

meet the criteria. No rebroadcasting of the message occurs.

If no offers are received after a short delay, the requesting

robot returns to its previous behaviour, otherwise it assigns

the task to the nearest responding robot and resumes

exploration. Robots that do not receive assignment after a

period of time return to exploration.
Both Multiple and Selective strategies are likely to result

in multiple robots moving towards the item. This would
provide contingency in the event of robot failure before
reaching the target item. Robot failure is not implemented in
the current simulation, but will be in a future study.

C. Robot Behaviour

The behaviour of each robot is controlled using a finite

state machine (FSM). Figure 2 shows a simplified diagram

of the transitions between the three states used for the

Multiple and Selective Responder strategies.

Figure 2. States and transitions used for the Multiple and Selective

Responder strategies.

A robot begins in the MoveToRandom state, where it

will select a random location in the world and move towards

it. Each step, if an item is found, the robot will transition to

the Forage state.

In the Forage state, the robot checks if the item is the

right type, and forages successfully if so. If not, it will

broadcast for help according to the selected strategy. It will

then return to its previous state based on whether it is

answering a request of its own.

A robot responding to a help request transitions to the

MoveToForage state, which is similar to MoveToRandom

except the destination is that of the item for which help was

requested. To prevent robots from being distracted by new

requests, help requests are only processed by a robot in the

MoveToRandom state.

When using the One Responder strategy, two additional

states are used. A robot broadcasting for help transitions to

the WaitForHelpOffers state for two simulation ticks, before

selecting the nearest robot. Robots that respond to the initial

request transition to the WaitForHelpAssignment state for

three ticks before returning to their previous task if not

selected.

If no cooperation strategy is used, robots transition

between only the MoveToRandom and Forage states.

D. Simulated Messages

In a time-stepped simulation, the potential effects of the

agent update order need to be managed. For example, during

a single update, Agent 2 may broadcast a message that

would be received by Agents 1 and 3. If those values also

represent their update order, Agent 3 would be able to

receive and respond to the message in the same update,

while Agent 1 would need to wait until the following

update. This is not desirable behaviour.

To avoid this, messages sent by a robot during an update

are queued by the simulation and sent out at the end of the

update. If an agent that receives a message in turn

broadcasts one of its own, this will not be sent out until the

next update. In this way, robots are unable to

instantaneously receive responses without any time delay.

137Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

E. Experimental Scenarios

The following scenarios were created in order to test the

effects of each cooperation strategy in different situations.

1) Equal Split of Items and Robots:100 red robots and

100 white robots attempt to locate and forage 100 red items

and 100 white items.

2) Robot Type Imbalance: 180 red robots are used and

only 20 white robots, while the items are equally

distributed, representing a scenario where the swarm

configuration deployed is not best suited to the task and

must adapt.

3) Item Type Imbalance: 180 red items and 20 white

items, with equal robot distribution, representing a scenario

where the reality of the mission differs from the expected,

and again the swarm must adapt.

Each scenario is tested with two map sizes, 30x30 and

90x90, with the latter used to test performance in less

concentrated environments. Each simulation is run 30 times,

with the initial placement of items and robots randomised at

the start of each run. For the threaded simulation, the Equal

and Robot Imbalance scenarios were each run 10 times on

the 30x30 map only due to simulation limitations, also with

randomisation of item and robot placement.

In assessing the performance of each strategy, the number

of simulation ticks until completion of the task is the main

metric, as it is a measure of the time taken to forage all

items. If the energy cost of actions taken by robots is of

interest, then the total number of steps and the number of

messages broadcast will also become factors. The

simulation does not currently assign an energy cost to

individual actions, but the counts may be used as a guide,

and for each metric a lower value is considered more

efficient.

IV. RESULTS

The following subsections compare the performance of

the cooperation strategies in the tested scenarios, followed

by a comparison of the two simulation methods employed.

A. Cooperation Strategies

Figure 3 shows the ticks to completion, steps taken, and

messages sent for each of the test scenarios in a 30x30 grid.

Comparing the results in both the Equal (a) and Item

Imbalance (c) strategies, the One Responder strategy is the

best performing approach, having the lowest count in each

metric. Multiple and Selective Responder strategies can

actually perform worse than no cooperation strategy at all,

which can be explained by robots that respond to messages

halting any exploration while they respond.

In the Robot Imbalance scenario (Figure 3 (b)),

however, One Responder does not reliably perform, and is

subject to a great deal of variance caused by the initial

placement of items and robots, and the subsequent

movement of robots within the arena.

(a) Simulation ticks

(b) Steps taken

(c) Messages sent

Figure 3. Metrics for each cooperation strategy in a 30x30 map. Error

bars represent one standard deviation: (a) simulation ticks, (b) total steps

taken, (c) messages sent.

When considering energy costs, Multiple Responders

has an extremely high message count setting it apart from

Selective Responders, which it otherwise performs very

similarly to. A full assessment of the respective efficiency

of each would require an assignment of cost to each of the

metrics, with the total cost calculated accordingly.

Figure 4 shows the progress of each strategy over time

for the three scenarios. In Equal (a) and Item Imbalance (c)

scenarios, performance is again similar, however it is

notable that using no cooperation strategy at all is the

quickest approach until the item count decreases

substantially, after which One Responder performs best.

This would suggest some system of changing the

cooperation strategy used during the test based on the

changing situation could lead to stronger overall

performance, at least in terms of time taken.

138Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

(a) Equal

(b) Robot imbalance (c) Item imbalance

Figure 4. Items foraged over simulation ticks for each of the strategies in a 30x30 map: (a) Equal scenario, (b) Robot imbalance scenario, (c) Item

imbalance scenario.

In Figure 4 (b), the Robot Imbalance scenario shows

only a slight favouring of Random and One Responder

scenarios until most items are gathered, but the imbalance of

robots then leads to both strategies taking much longer to

complete the task than the other approaches. Again, strategy

selection during the task could recognise this situation and

adopt the strategy most suited.

If individual robot failure is considered, a robot

imbalance can occur during the task. A system that can

monitor the current swarm composition as well as estimate

the progress in the task would therefore be able to adopt a

suitable strategy in response to such unpredictable change.

Figure 5 shows the ticks to complete, steps taken, and

messages sent for the cooperation strategies in the larger

90x90 grid. Here, it can be seen that the performance of

each strategy tends towards that of no cooperation, with

large variances in the data and, other than the number of

messages sent, similar average values for each metric in

each scenario.

It may be expected that the larger map explains the

results as messages are not being broadcast far enough in

order be received, but a comparison of data in Figure 6

shows that this is not necessarily the case. The proportion of

requests receiving a response does not change much

between the map sizes for the Multiple and Selective

Responders cases, other than when there is a robot

imbalance where it can be understood the chances of a robot

of the correct type being nearby is significantly lower in a

larger area.

The One Responder strategy can be seen to have a much

higher percentage of requests receiving a response than the

other approaches in a 30x30 map. This is due to the other

approaches causing robots who would be able to help to be

otherwise engaged in moving to forage an item, and thus

unable to respond until they complete that help task. As the

One Responder strategy causes only one robot at most to

take on a task, other robots remain to be selected. In the

90x90 map, this then drops because of the distance between

robots, and more closely matches the other approaches.

The dominant effect in the 90x90 map is the random

exploration of the environment, and can be seen in the time

taken to complete the task and understood by considering

that the number of items remains the same between the two

maps. As such, only 2.5% of the cells in a 90x90 map have

an item, compared to 22.2% of the cells in the 30x30 map. It

is this decreased chance of stumbling upon an item that has

the strongest effect on swarm performance.

(a) Simulation ticks

(b) Steps taken

(c) Messages sent

Figure 5. Metrics for each cooperation strategy in a 90x90 map. Error

bars represent one standard deviation: (a) simulation ticks, (b) total steps

taken, (c) messages sent.

139Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

(a) 30x30 map

(b) 90x90 map

Figure 6. Percentage of help requests receiving at least one response, for

each cooperaton strategy and scenario. Error bars represent one standard

deviation: (a) 30x30 map, (b) 90x90 map.

The results show that allowing a swarm to adjust its

cooperation strategy during a task, rather than relying on an

initial strategy, could prove beneficial to performance by

allowing the swarm to adjust its approach in response to the

situation. This self-adaptation applied at the swarm strategy

level would require the swarm to have knowledge of its own

composition, the current state of the task, and environmental

factors, as well as the ability to carry out the analysis of the

situation in a decentralised fashion.

B. Simulator Comparisons

Table I compares the time taken to complete the task for
each of the simulators in the Equal scenario. The time-
stepped simulation presented here is significantly faster than
the previous simulation. This can largely be accounted for by
the deliberate delays introduced previously to allow for
visualization, with some impact of the reliance on real-time
delays for communication, which makes a true comparison
difficult.

TABLE I. SIMULATON DURATION (EQUAL SCENARIO)

 Multi time (s) Select time (s) One time (s)

Time-Stepped 2.11 0.89 0.17

Threaded 155.14 142.01 130.86

Figure 7 shows that the time-stepped simulation takes a
much larger number of steps in the Multiple and Selective
Responder strategies, and also shows an increase under One
Responder. This unexpected result may be explained by the
specific behaviour of the robots in each simulation. In the
threaded approach, robots pause frequently, the effect of
which is that fewer robots will move in each step. For
example, on deciding to respond to a help request a robot
pauses for three seconds. Further, if another help request is
received during that pause, that too may be processed and the
robot may choose to act on that, with a further pause.

The effect of these pauses is to reduce the number of
robots moving at any given time. In the time-stepped
simulation, a robot will only pause when waiting for help
responses or assignments in the One Responder strategy.

It is notable that despite these pauses, robots in the
threaded approach take fewer steps overall, rather than
taking the same number of steps over a longer period. This
suggests there may be a benefit to reducing the number of
robots engaged in random exploration, but this will need to
be investigated further.

The impact of the two simulations on the host platform
was compared and Table II displays the approximate
processor and memory usage of the two platforms when
running simulations.

Overall, the time-stepped approach will put less strain on
the CPU, as despite its higher usage during execution
without a display, it will run for a fraction of the time. With a
display, the execution is halted between ticks to update the
display at a framerate of the user’s choosing, and so CPU
usage drops. The threaded simulation has no option to
disable display updating, but the use of a separate thread for
each robot results in a moderate level of CPU usage for a
longer period of time.

The lower memory footprint of the time-stepped
simulation is most likely due to specific implementation
differences. Each robot in the threaded simulation contains a
copy of the world map and lists of robots and items, whereas
the time-stepped simulation uses a shared resource. While
requiring local copies is a factor in any real scenario, it is not
required to simulate that unless it is expected that robots will
have different local data. If this is a requirement, the memory
usage would increase accordingly.

Figure 7. Total steps taken for each simulator using the three strategies in

the Equal scenario. Error bars represent one standard deviation.

140Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE II. SIMULATION CPU AND MEMORY USAGE

 CPU (%) Memory (MB)

Time-Stepped (Live

Display)
5-6 30-35

Time-Stepped (No

Display)
55-60 30-35

Threaded 35-40 700-750

It can be noted that the stepped approach has the effect of

quantizing time, with a tick being the smallest unit possible.
This can have the effect of inflating the duration of actions
where robots must work in sequence. For example, in the
One Responder strategy, it takes 4 ticks to complete the
chain of initial broadcast, response, assignment broadcast
and eventual robot behaviour change. In this time, another
robot could move 4 cells. This has the effect of slowing
down that strategy’s performance within the simulation. A
separate system for dealing with all messages within a single
tick may be required to present more accurate results.

The specific implementation details have made
comparison of the different strategies between each
simulator difficult to achieve, and some of the differences
could be removed by re-implementing the previous threaded
simulation to adjust the behaviour regarding robots pausing,
duplication of data, the requirement for a live display, and
the fixed 30x30 map size. This would allow for further
comparisons to be made to determine the most suitable
approach.

However, as things stand, the quicker execution time and
lower impact on the CPU suggests the time-stepped
approach is a more favourable system for use as a simulation
in the loop for assisting in any adaptation process.

V. CONCLUSION AND FUTURE WORK

The presented research used a time-stepped simulation to
investigate the effects of different cooperation strategies for a
swarm carrying out a foraging task. It was shown that
different situations favour different strategies, with the One
Responder strategy proving most effective in a 30x30 map
with an equal number of robots, but other strategies
providing more reliable performance when faced with an
imbalance in the swarm.

Further, different stages of the task will favour different
strategies. During the initial phase where large numbers of
items remain to be discovered, random exploration with no
cooperation strategy produces the best results. Only when a
small proportion of the items remain does the adoption of a
cooperation strategy start to benefit the performance of a
swarm.

Together, these results suggest that giving a swarm the
ability to display autonomic adaptive behaviour, adjusting
the strategy on the fly based on the current situation, would
allow for faster completion of the task.

Figure 8. MAPSE-K loop. Simulation is used to test the plans before

executing the best performing plan.

The time-stepped simulation was compared against
previous work that employed a real-time threaded approach,
and was found to have faster execution and reduced load on
the host computer. This would make the time-stepped
simulation more suitable for use as part of the MAPE-K loop
for a foraging swarm, forming MAPSE-K (Figure 8) [1].
This could be achieved by embedding the simulator within
one or multiple robots within the swarm, in order to analyse
and select strategies without risking reduced performance
caused by the trialling of unsuitable candidates in reality.

The expected limited processing capabilities of the host
robot mean managing the overhead that simulation entails
will become a major factor. A time-stepped approach is thus
more suited to this task.

Future work will explore methods of giving the swarm
the autonomic ability to adjust its behaviour based on the
situation, including the use of simulation-in-the-loop as
described. This will include investigating the means by
which simulation can be employed in the distributed swarm,
allowing for the possibility of incomplete knowledge or local
factors influencing the decision as robots in different
locations in the field are expected to have different
perspectives and experiences. Additional strategies will also
be developed that may improve overall performance in this
foraging task.

Other factors that may affect performance will need to be
considered in future, such as the effects of robot loss during a
mission, which will be explored by introducing random
failure, including energy costs for actions and message
broadcasts that needs to be managed by each robot, or the
possibility of unreliable communications that may affect the
accuracy of the data in use.

REFERENCES

[1] R. Sterritt et al., ‘Inspiration for Space 2.0 from Autonomic-
ANTS (Autonomous NanoTechnology Swarms) concept
missions’, in Proceedings of the 17th BIS Reinventing Space
Conference, British Interplanetary Society, Nov 2019

[2] A. Farahani, G. Cabri, and E. Nazemi, ‘Self-* properties in
collective adaptive systems’, in Proceedings of the 2016
ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct, Heidelberg, Germany, Sep.
2016, pp. 1309–1314.

141Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

[3] L. Bayindir, ‘A review of swarm robotics tasks’,
Neurocomputing, vol. 172, pp. 292–321, Jan. 2016.

[4] I. Navarro and F. Matía, ‘An introduction to swarm robotics’,
ISRN Robot., vol. 2013, pp. 1–10, 2013.

[5] G. Beni, ‘From swarm intelligence to swarm robotics’, in
Swarm Robotics, Berlin, Heidelberg, 2005, pp. 1–9.

[6] IBM, ‘An architectural blueprint for autonomic computing,
4th ed.’ IBM White Paper, 2006.

[7] J. O. Kephart and D. M. Chess, ‘The vision of autonomic
computing’, Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[8] R. Sterritt, G. Wilkie, G. Brady, C. Saunders, and M. Doran,
‘Autonomic robotics for future space missions’, 13th
Symposium on Advanced Space Technologies in Robotics
and Autonmation (ASTRA 2015) – ESA/ESTEC, Noordwijk,
Netherlands, May 2015, European Space Agency,
unpublished.

[9] M. Doran, R. Sterritt, and G. Wilkie, ‘Autonomic architecture
for fault handling in mobile robots’, Innov. Syst. Softw. Eng.,
Apr. 2020, doi:10.1007/s11334-020-00361-8.

[10] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro,
‘Survey and comparative study of free simulation software for
mobile robots’, Robotica, vol. 34, no. 4, pp. 791–822, Apr.
2016.

[11] C. Saunders, R. Sterritt, and G. Wilkie, ‘Collective
communication strategies for space exploration’, J. Br.
Interplanet. Soc., vol. 72, no. 12, p. 416-430, 2019.

[12] J. Prasetyo, G. De Masi, and E. Ferrante, ‘Collective decision
making in dynamic environments’, Swarm Intell., vol. 13, no.
3, pp. 217–243, Dec. 2019.

[13] J. Zelenka, T. Kasanický, and I. Budinská, ‘A self-adapting
method for 3D environment exploration inspired by swarm
behaviour’, in Advances in Service and Industrial Robotics,
Cham, 2018, pp. 493–502.

[14] N. Capodieci, E. Hart, and G. Cabri, ‘An artificial
immunology inspired approach to achieving self-expression in
collective adaptive systems’, ACM Trans. Auton. Adapt. Syst.
TAAS, vol. 11, no. 2, pp. 6:1–6:25, Jun. 2016.

[15] N. Bredeche, E. Haasdijk, and A. Prieto, ‘Embodied evolution
in collective robotics: A review’, Front. Robot. AI, vol. 5, p.
12, 2018.

[16] K. S. Kappel, T. M. Cabreira, J. L. Marins, L. B. de Brisolara,
and P. R. Ferreira, ‘Strategies for patrolling missions with
multiple UAVs’, J. Intell. Robot. Syst., vol. 99, pp. 499-515,
Sep. 2019.

[17] G. Leu and J. Tang, ‘Survivable networks via UAV swarms
guided by decentralized real-time evolutionary computation’,
in 2019 IEEE Congress on Evolutionary Computation (CEC),
Jun. 2019, pp. 1945–1952.

[18] M. Frasheri, B. Cürüklü, M. Esktröm, and A. V.
Papadopoulos, ‘Adaptive autonomy in a search and rescue
scenario’, in 2018 IEEE 12th International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), Sep.
2018, pp. 150–155.

[19] F. Yan, K. Di, J. Jiang, Y. Jiang, and H. Fan, ‘Efficient
decision-making for multiagent target searching and
occupancy in an unknown environment’, Robot. Auton. Syst.,
vol. 114, pp. 41–56, Apr. 2019.

[20] M. Puviani, G. Cabri, and L. Leonardi, ‘Enabling self-
expression: The use of roles to dynamically change adaptation
patterns’, in 2014 IEEE Eighth International Conference on
Self-Adaptive and Self-Organizing Systems Workshops,
Imperial College, London, United Kingdom, Sep. 2014, pp.
14–19.

[21] C. Pinciroli et al., ‘ARGoS: A modular, parallel, multi-engine
simulator for multi-robot systems’, Swarm Intell, vol. 6, no. 4,
pp. 271-295, Dec. 2012.

[22] N. Jakobi, P. Husbands, and I. Harvey, ‘Noise and the reality
gap: The use of simulation in evolutionary robotics’, in
Advances in Artificial Life, vol. 929, F. Morán, A. Moreno, J.
J. Merelo, and P. Chacón, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 704–720.

[23] F. Kamrani and R. Ayani, ‘Using on-line simulation for
adaptive path planning of UAVs’, in 11th IEEE International
Symposium on Distributed Simulation and Real-Time
Applications (DS-RT’07), Oct. 2007, pp. 167–174.

[24] N. Keivan and G. Sibley, ‘Realtime simulation-in-the-loop
control for agile ground vehicles’, Lect. Notes Comput. Sci.
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol.
8069 LNAI, pp. 276–287, 2014.

[25] C. Pepper, S. Balakirsky, and C. Scrapper, ‘Robot simulation
physics validation’, in Proceedings of the 2007 Workshop on
Performance Metrics for Intelligent Systems, Washington,
D.C., Aug. 2007, pp. 97–104.

[26] C. J. E. Castle, N. P. Waterson, E. Pellissier, and S. Le Bail,
‘A comparison of grid-based and continuous space pedestrian
modelling software: analysis of two UK train stations’, in
Pedestrian and Evacuation Dynamics, Boston, MA, 2011, pp.
433–446.

142Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

