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Abstract—The delivery of the packages following the online
purchase of goods trough web giants platforms is growing faster
each years. To meet the demand of the growing quantity of
packages and their delivery, the algorithm used to resolve the
Vehicle Routing Problem (VRP) has to be efficient and adaptive.
The algorithms used to solve the VRP algorithm still provide
better turn, but do not deal with situation adaptation at delivery
point. Seeking to fit into this adaptive feature, the commitment
of this paper is to lay solid groundwork for the development of
an adaptive transportation system. Exploring various strategies
taking care of the possibilities of delivery at delivery point, our
objective is to define a strategy minimizing the time and the
distance travelled by packages and maximizing the satisfaction
of the customers.

Index Terms—Ant Colony convergence; Adaptive delivery

I. INTRODUCTION

The research presented in this paper is part of the develop-
ment of a new urban and rural freight transportation system.
Each year, the amount of packages bought on web market
places grows, to the detriment of local urban and rural shop-
keepers. Our freight transportation system aims to revitalize
urban and rural areas by providing to the customer the possi-
bility to buy online goods from local shops and restaurants and
to benefit from delivering services similar to those proposed
by traditional web market places. Moreover, our project is
intended to be more than a classical transportation system.
Seeking to revitalize the urban area and to draw the attention
of as many customers as possible, the delivery of goods has
to be as close as possible to customers in city center and rural
area. The project try to provide adaptive feature to the delivery
services, to consider the customer as the most important part
of the system.This delivery transportation system is described

in detail in [3]. The main principle of this system is based
on small electrical vehicles able to follow the buses or the
tramways of the already existing public transportation system
using platoon control algorithm. As soon as one of these
vehicles arrives to a stop near a delivery target, it can park
near the bus stop and then wait for the customer. The main
interest of this system is to have a potential ability to adapt
to the load (the number of goods to be delivered) and to the
dynamical constraints of the customers. Thus, to implement
this kind of freight transportation system, we will need to
adopt and implement applications of Vehicle Routing Problem.
First of all, we need to define a good base structure on which
to implement our transportation system. Our choice focused
on the Ant Colony to performed on the VRP algorithm,
thanks to its intrinsic ability of adaptation to the dynamic
update of the graph. This ability provides us the capacity to
include real time adaptation to the demand of delivery and
pickup of packages. However, wishing to develop an adaptive
freight transportation system, the ant colony algorithm needs
to be self-adaptive convergent. In this context, the ant colony
algorithm defined in [1] does not fit directly in this self-
adaptive convergent feature. Thus, the first part of our work is
to identify if the self-convergence of the ant colony algorithm
can be characterized by an environment based approach. This
research work is developed in the first Section II of this
paper. Then, after having defined the self-adaptive convergent
property of the ant colony algorithm, the next step is to focus
on the implementation of the VRP application to our freight
transportation system. Basing our application on the VRP, a
way to bring an adaptive feature to it is to find one. To do
so, we include in the VRP application different strategies to
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adapt the possibility of delivery at city point according to the
adaptive possibility of customers to be present to pickup the
package(s). Thus, those strategies are not limited to deliver or
not a package(s) according to the presence of the customer, it
must provide the customer the possibility to redefine his point
of delivery and its time of delivery during the same turn of
the vehicle. According to this fact, the delivery turn, defined
by the VRP application has to self-adapt its path to deliver
package(s). This research work is defined in Section III of
this paper.

The paper is structured as follows: Section II provides
the overview of the basics of ant colony optimization and
concludes with the environment based approach to define the
self-adaptive convergent property of the algorithm. Section III
gives an overview of the Vehicle Routing Problem approach
and develops self-adaptive reconfiguration to adapt its turn to
the availability of the customer. Finally, we will present our
experimentation, results and analyses in Section IV and then
Section V concludes the research conducted in this paper.

II. ANT COLONY ALGORITHM CONVERGENCE

This section provides an overview of the Ant colony Algo-
rithm before introducing the work on the convergence criterion
of this algorithm.

A. Ant colony for operational research

This section is intended as a review of the main features of
the ant colony optimization algorithm, that Dorigo synthesized
in [6]. To do this, we will support our demonstration by
the determination of the shortest path between two points; a
combinatory optimization problem already widely covered in
the specific literature. For a set of ”n” cities, a shorter path
search allows to determine the smallest distance between two
cities, passing through each of them once. The shorter path
search is based on the implementation of a graph G = (N,L),
with N all cities and L all paths connecting cities. Each arc
li ∈ L having a dij value that characterizes the distance
between two cities i and j. Optimization by ant colony is
the study of how work guides the worker [4]. Ant agents use
pheromones that guide them on the paths with the shortest
distance between the anthill and the food source. This solution
is built by a succession of turns in which an agent travels
guided by a pheromone trace and a search heuristic. Then,
when all ant agents have finished their turn, they come back to
the anthill by updating their pheromone trace. Ant agents thus
seek a better solution within the paths that have the highest
pheromone rate.

1) Iteration construction: When the algorithm is initialized,
all ants (the number of ants being equal to the number of cities
in the [5] graph) are dropped to the common starting point.
Then, each ant agent applies a stochastic search, called the
”random choice rule,” to determine which to which city it
will move on thereafter. Taking k agent ants, in a city i, the
next city will be chosen with the probability defined below.

P kij(t) =


[τij(t)]

α.[ηij(t)]
β∑

r∈Nk
j

[τir(t)]α.[ηir(t)]β
if j ∈ Nk

i

0 otherwise

(1)

With nij = 1
dij

a heuristic value, Tij(t) the value of the
pheromone trace, with t the iteration counter. Side and Side
parameters determine the influence of pheromone trace and the
heuristic value. Finally Nik represents the direct neighborhood
of the ant agent k, being in city i.

2) Pheromones update : Once all the ants have completed
an exploration, they must return to their starting town and
will at the same time update the pheromones rate of the paths
forming their route during the last round. The pheromones are
updated using the following equation:

τij(t+ 1) = [(1− ρ) ∗ τij(t) +

m∑
k=1

∆τkij(t)] (2)

With p(0 < p <= 1) evaporation rate, ∆τkij the amount of
pheromones that the agent k repents on the path visited, as
follows:

∆τkij(t) =

{ 1
f(Sk)

if the edge belong to Sk

0 otherwise
(3)

where f(Sk) is the size of the path constructed by the ant
k agent, for the current iteration.

TABLE I. PROCEDURE ACO ALGORITHM

The pheromones act as a strengthening position, encourag-
ing other ants to use an already marked path, amplifying the
positive reinforcement effect as more and more ants go along
the path.

3) Termination condition: Since the development of opti-
mization algorithms by ant colony, the efforts made through
various research projects have focused on the development of
iteration construction and pheromone updating. However, very
few have sought to develop new approaches on how to end
algorithms. In addition, it is legitimate to ask which methods
to put in place, since the number of optimal solutions available
is infinite.

B. State of the art of termination criteria

By the stochastic property of ant colony algorithms, the
emergence of a solution for a given problem is guaranteed,
with a probability of reaching 1, for an infinite time of
exploration. Such application is not possible, therefore it
is necessary to agree on the number of iterations to end
ACO, to enable the emergence of an optimal result that best
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characterizes the exploited problem. The number of iterations
being the key, the higher the iteration, the better the quality of
the solution. However, arbitrarily setting a very high number
of iterations is very inefficient in terms of resources, whether
they are energy and/or computational. Therefore, it appears to
be possible to use as little iteration as possible to determine the
best solution. In addition, this search by means economy is ad-
equate within this meta-heuristics, as illustrated by [7] through
the ”Stalling effect”, which they define as the following: ”the
problem of stalling effect in fitness function is related to the
non improvement of the fitness value during the evolutionary
process”. Since this phenomenon has been observed through
many algorithm run, it appears that a better solution emerges
at a given point in the research. However, the latter tends to
stagnate before the simulation stops, without a better solution
emerging again.

Fig. 1: Stalling effect

The optimization of the resources of ACO is entirely based
on the way in which the termination criteria will be set.
There are various methods in the scientific literature that
we will now explain. Currently one of the most common
approaches is to use an arbitrarily set termination criteria. This
results in a high number of iterations, but above all,they are
defined randomly. When the specified number of iterations
is reached by the algorithm, the algorithm will return the
best solution found [13]. Another, but similar, approach is
to stop the iteration of the algorithm after it has exceeded
a pre-defined execution time, always randomly [10]. In the
end, these two approaches, although easy to put in place,
reveal a complete decorrelation between the agents (ants)
and their environment, cutting them off from the influence
of the latter. In addition, they translate in a highly resource-
intensive implementation, which is antinomic with the prin-
ciple of optimization sought through meta-heuristics. Statis-
tical approaches using evolutionary factors, are then used to
evaluate the termination criteria of the algorithm to terminate
its execution. Nicolas et al. [9] have developed an iterative
solution that involves launching their ant colony algorithm
several times conditioned by a minimum number of iterations
to reach. Then they determine a percentage of success by
comparing the different solutions obtained according to the

parameters of each execution. Zhaojun et al. [14] propose
a solution characterizing the evolution of the system using
three factors. The first two assess whether the termination
criteria is met and the last one is also an assessment factor
based on the convergence of path with pheromone around
the shortest path. In addition to the above methods based on
the use of an arbitrarily fixed termination criteria, solutions
based on decision trees were also developed. Kate et al.
[2] have developed a decision tree that determines the best
heuristics to be implemented to solve the problem facing the
latter. Kate et al. [12], have also worked on the ontology
engine allowing to choose the best stop condition, allowing to
optimize the termination criteria. Moreover, by exploring the
literature to find advanced methodologies for our problem, a
physics-centered solution was found. This solution proposes to
implement the mechanics of the point through the observation
of position curves, speed and acceleration. The study of these
curves is supposed to help in the decision-making process
to stop the execution of the algorithm [8]. To finish this
review of various approaches available in the literature, we will
now discuss the search for the local minimum. The solution
provided by [11], proposes to stop this search for a solution
when a better solution is found, coupled with an arbitrary stop
criteria in case the algorithm does not converge. However,
nothing is defined as to how a better solution is evaluated, or
even how it is correlated with the environment in which the
research is conducted. Finally, the approach that we propose
in this article is also based on this idea of local minimum
exploration, like the solution of Silvia et al. [11]. However,
unlike the latter, we strive to correlate the depth of exploration
of the local minimum with the environment in which our
agents operate. By doing so, we seek dynamic behavior for
the algorithm, giving it an adaptation to its environment to
help it make decisions about its termination criteria. By doing
so, we are trying to demonstrate that a good knowledge of the
studied environment can bring real added value in the search
for solutions.

C. Environment based approach for the ant colony conver-
gence

The objective of this section is to provide a self adaptive
convergence to the Ant Colony algorithm. As seen previously,
there is many different approach used to stop the ACO, but
most of those amount to end up with a termination criteria
arbitrarily set, to limit the solution. Wishing to provide an
adaptive feature to the Ant Colony algorithm, the question
was: ”How to determine an adaptive termination condition
and on what it can be based on?”. Each project on which
an ACO can be applied is different from an other, but they
all have pieces in common, the structure of their graph. The
uniqueness of each graph can be reflected through its number
of vertices, its number of edges or even its complexity. Thanks
to the last research, we could demonstrate that the number
of edges ant the number of vertices do not characterize the
convergence of the Ant Colony algorithm. Finally, the only
lead we left to study for an adaptive termination condition
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is the complexity of the graph. To conduct this study, we
implement two different benchmark tests on which to base
our research. The first one is a small graph, made of 10
vertices, but with a significant complexity compared to its
small number of vertices. The second is a reproduction of
the public transportation system of the city of Belfort. This
graph, although very voluminous, with 150 vertices, has a low
complexity. Thanks to those graphs, we conducted experiments
that generated raw data to exploit. In the last section IV we
will see if the generated raw data allow us to correlate graph
complexity and adaptive Ant Colony termination.

III. ADAPTIVE TRANSPORTATION SYSTEM AT DELIVERY
POINT

This section provides an overview of the Vehicle Routing
problem and introduce different strategies to provide an adap-
tive feature to this classical problem.

A. Vehicle Routing Problem overview

As introduced previously, our commitment trough this paper
is to provide adaptive delivery feature to the Vehicle Routing
Problem. But first of all, we will define the Vehicle Routing
Problem application. Thank to the previous section II-A, we
already describe the Ant Colony part of the VRP application
such as choice of a new point to reach, and update of the
pheromone trails. However, the VRP obeys to additional rules
that we will introduce now. For each customer vi, a non-
negative demand qi is given (vi = 0). The aim is to find a
minimum cost vehicle routes where:

• Every customer is visited exactly once by exactly one
vehicle

• All vehicle routes begins and end at the same depot
• For every vehicle route, the total demand does not exceed

the vehicle capacity Q
The VRP is a very complicated combinatorial optimization

problem that has been studies since the late fifties because
of its central meaning in distribution management. Problem
specific methods as well as meta-heuristics like tabu search,
simulated annealing, have been proposed to solve the VRP.
VRP and TSP are closely related. As soon as the customers of
the VRP are assigned to vehicle, the VRP is reduced to several
TSPs. For that reason, our approach is highly influenced by the
TSP ant system algorithm by Dorigo [1]. To solve the VRP, the
artificial ants construct vehicle routes by successively chosing
cities to visit, until each city has been visited. Whenever the
choice of another city would lead to an infeasible solution
for reason of vehicle capacity or an already visited point, the
depot is chosen and a new VRP turn is started. Concerning
the initial placement of the artificial ants, it was found that the
number of ants have to be equals to the number of vertices
[5] (for the TSP and VRP) and each ant should start its turn
at different vertices of the graph.

B. Strategies for adaptive delivery

As defined previously, our application is based on the VRP,
but with the need to providing it adaptive feature. To do so,

we paired the VRP application with different strategies to
adapt the possibility of delivery, at city point, according to the
adaptive possibility of customers to be presented to pickup his
package(s). Thus, those strategies are not limited to deliver or
not a package(s) according to the presence of the customer,
it has to provide to the customer the possibility to redefine
its delivery time at its delivery point during the same turn
of the vehicle. According to this fact, the vehicle processing
the delivery turn, define by the VRP application, has to self-
adapt the scheduling of his set list of city points to deliver
package(s).

1) First Strategy: The first strategy is a classical VRP
turn to have a point of reference to compare the results with
those of the second strategy. This strategy is common to all
delivery city points, is defined as: ”deliver the package(s) and
continue”.

2) Second Strategy: The second strategy is defined as
follow:

• Upon arrival at delivery point, the vehicle has two
choices:

– If the customer is present, the vehicle delivers the
package(s) and continue

– If the customer is not present, the vehicle waits 10
minutes
∗ If the customer arrives, the vehicle delivers the

package(s) and continues
∗ If the customer do not arrive, the vehicle continues

and has to come back at the end of its VRP turn.
Furthermore, we implement two variants for this strategy.

At the end of a turn, if all the packages were not delivered
we organize the second part of the turn to be sure to deliver
them.

First variant:
• The current VRP turn is ending at the depot (its starting

point)
– A possibility is create a new turn thank to the VRP

algorithm
– A other one is to link all points with a shortest path

algorithm
Second Variant:
• The current VRP turn stop at the last delivery point of

its turn
– A possibility is create a new turn thank to the VRP

algorithm
– A other one is to link all points with a shortest path

algorithm
3) Evaluation Criteria: For this work, the evaluations cri-

teria will be the following:
• The total time:

– of the VRP turn
– for a delivery

• The total distance:
– of the VRP turn
– for a delivery
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IV. EXPERIMENTS AND RESULTS

As presented at the beginning of this paper, the development
of our transportation system is based on an adaptive Vehicle
Routing Problem to self adapt to the possibility of delivery of
goods at city points. Our transportation system being based on
an Ant Colony to support VRP algorithm, the first stage is to
improve the Ant Colony Algorithm to bring it an adaptive
convergence. This point will be developped following this
paragraph, in IV-A. Next, to bring a self-adaptation to the
possibility of delivery at city point, we have to develop an
adaptive VRP in order to answer our needs of improvement
for our transportation system. This part will be analyzed and
develop in the section IV-B.

A. Environment based approach for the ant colony conver-
gence

In a previous work, we explored two different paths to
characterize the convergence of the Ant Colony algorithm.
Searching to exploit an environment based approach, the
objective was to identify if the number of vertices or the
number of edges could be the key for the self convergence
of the Ant Colony Algorithm. However, as we demonstrate
it, those parameters were not the key. In this section, the
objective is to identify if the last parameter of an environment
based approach, being the graph complexity, can solve the self
convergence of the Ant Colony Algorithm.

We defined the graph complexity as the average number
of edges connecting a vertex to others in the graph. As said
previously, our test bench is based on two graph, the first being
a small graph, but with a significant complexity. The second
one, being a reproduction of the public system transport of the
city of Belfort, with a low complexity.

The first step was to define the complexity of any of our
graph. To do that, we calculate the complexity of our two
graphs, calculating the following value:

θ =

n∑
v=1

ωi

k
(4)

with v the number of vertices into the graph, ωi the number
of edges starting to the current vertex and connecting it to an
other vertex and k the number of edges into the graph.

Thus, thanks to θ, we determined that G1(v, e) has a
complexity of 1.25, and G2(v, e) has a complexity of 1.05.
Having been able to determine the complexity of any of
our graph, we will now search a way to define the number
of iteration ε of the Ant Colony, according to the graph
complexity previously calculated. So, to identify ε, we took
inspiration from work we previously performed in which we
tried to identify if the number of algorithm iterations can be
reflected by the number of ants into the graph. Starting with
one ant and increasing the number of ants until it reach the
number of vertices (according to [5], the number of ants should
be equals to the number of vertices in a graph).

Those results gave us the followings graphics:

Fig. 2: Quality solution of the test graph

Fig. 3: Quality solution of the graph of Belfort

The ”Quality solution” illustrate the number of algorithm
iterations according to the number of ants. For the tow
previous simulations, the number of iteration was arbitrarily
set to a high value. This allow us to identify the stagnation
point of the stalling effect curve and determine the best number
of iterations for the explored problem. Thanks to previous
work, we refuted the claim saying that the convergence of
the ACO can be defined by a number of ants equals to the
number of vertices. As it can be observed in Figure 4 and 5,
the two curves function of our two graphs do not have the
same equation. However, as it can be observed in Figure 2
and 3, the graph complexity is the key. Considering the graph
complexity as the optimisation point to reach, paired with the
Dorigo criterion [5], we obtain the convergent point for our
two curves which characterizes the self-convergence of the Ant
Colony algorithm.

B. Adaptive transportation system at delivery point

As introduce it earlier, simulations was leads on two strate-
gies. The first one being a classical VRP application allowing
to find the best turn according to the set list of city points,
paired to the obligation of delivery at each city point. This
first simulation gave us a reference total distance travelled
and a reference total time for the vehicle turn. Those distance
and time references are used as benchmark to analyse the
performance of the second strategy. The second strategy being
composed of two variants to explore different possibilities
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Fig. 4: Quality solution test graph compare to complexity
solution

Fig. 5: Quality solution Belfort graph compare to complexity
solution

through an adaptive VRP algorithm. Simulations was lead on
G1(v, e), (previously defined in this paper) with one package
delivered by vertex.

TABLE II. Procedure ACO algorithm

Strategies total distance (km) total time (min)
Strategy 1 44 29

Strat2: frst variant
cascading VRP 52 114
VRP and ShP 49 110

Strat2: scd variant
cascading VRP 44 102
VRP and ShP 41 98
VRP = Vehicle Routing Problem, ShP = Shorstest Path

According to Table 2, the first strategy provides the best
indicators in terms of distance, with a travel distance of 44 km
and time, with a turn time of 29 min. However, the classical
VRP is not adaptive, so it does not take into account the un-
delivery possibility of package(s). Thus, at the end of a turn,
the total percentage of un-delivered package(s) will necessary
impact the next turn, by overloading the delivery delivery
turn and/or postpone the delivery of future package(s). So,
wishing to perform an adaptive application, the objective of
the second strategy is to be able to ensure the delivery of
the totality of packages for a given turn. The second strategy

explores two variants for the ”re-starting” point of the un-
delivered package(s) turn. The first variant is to come back to
the goods deposit. After that, the last turn is define either with
a reload of the VRP algorithm of with a shortest path, linking
all un-delivery city points. Regrettably, this variant violently
deteriorates distance and time indicators. The second variant
offers to start the un-delivered package(s) turn at the last city
point visited by the vehicle. After that, the last turn is define
either with a reload of the VRP algorithm of with a shortest
path, linking all un-delivery city points. As can be seen in
Table 2, this variant clearly proves his interest. Although this
solution deteriorates the time indicators (reflecting a longer
use of the vehicle), the distance indicator stays stable in the
worst case (44 km) and is even improved, with a gain of 7%,
while paired with the use of shortest path algorithm, all that
with a delivery rate of 100%.

V. CONCLUSIONS

Following the re-contextualization of the ant colony algo-
rithm in the section II-A, we provide a non-exhaustive state
of the art regarding the criterion termination of the ant colony
algorithm in the section II-B. Then, we search to know if
an environment based approach can characterize the self-
adaptive convergence of the ant colony. In previous work,
we concluded that the others parameter of the graph for an
environment based approach was not conclusive. Thus, into
the section II-C, thanks to the study, we could demonstrate
that the graph complexity was the good way to illustrate self-
adaptive convergence of the algorithm. Then, with the section
III we explored different strategies to provide self-adaptive
ability for the VRP turn, to be more flexible and to match as
well as possible to the availability of customers to pick-up their
package(s). Finally, into the section IV we present our results
for the self-convergence of the ant colony algorithm in section
IV-A and for the adaptive delivery VRP turn in the section
IV-B. Furthermore, even if the time indicator is deteriorated,
the improvement of the distance indicator support the use of
electric vehicle for future research. The next step will be to
combine the Vehicle Routing Problem with the capacity of
the vehicle to characterize VRP turns and to define feasible
adaptation during VRP turn.
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Bourgogne-Franche-comté, through the SURATRAM Project.

REFERENCES

[1] V. Maniezzo A. Colorni, M. Dorigo. Distributed optimization by ant
colonies. In Proceedings of the First European Conference on Artificial
Life, 01 1991.

[2] J. Giffin Y. Tu A. Kate, R. James. A knowledge discovery approach to
understanding relationships between scheduling problem structure and
heuristic performance. In Learning and Intelligent Optimization, 2009.

[3] S. Senouci N. Kroichvili C. Cappelle D. Fass F. Gechter, E. Aglzim.
Transportation of goods in inner-city centers: Can autonomous vehicles
in platoon be a suitable solution? In 2017 IEEE Vehicle Power and
Propulsion Conference (VPPC), pages 1–5, 2017.

127Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



[4] P. Grassé. La reconstruction du nid et les coordinations interindi-
viduelles chezbellicositermes natalensis etcubitermes sp. la théorie de
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