
Validation of Self-Adaptive Systems’ Safety
Requirements at Design Time

Rasha Abu Qasem
Chair of Software Engineering: Dependability

University of Kaiserslautern, Germany
email: abuqasem@cs.uni-kl.de

Peter Liggesmeyer
Chair of Software Engineering: Dependability

University of Kaiserslautern, Germany
email: liggesmeyer@cs.uni-kl.de

Abstract—Self-Adaptive Systems (SAS) are becoming more
evident in our lives. By definition, these systems are supposed
to adapt to changes in their context without human interference.
It is essential that they are trusted to autonomously perform
critical tasks in changing environmental conditions. That makes
assuring their safety a vital task, and because of their com-
plexity, a challenging one. In this work, our goal is to identify
potential safety vulnerabilities of SAS at design time. We start
by addressing safety requirements of SAS and transferring their
natural language description to a guided template then to a
formal description. After that, we aim to automatically generate
adequate test cases. At the same time, we build the initial models
of the system and with the help of a powerful simulator, we run
the generated test cases against the system models. This way, we
can validate the safety requirements of SAS at design time.

Keywords— Self-Adaptive Systems; Safety Requirements; Test
cases; Auto-generation; Design time

I. INTRODUCTION

Self-adaptive systems usually have high levels of automa-
tion which present new risks to the surroundings. To minimize
the risk to a residual value, we came up with a new approach
to represent and test safety requirements of SAS. Knowing
that, the bigger the gap between error introduction and error
detection, the bigger the cost of development. We designed
our approach to validate SAS safety requirements at design
time, which will facilitate early detection of failures in the
system and subsequently reduce the time and effort of the
development.

We start by requirements elicitation process of SAS, which
is still not a solved problem because of the uncertain behavior
of these systems. Although there are some proposed solutions
for the requirements problem of SAS as in [1] [2] [3], we
are convinced there is no solution that specifically targets the
representation of safety requirements of SAS. That is why we
start by investigating how safety requirements are managed in
the first place.

The Parametrized Safety Requirements Templates (PSRTs)
defined by Oliveira in [4] can be used as the basis of safety
requirements elicitation of SAS. PSRTs are used to check
the safety requirements for conflicts and completeness by
translating the natural language description to a controlled
structured natural language.

We propose a possible representation of the safety require-
ments of SAS by extending PSRTs to Extended PSRTs (E-
PSRTs). PSRTs already focus on how to reflect the safety

analysis results and failure propagation models on the system’s
requirements and architecture. By extending PSRTs, we adjust
the PSRTs templates to incorporate the managing and control
requirements, the environment’s conditions and the expected
behavior of SAS. We will also extend the definition of
safety requirements in the PSRTs to elaborate the concepts
of guaranteed safety and demanded safety requirements form
the conditional safety certificates (ConSerts) introduced in [5].

Creating E-PSRTs would provide a promising structure to
manage safety requirements of SAS and subsequently facilitate
their validation. It would also give a clear insight on how the
concepts in ConSerts can be exhibited in the requirements en-
gineering phase of SAS. That summarizes our first contribution
in this work.

Later on, we define a domain specific language rules to
implement the E-PSRTs templates into a formal structure.
Then we use this structure to auto-generate test cases by
injecting faults to the normal or expected behavior of the
system. The auto-generated test cases are used besides the
test cases designed by domain experts to validate the safety
requirements of the system.

Finally, we run the all the test cases against the preliminary
system models in a simulation environment to evaluate and
check the validity and completeness of the safety requirements
of SAS before the actual development. We carefully monitor
the system response in risky situations and its adherence to
the defined guards in safety requirements.

This would provide an early estimation of the SAS behavior
at design time. If a risky or unsafe behavior is identified, we
can easily trace the architecture elements, safety requirements
as well as the failure propagation model to reassess them
and perform the needed changes. This would be our second
contribution in this work.

The remainder of this paper is structured as follows: In
Section II, we discuss the problem we are targeting and
identify the gaps in literature. In Section III we present our
proposed approach to validate the safety requirements of SAS
at design time. In Section IV, we provide the realization and
validation plan of our approach with an introduction of the
chosen case study. Finally, in Section V, we conclude and
discuss future work.

112Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

II. MOTIVATION - PROBLEM

The motivation behind our approach is to find a rigorous
solution to solve problems we have located through practise
and research gaps we have identified in the literature. Mainly,
we can classify our motivation into three categories, knowing
that, more specific problems can arise in these categories as
the research progresses.

A. Specification of Safety Requirements of SAS

There are several attempts of targeting uncertainty in SAS
requirements, for example, in [3] probabilistic and fuzzy re-
laxation have been used to represent the adaptive properties of
SAS’s requirements. Different types of SAS requirements have
been distinguished namely, monitoring, control and evolution
requirements. The concept of the Configurable Specification
(CP) has been introduced. CP is a set of interrelated config-
urations where the system can start from a configuration in
which the domain assumptions are consistent with the system
environment. This concept sounds a promising start to solve
the problem of requirements engineering of SAS. However,
the safety requirements are not addressed at all, and even the
non-functional requirements are vaguely mentioned.

Another try to tackled uncertainty of SAS is with RELAX
[1], which is a requirements language for SAS that explicitly
addresses uncertainty inherent in adaptive systems. Its formal
semantic is represented in terms of fuzzy logic, thus it enables
a rigorous treatment of requirements that include uncertainty.
Regarding non-functional requirements, they are dealt with in
a conventional way, meaning they have their quantification
of the minimum acceptable levels and are not changed by
RELAX process. RELAX doesn’t provides any specifics about
safety requirements.

Other attempts, like in [2][6][7], focus mainly on the process
of requirements elicitation and/or management of SAS without
giving enough focus on the overall safety of the system or the
safety requirements themselves.

On another scope, we know that the lack of guidance on how
to specify safety requirements that are properly traceable to the
architecture design and to failure propagation models is one of
the main reasons for their incompleteness and inconsistency,
which turns out to be a root cause of safety incidents [4]. That
implies the importance of specifying traceable and consistence
safety requirements of a system.

The fact that, to our best knowledge, there exists no clear
methods neither recommendations on how to elicit or manage
safety requirements of SAS, is a big drive behind our approach.

B. Validation of Safety Requirements of SAS at Design time

It has become a rule of thumb in software development, that
the earlier the error is detected the less impact it has on the
development’s cost and effort. That is why we are targeting
in our approach the safety requirements of SAS during the
system design phase. By using a proper simulator to run the
system models against the test cases, we can validate the
safety requirements of the SAS at early stages and we can

trace errors and locate potential design flows before the actual
implementation takes place.

C. Auto-generation of Test Cases to verify the Safety of the
SAS

Documented test cases are essential for testing large and
complex systems such as SAS or the embedded systems in
the automotive domain. ISO-26262 [8], an automotive safety
standard, states that all system requirements should be properly
tested by corresponding system test cases. Usually test cases
are derived manually from the textual requirements, that is
why it is a time consuming and error-pron process. Automatic
test generation proved to be a powerful approach to reduce the
cost of testing as well as to assure the requirements’ coverage.

The benefits of automatic test generation are widely ac-
knowledged today and there are many proposed approaches
to conduct it in the literature. For instance, in [9] and [10]
they proposed approaches to auto-generate UML behavioral
diagrams such as, activity diagrams and sequence diagrams
from use case descriptions. The generated models can be used
to auto-generate test cases. However, the generated test cases
are not executable and need manual intervention.

There are some other approaches which generate executable
test cases such as [10] and [11]. They require that the
requirements specifications are written according to a Con-
trolled Natural Language (CNL). The input specifications are
translated into formal specifications, which are later used to
automatically generate test input data (e.g., using constraint
solving). The problem with these approaches is that the CNL
language supported by them is very limited which reduces
their usability.

The researchers in [12] generated test cases from the use
case specifications of the system. They combined Natural
Language Processing (NLP) and constraint solving to extract
behavioral information from use case specifications. They have
achieved promising results but it was not clear how to tackle
the non-functional requirements of the system.

Non of the previously mentioned approaches has specif-
ically addressed the safety requirements of the system nor
was designed to handle the specifications of a self-adaptive
systems, which have to describe the adaptation strategies of
the system against the uncertainty of the domain. With our
proposed approach, we will find a feasible method to auto-
generate test cases from SAS system specifications to test and
verify the safety requirements as we maintain traceability to
the safety analysis entities.

To summarize, we form the main questions we answer as
the following:

1) How to mitigate safety requirements in adaptation strate-
gies representations of SAS?

2) How to assure that the safety requirements of SAS are
consistent and traceable through the design time?

3) How to auto-generate test cases that can validate the
safety requirements of SAS at design time with the help
of a simulator?

113Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. Proposed Approach for Validating Safety Requirements of SAS at Design Time

III. PROPOSED SOLUTION

Our proposed solution to the problems described in Sec-
tion II, is a comprehensive approach which consists of nine
steps. Each step depends on the intermediate result from a
predecessor step as illustrated in Figure 1. The main goal of
this approach is to provide a means to evaluate the safety
requirements of a self-adaptive system at design time and to
assess the system behavior in critical events. That also gives
a clear guidance about the quality of the architecture design
and its adherence to the overall safety requirements of SAS.
In the following, a clearer description of each of the steps is
provided:

• Extend PSRTs: originally, PSRTs explained in [4], are
templates which provide guidelines on how to specify
the safety requirements of a system. The proper usage
of PSRT templates assures consistency and establishes
traceability between the safety requirements, the failure
propagation models, and the system architecture. How-
ever, PSRTs weren’t designed with self adaptation in
mind. That is why, we start by extending the PSRTs to
Extended PSRTs (E-PSRTs). E-PSRT would provide a
thorough template to help specifying the safety require-
ments of the different adaptation scenarios and strategies
of SAS systems.

• Format Requirements as E-PSRTs: in this step, we format
the safety requirements of the self-adaptive system as E-
PSRTs. This enable us, at design time, to identify the
inconsistent safety requirements and then to update the
requirements document, failure propagation models, and
the system’s architecture, accordingly.

• Create a Domain Specific Language (DSL): DSL is
usually created to solve specific problems in a particular
domain. In this step, we aim at designing a language
which facilitates the representation of adaptation scenar-
ios as well as the rules and accepted patterns of the safety
requirements of a self-adaptive system. That will enable
us to precisely parse the safety requirements from the
E-PSRT templates to a formal structure. We can inject
failures to specified safety guards requirements.

• Implement Requirements with a DSL: In this step, we im-
plement the requirements that we formatted as E-PSRTs
using the DSL that we have created. The output of this
step is a formal representation of the adaptation strategies
of SAS. Later on, we use the resulted representation to
auto-generate test cases for testing the system along with
test cases proposed by domain experts.

• Create System Models: in this step, we create the system
models and architecture starting from the system require-
ments. This step can be conducted manually or in a semi-
manual fashion. It is out of the focus of our approach to
provide an automation of this step.

• Build Simulation Models: in this step, we build the
simulation models that we can later run by a simulator.
We build the simulation models based on the system
models we created form the previous step. This step is
conducted manually.

• Auto-generate Test Cases: in this step, we use the formal
representation of the safety requirements and adaptation
strategies of SAS and the manually created system mod-
els to auto-generate adequate test cases. The automation
of the test case generation process provides a means

114Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

to ensure that the test cases have been derived in a
consistent and objective manner and that all system’s
safety requirements have been covered.

• Run Simulator: in this step, we run the simulation models
of the system in a simulator. Then, we feed the simulator
with the auto generated test cases along with the domain
experts’ test cases and monitor the system’s behavior.

• Evaluation: finally, we compare the expected behavior
of the system with the resulted/simulated behavior. The
found deviations, if any, raise an alarm that the system
could encounter unpredicted and hazardous behaviors. We
can trace the behaviors back to the initial requirements
and perform the needed updates.

By performing the previous steps, we can validate the safety
requirements of a SAS at design time. When locating design
flows, they could be traced back to either the requirements of
the system or to its safety analysis.

IV. RESEARCH VALIDATION

We need a proper use case to validate our proposed ap-
proach. In the world of self-adaptive and smart systems, there
exist a lot of exemplary benchmarks especially for testing
object detection and object tracking algorithms. This type
of benchmarks are designed to test the end behavior of an
implemented system, since we are focusing on design time
validation of the system. They are not appropriate to validate
our approach. We need a comprehensive use case that fully
describes the requirements and the system architecture.

A. Use Case

Safe Adaptive Software for Fully Electric Vehicles
(SafeAdapt) is a project conducted by Fraunhofer IKS [13].
The main concept behind SafeAdapt is to develop a novel
Electric/Electronic architecture based on adaptation to achieve
safety, reliability, and cost efficiency in future Fully Electric
Vehicles (FEVs). SafeAdapt has the goal of building adaptable
systems in safety-critical environments that comprises meth-
ods, tools, and building blocks for safe adaptation.

Side by side through SafeAdapt project, a detailed use case
has been built to verify the architecture of the end system.
This use case is fully described through several deliverables
of the project and it evolves as the project progresses. That
makes it a perfect fit to evaluate our approach since it clearly
covers the first two phases of the system development, namely
requirements elicitation and system design.

B. Approach Validation

To properly validate our approach, we need to run the simu-
lator twice. The first run would assess the system behavior and
its hazardous encounters without applying the approach. The
inputs of the simulator in this run are the simulation models
and the domain experts’ test cases. The second simulator run
would have the system models and the auto generated test case
along with the domain experts’ test cases. In both runs, we
will assess the design flows of the system and the unpredicted
hazards that the system could encounter. The comparison

between the simulator runs would provide a good gaudiness of
the applicability of the approach and the improvements that it
adds to the validation of safety requirements of SAS at design
time.

V. CONCLUSION

Building adaptable systems in safety-critical environments
is a challenging task. Our proposed approach addresses some
of these challenges in requirements elicitation and system
design phases. We first tackle the problem of specifying
safety requirements of SAS and how we reflect them in
the adaptation strategies while keeping them traceable to the
safety analysis models and architecture components. Then we
generate adequate test cases to test the expected behavior of
the system. To get an early feedback before starting with
system implementation, we run the generated test cases at
design time with the help of a powerful simulator.

REFERENCES

[1] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel,
“Relax: a language to address uncertainty in self-adaptive systems
requirement,” Requirements Engineering, vol. 15, no. 2, pp. 177–196,
2010.

[2] Y. Zhuoqun, Z. Li, Z. Jin, and Y. Chen, “A systematic literature review
of requirements modeling and analysis for self-adaptive systems,” in
Requirements Engineering: Foundation for Software Quality. Springer
International Publishing, 2014, pp. 55–71.

[3] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “The require-
ments problem for adaptive systems,” ACM Trans. Manage. Inf. Syst.,
vol. 5, no. 3, 2014.

[4] P. O. Antonino, M. Trapp, P. Barbosa, and L. Sousa, “The parameterized
safety requirements templates,” in 2015 IEEE/ACM 8th International
Symposium on Software and Systems Traceability. IEEE, 2015, pp.
29–35.

[5] D. Schneider and M. Trapp, “Conditional safety certification of open
adaptive systems,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 2, 2013.

[6] H. J. Goldsby et al., “Goal-based modeling of dynamically adaptive
system requirements,” in 15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ecbs
2008), 2008, pp. 36–45.

[7] S. J. Cunning and J. W. Rozenblit, “Automatic test case generation from
requirements specifications for real-time embedded systems,” in IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No.99CH37028), vol. 5, 1999,
pp. 784–789 vol.5.

[8] ISO, “Road vehicles – Functional safety,” 2011.
[9] T. Yue, S. Ali, and L. Briand, “Automated transition from use cases

to uml state machines to support state-based testing,” in Modelling
Foundations and Applications. Springer Berlin Heidelberg, 2011, pp.
115–131.

[10] T. Yue, L. C. Briand, and Y. Labiche, “An automated approach to
transform use cases into activity diagrams,” in Modelling Foundations
and Applications. Springer Berlin Heidelberg, 2010, pp. 337–353.

[11] G. Carvalho et al., “Nat2testscr: Test case generation from natural
language requirements based on scr specifications,” Science of Computer
Programming, vol. 95, pp. 275 – 297, 2014.

[12] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, “Automatic
generation of system test cases from use case specifications,” in Pro-
ceedings of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015. Association for Computing Machinery,
2015, p. 385–396.

[13] F. IKS. (2019) Project SafeAdapt safe adaptive software for fully
electric vehicles. [Online]. Available: http://www.safeadapt.eu

115Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

