
Adaptation of Schedules and Scheduling Parameters in Cybernetic Systems

Andreas Heimrath
and Joachim Froeschl

BMW Group
R & D electronics
Munich, Germany

Email: andreas.heimrath@bmw.de

Jan Ahlbrecht
and Uwe Baumgarten

Technical University of Munich
Department of Informatics

Garching, Germany
Email: baumgaru@in.tum.de

Abstract—In the automotive domain, components are increas-
ingly based on software that is being integrated through fewer
and more powerful connected computing systems. With the main
focus being the control of hardware with actuators and the
monitoring of sensors, such systems are inherently complex.
Additionally, their functions have both static and dynamic
dependencies. Functions appear in a huge number with a large
variety of dependencies. For decades, cybernetic approaches
have been used to handle the complexity of dynamic systems
in a natural manner. They have proven effective in different
scientific domains like economics and management, governance,
social sciences, and technical systems. Based upon the experience
with a flexible energy and power management in the automotive
industry (fEPM) we transfer those findings to software systems
of sophisticated cars integrating more and more functions and
components. We have identified Stafford Beer’s Viable System
Model (VSM) as a promising approach. We follow this approach
step by step, starting with a basic VSM-based system/component.
Using the principle of recursivity, we build horizontal and vertical
combinations of systems resulting in powerful computational
nodes with dynamic load depending on the individual feedback
control systems and the control loops of all layers. Having
the whole software stack in mind, we started to investigate
modern microkernels (like seL4, Fiasco.OC and other) with
their components. The scheduling, besides others, is the most
promising component, where a VSM structure can be established.
Here, we introduce an adaptive scheduler for the scheduling of
an automotive workload, in which a machine learning process
could exist. This is in line with other approaches in the field
of autonomic or organic computing. A simplified energy and
power management serves as an example for illustrating the
applicability and usefulness of Beer’s VSM in technical software
systems.

Index Terms—Software Cybernetics; Microkernel; Adaptive
Scheduling.

I. INTRODUCTION

In the automotive domain, components are increasingly
based on software and are integrated in a few powerful con-
nected computing systems. Nevertheless, their main focus is
controlling hardware, sensors and actuators. Intelligent power
and energy management for a car is a good example, where
we have made encouraging experiences with cybernetics in the
development and operation of a complex system.

For the purpose of controlling the main components, a
cybernetic approach is used. Following the ideas of the Viable

System Model (VSM) [1] the fEPM [2] was built in a
successful manner.

With the growth of software-intensive components and
services within a connected car, the basic software system
gains importance. Therefore, we started investigating software
cybernetic approaches for building the basic systems software
blocks. On the one hand we analyzed software cybernetic
approaches in the context of microkernel construction. On the
other hand we examined the approaches of organic comput-
ing. Together with the experience of the energy and power
management fEPM, we identified a VSM-based approach for
constructing complex systems, that combines the best ideas of
different worlds.

The rest of the paper is structured as follows. Section II will
introduce the concepts of cybernetics, VSM, and microkernels,
while discussing some related work. Later, in Section III we
present our approach in constructing a complex (automotive)
system along the ideas of VSM, putting special emphasis
on adaptive scheduling. After introducing the workload to be
scheduled in Section IV, we present our current solution for
scheduling for a simplified energy and power management
in Section V. Trying to prove the concepts presented in our
current solution Section VI focuses around the creation and
evaluation of a prototype and we then draw our conclusions
and suggest future work in Section VII.

II. BACKGROUND WITH RELATED WORK

The application of cybernetics has a long tradition in
handling complex systems. Looking at computer systems,
embedded systems, internet of things (IoT) or cyber physical
systems the initiatives of autonomic and organic computing
have shown remarkable impact on systems architecture - both
in hardware and in software - and modeling. With autonomic
computing IBM developed first very fundamental steps [3] in-
cluding self-configuration, self-healing and self-optimization.
The paradigm shift with organic computing and further ideas
and details may be found in [4]. Paradigms of biology with
respect to self-organization will be applied there.

In the area of complex technical systems the cybernetic ap-
proach found its way in terms of organic computing and others.

105Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

The transition to distributed control with a strengthening of
autonomy of systems and their components can be seen, for
example, in [5]. A clear consequence was the development of
the cyber organic system model (see [6]) with its application
in the automotive domain. Further approaches taking operating
systems into account may be found using the example of
ubiquitous computing (see [7]). Similarly, software cybernetics
occurs in the area of complex software systems. Yang et. al.
(see [8]) take lots of approaches into consideration including
Stafford Beer’s Viable System Model.

A. Cybernetics and VSM

The science of cybernetics was founded in 1948 by the
results of research of Norbert Wiener [9]. For Wiener’s original
work see [10]. Based around these ideas the research of
Beer resulted in his VSM [11]. The VSM is an abstract
model of the nervous system. It combines five subsystems
to create a management model for business applications. The
subsystem 1 (named as system level 1 in Figure 1) represents
an operational unit. The subsystem 2 (system level 2) creates
a metasystem for the coordination of all subsystems of type
1 (operational units). The function of stabilization is the main
task of subsystem 3 (system level 1). The information input
is given by the subsystems 4 and 5 and the metasystem of
subsystem 2. The regulation function is similar to the auto-
nomic nervous system as a cooperation of the sympathetic and
parasympathetic nervous system. At least the subsystems 1 to
3 create a functionality called homeostasis. This means that all
activities and procedures result in an intrinsic behavior to reach
always a balanced system state or equilibrium. Beer called
it “autonomics“. The subsystem 4 (system level 4) combines
the information of the system environment with the system
information built in subsystem 3. Finally, the subsystem 5
(system level 5) has the purpose to make decisions and to
give instructions to the lower instances within the model. Beer
called the subsystems 3 to 5 “corporate management“. Figure 1
in the next section presents the VSM solution for the fEPM.

Advancing this concept, Malik includes the principle of
recursivity to couple more than one VSM to manage more
extensive systems, e.g., big companies in an evolutionary way
[12]. Recursivity means that an operational unit is imple-
mented with a VSM in a similar way depending on the local
tasks and their abstraction.

In addition, the VSM will be applied in various domains,
like economics, governance with a sustainable equilibrium
[13] and software systems (see section II-C).

B. OC, E/E, and fEPM

There are several applications of the VSM. One imple-
mentation is the flexible energy and power management as
a technical approach for coordinated power supply systems.
The basic model of the fEPM is shown in Figure 1. The fEPM
features all five system levels [2].

SL1 Contains the system values, the physical connection
control and the control functions.

SL2 Condenses the system values into operating figures
and has to combine the level 1 functionalities in a
fast way.

SL3 Determines the operating figures and tendencies with
deposited knowledge into system states. This level
contains the autonomous, state based system mod-
ifications for the purpose of system stabilization.
Compared to biological systems, it works like a
reflex system.

SL4 Combines the internal system states and diagnostic
information from the system itself with the external
system states based on environment information. The
instruction of a higher hierarchy level is included
here. The coupling of the environment information
is made of filtered, relevant information out of the
system specific environment.

SL5 Contains the operating strategy. Compared to the
biological system it works like a conscious behavior.
In this level the regulation values, so called modifi-
cators, are calculated.

The fEPM was originally designed for automotive systems.
Another use case for VSM and its implementation for the
management of stationary energy storage systems is described
in [14].

From a point of view in computer science, the organic
computing (OC) initiative had a bio-inspired look into aspects
of systems and their implementation. A comparison of the
OC-model, the fEPM-model and a combination of both called
Cyber Organic System model (COS) was published by Adam
et. al. in 2015 in [6]. The COS contains several layers for the
basic objects, reflex, strategy, intelligence, and communication
including observer/controller mechanisms. For a more detailed
discussion within the topic of electric and electronic systems
design E/E see [15].

A promising approach is the combination of the cybernetic
modeling and artificial intelligence (see [16]).

C. VSM and Software Systems

Stafford Beer’s Viable Sytem Model can be applied to
software systems. The introduction as a first part in this section
is based upon [17]. The second part describes our automotive
example (see [18]).

Herring and Kaplan [17] are among the first scientists who
applied the VSM to software with the idea of building better
software systems. A complex software system, here a Viable
System Architecture, integrates viable components (VC) in an
overall system. Viable components are structured along the
principles of VSM (see section II-A and fEPM) and provide
interfaces for managing viability.

For our purpose, building a microkernel-based automotive
power management, the system’s characterization by Herring
fits in a perfect manner. ”These systems are characterized
by large numbers of heterogeneous components with a high
degree of interconnections, relationships and dependencies.

106Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

They exist in a dynamically changing environment that de-
mands dynamically responding behavior. In other words, these
systems must adapt to their environment.”[17].

The integration of the control paradigm to (object oriented)
software was postulated by Shaw [19] in a sense that a
component does its own work, whereas being controlled by
others. Later in section III we will use this statement for
scheduling, where the creation and execution of a schedule
might be adopted depending on various influences.

Corresponding to the former sections about cybernetics and
VSM the principles, which will be applied to software, are
autonomy, adaption, recursivity, hierarchies, invariants, and
self-reference. In order to use the appropriate features and
attributes of the above mentioned principles, a set of object’s
interfaces are introduced. These interfaces enable the objects
itself, their controller and all other related components to
influence each other.

The second part of this section gives an example, how
the software system for automotive power management can
profit from machine learning techniques, here in terms of re-
inforcement learning. The architecture of the VSM and of the
fEPM as its extension paved the way for the development of
reflex-augmented reinforcement learning (RARL) [16]. RARL
extends the concept of standard reinforcement learning by in-
tegrating the biologically-inspired reflex of the fEPMs system
level 3 into the learning process. This makes reinforcement
learning (RL) accessible to safety-critical applications such as
automotive electrical energy management. The reflex ensures
that only safe actions suggested by the agent of RL are
executed and efficient training as well as operating the system
are guaranteed in a defined range of safe system states. In au-
tomotive energy management for example, the reflex can reject
actions that could lead towards states of undervoltage causing
a severe breakdown of the cars steering assistance system.
RARL based on deep Q-learning fulfilled major requirements
of a real automotive electrical energy management system in
a vast simulation study [18]. Furthermore, RARL suggests a
way to fuse RL and cybernetic management systems. This
makes it possible to realize structured learning management
systems even for future systems of very high complexity.

D. Microkernels

Even in the automotive domain hardware/software systems
are becoming increasingly connected, software-defined and
complex. Therefore, the demand for microkernels undergoes
a revival. Their philosophy is (a) to try and keep the kernel as
small and lightweight as possible, (b) execute almost all code
in user space / user mode, and (c) establish a tiny trusted code
base for secure, reliable, and resilient systems. Microkernels
like L4, seL4 [20], Fiasco.OC [21] or Minix 3 (see [22]) have
a long history, but new kernels, like Zircon [23], show up on
the horizon. They all have in common similar function blocks,
like basics for scheduling, inter process communication (IPC),
the basics for security, and some basic memory or address

System level 5
Operating Strategy

Decision

System level 4
Environment, Diagnosis

Linkage

Option:

Recursive Linkage

System level 3
System state,

reflex

System level 2
Operating figures

System level
1

Component 1

System level
1

Component 2

System level
1

Component 3

System level
1

Component 4

K1

K2

K3

K4

In
te

ra
ct

io
n

m
od

el
l

C
ar

-
D

riv
er

-
E

nv
ir

on
m

en
t

Option:

Direct access

Component of the

energy conversion system Sy
st

em
m

on
ito

r

Te
nd

en
ci

es

Fig. 1. fEPM.

space management. Further aspects and performance evalua-
tion for communication may be found in [24]. With respect
to cybernetics, scheduling is most appropriate and many
contributions (in particular from organic computing, MAPE
cycle (Monitor/Analyze/Plan/Execute from [3]) can be found
in this direction. Security has some closeness, but IPC is far
away from cybernetics, because of the huge requirements for
performance. Some examples, where cybernetic approaches
appear, are self-management in Minix 3 [22] or Fiasco.OC
[21]. The monitoring of drivers in Minix 3 can discover, that
a driver is inhibited in his processing and the scheduler may
react on this observation. Like the MAPE cycle the scheduler
in Fiasco.OC can monitor the execution of tasks and may
change the strategy depending on the analysis, planning and
execution steps.

III. APPROACH

In the former sections, we explained the origins and ideas
of VSM and shown how VSM is used within an automotive
energy and power management and how it is applied to
software. The next step will be its application in the area of
adaptive scheduling for the energy and power management
system. This example illustrates the general approach.

107Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

The five layers of the cyber organic system model (see
[6]) are adopted with respect of our scheduling approach.
Starting from bottom to top the object layer includes the
real (hardware) components of the energy system (generator
of energy, storage for energy, and its consumers including
sensors and actuators) and the necessary software components
(workload and basics for scheduling/dispatching). The layer
above is the reflex layer which includes first and fast analysis
of the state of the real components (some of the processes in
Table I). The strategy layer is responsible for the execution
of the schedule by the dispatcher and the shortterm learning
for the scheduler. The intelligence layer tries to learn the
long term operating strategy, which is at the moment not
included in our prototype. The communication layer includes
the interplay with the environment (again one of the processes
in Table I). For our scheduling approach, the given workload
has to be scheduled and this is done in an adaptive manner.
The structure of the COS shows the way to implement the
scheduling. The MAPE cycle is applied and includes an
appropriate learning strategy. Details including the workload
are presented in chaper IV.

IV. MODEL OF THE WORKLOAD AND ITS PARAMETERS

The scheduler should operate in a non-interactive, mixed
criticality environment. This means that it consists of processes
that have strict check-up intervals every couple of millisec-
onds, which we will refer to as processes with a deadline,
and other processes without deadlines. However, these check-
up intervals are not strict, i.e., not a hard deadline, in the
sense that if processes are missed their calculations become
obsolete. Therefore, processes continue their calculation even
if they miss their check-up time. Additionally, during the
normal execution of the schedule, we want to train a neural
network every couple of cycles, where each cycle is one
execution of all our periodic processes. The neural network
is itself a process and is implemented in OpenNN version 3.1.
The network has two hidden layers with 25 neurons and uses
simple sigmoid activations. When the process gets to run, it
trains for around half a second and tries to approximate a 28
dimensional polynomial. This is done since, currently, we do
not require any kind of output from the network and simply
want a realistic load emulation.

The processes themselves perform operations ranging from
very simple arithmetic operations like subtractions, over read
out sensor data or to check if values are within a certain
range, to more time intensive tasks like higher dimension
matrix multiplications. The exact processes that make up the
workload to be scheduled can be seen in Table I and are
inspired by the tasks the fEPM has to full-fill. The whole
workload consists of lots of these process types with a fixed
distribution. The distribution is a based on expert knowledge,
examples for possible values are 20% for Model Calculation
and 25% for Risk Assessment.

TABLE I. THE PROCESSES THAT ARE PART OF THE WORKLOAD.
PRIORITIES MAY BE VARIABLE (VAR) OR FIXED (FIX). THE

MAXIMAL PRIORITY IS NAMED AS mpr.

Process Check-Up Priority Calculation

Interval

Fault Management Yes VAR and ≥ mpr
2

R5×5 × R5×5

Range Check Yes VAR and ≥ mpr
2

R− R

Risk Assessment No VAR and < mpr
2

N− N

Error Calculation Yes FIX and ≥ mpr
2

R− R

Functional Safety No FIX and < mpr
2

R100×100 × R100×100

Model Calculation Yes FIX and ≥ mpr
2

R30×30 × R30×30

Training a Neural Network No FIX at mpr
4

R28 → R

Using a Neural Network No FIX and < mpr
2

R28 → R

V. SOLUTION

In this section we describe the scheduling aspects and our
proposed scheduler.

A. Scheduling Method

There were two real options we considered for scheduling
approaches. On the one hand, a multi-level priority scheduler
[25], which assumes that two processes are not equally im-
portant and assigns them a priority. It then orders processes
by their priority and, starting with the highest priority, starts
to dispatch processes within the same priority using another
scheduling method, for example, round-robin.

On the other hand, a batch scheduler [25] that just takes
processes that are ready and packages them into a batch. This
batch represents the plan that is then handed to the dispatcher
and is executed one after another, without interruptions.

Our scheduler needs to able to differentiate between more
or less important processes, based on their criticality. But,
our domain (i.e. automotive) still consists of a large subset
of processes with predictably static behaviour. Therefore, we
decided to go for a mix between a multilevel and a batch
scheduler.

B. The Proposed Scheduler

The scheduler tries to automatically adapt parameters to
keep process execution within check-up intervals. It schedules
in batches using MAPE [3] like cycles. After monitoring some
parameters such as the amount of check-up intervals missed
after every execution of a batch, the performance during the
last cycle is evaluated and, if needed, adaptations are made
for the next scheduling cycle.

Despite the usual inflexibility of a batch scheduler, it fits
our needs since there is no outside interaction necessary and
the processes calculations are short enough that the scheduler
does not have to be preemptive. However, certain processes,
like the one responsible for the training of the neural network,
still have hard to predict run times. Therefore, our scheduler

108Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

requires the ability to differentiate the importance of processes,
to create a good batch. As a result, we assign a priority variable
to processes, allowing us to influence the kind of batches our
scheduler creates and to combat some of the downsides that
come with batch scheduling.

Currently, there are two main adaptations our scheduler can
make to improve performance in either the amount of check-up
intervals held or fair service. One of them we call the minimum
priority barrier and the other priority boosts. The first, as
the name suggests, attempts to handle higher load situations
by simply increasing the minimum priority required to be
added to the next batch. Higher load situations are detected by
monitoring the amount of check-up intervals kept. If a certain
number of check-ups happens too late, the scheduler increases
the minimum priority to avoid further check-up intervals being
missed, by cutting out non-critical processes.

With the introduction of a system that cuts less important
processes, there is the risk of starvation [26]. Starvation is
when less important processes do not get to run for longer
time periods. If the minimum priority has been increased, the
scheduler offers two different ways of avoiding starvation:

The first is for the minimum priority to be decreased
again, this happens if check-up intervals are being kept. The
scheduler would then decrease the minimum priority and lower
priority processes would get to run again.

The second relies on another variable that is being kept by
each process called hunger. It determines how many cycles,
so batch creations and dispatches, in a row a process had
to be excluded from the batch despite being ready. If this
variable reaches a certain threshold the priority of the process
gets a one time only increase. In our current implementation
this means it will have its priority increased to the minimum
priority necessary to be included in the next batch. Other
versions of the priority increase, like always increasing it by
a fixed amount, are also possible. This way we avoid starving
lower priority processes while still staying focused on keeping
check-up intervals.

The scheduling approach proposed has been inspired by
the Fiasco.OC microkernels scheduling approach. Fiasco.OC
uses a so called context [27] to store parameters that can
be monitored for MAPE like cycles. We also created such a
context for our processes to make parameters easy to monitor.

VI. EVALUATION WITH OUR PROTOTYPE

As a proof of concept, we built a prototype in C++ that
emulates the execution of the processes controlled by the pro-
posed scheduler and a dispatcher. The current implementation
is not directly directly on hardware and therefore suffers from
overhead through the underlying operating system (Ubuntu
18.04). However, we deemed this sufficient to determine the
feasibility of our approach before an actual implementation.

The processes that make up the workload are deployed by
pthreads. The dispatcher uses locks for their coordination.
Each process is represented by a pthread that executes an

Fig. 2. Variation between neural network training intervals and their effect
on the average time per cycle.

operation which is similar to the computation the components
would execute. We did not model the physical components,
but only the processes that approximate their behaviour in the
real world. Dispatching is simulated through locks, that get
unlocked if a process has been assigned calculation time. The
dispatcher holds all the locks in the beginning and then unlocks
a certain number of locks at the same time to enable processes
to run parallel to each other. In our prototype we assumed that
a fixed number of threads could run simultaneously. The plan
how to dispatch the processes is created by the scheduler as
mentioned before.

We then ran a couple of tests with a different number of total
processes while always keeping a singular process responsible
for training the neural network and one for using it. First, we
wanted to variate some of the parameters of the workload to
see the impact on the time per cycle. We started of by testing
how the training intervals of the neural network affected the
scheduler’s performance. For this purpose, we ran two tests,
one where we tried to train the neural network as often as the
minimum priority barrier allowed, i.e., at every opportunity,
and another one where we only scheduled the neural network
less frequently, here every fifteen seconds. After executing the
processes for 100 cycles for 20 experiments, we looked at
the average time it took for our scheduler to complete one
cycle. The results can be seen in Figure 2. As we can see,
training the neural network in intervals instead of constantly
results in more than half the time per cycle and therefore
better scheduling performance. The dip in time per cycles for
constant training at around 75 processes is due to the minimum
priority barrier and will be explained later on.

Next, we fixed the neural network training interval to
15 seconds and changed the percentage of functional safety
processes in the total number of processes. We then once again
ran for 100 cycles for 20 times and observed the time taken
per cycle. While there was a visible difference of around 0.1
seconds for each cycle (see Figure 3), the impact of changing
the neural network training interval was a lot greater.

We also wanted to observe the effect the minimum priority
barrier had on the percentage of check-up intervals missed.

109Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 3. Impact of the amount of functional safety process on the average
time per cycle.

Fig. 4. The graph shows the average percentage of missed check-up
intervals per cycle for a certain number of processes.

Figure 4 shows the relationship between the percentage of
check-up intervals missed and the number of processes that
are currently being scheduled. As to be expected, with an
increase in the number of processes the scheduler eventually
overloads and the amount of check-up intervals missed in-
creases dramatically. However, before that occurs, at around
80 to 125 processes the amount of check-up intervals missed
decreases again. This can be explained through the minimum
priority barrier taking effect. It reacts to the higher load and

Fig. 5. The graph shows the average hunger level of the processes for a
certain number of processes.

starts cutting processes to maintain the check-up intervals.
The reason the amount of check-up intervals missed drops
so drastically is due to how the workload is made up. Only
less critical processes without check-up intervals can be cut,
which in our workload are the processes that require the most
time to execute. During an increase in the minimum priority
required, more and more of the processes without check-up
intervals get cut until eventually, at around 125 processes, the
minimum priority barrier is constantly maximized, meaning
that all processes that could have been excluded from being
scheduled, have been excluded. Now, with an increase in the
total number of processes the percentage of check-up intervals
missed increases again.

Next we wanted to see if the priority boosts had the intended
effect of keeping a fair service to all processes. While Figure
4 might give the impression that having the priority boost
enabled is solely a disadvantage, a look a Figure 5 shows
otherwise. Figure 5 displays a close up of the average value
of the hunger variable described earlier, in the area where the
dip in the percentage of check-up intervals missed happened in
Figure 4. From the graph we can observe a drastic increase in
the hunger variable around that time, meaning that processes
without check-up intervals are no longer being assigned pro-
cessor time, essentially starving them. Meanwhile, the curve
with priority boosts enabled keeps the hunger variable at a
constant level showing that priority boosts can be used to
ensure fair service.

VII. CONCLUSION AND FUTURE WORK

Concluding, we have shown that methods such as the
minimum priority barrier and priority boosts have the intended
effect of making the scheduler adaptive to changes in the load,
while being able to maintain the intended goals of keeping
check-up intervals, fair service or a mix of both.

Due to its adaptability our scheduling approach enables
the design of complex systems without previous extensive
knowledge of process parameters. This, while not providing
the error rate needed for safety-critical systems, paves the way
for a wide variety of applications not limited to automotive en-
ergy management to keep soft deadlines without any previous
knowledge of the run time of other tasks in the system.

In the future, it would be interesting to experiment with a
reinforcement learning approach to set parameters such as the
one for the priority barrier dynamically based on the current
processes ready for scheduling. This could lead to even more
adaptable scheduler.

Currently, the scheduler struggles due to its non-native
performance and the resulting increase in time needed for a
context switch. Implementing a prototype of the scheduler in
an operating system and testing it using native performance
would definitely be among the next steps.

Additionally, further tuning of the parameters for the mini-
mum priority barrier and priority boosts is necessary to better
serve the current workload. Furthermore, the scheduler could

110Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

be extended to be able to tell if it is barely able keep check-
up intervals and as a result to avoid unnecessary decreases in
the minimum priority. But, a lower-level implementation with
native performance is required for any kind of fine tuning,
otherwise cycles are too unreliable.

REFERENCES

[1] S. Beer, Cybernetics and Management. Wiley, 1959.
[2] J. Fröschl, S. Kurtz, M. Winter, J. Taube, T. Nuritdinow, and H.-G.

Herzog, “Concept of a decision system for an operating strategy in a
cybernetic energy and power management,” in EEHE2016, 2016.

[3] IBM, “An architectural blueprint for autonomic computing,”
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%
20Paper%20V7.pdf (Visited on 28.02.2020), IBM, Tech. Rep., 2005.

[4] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Organic Computing A
Paradigm Shift for Complex Systems. Basel: Birkhäuser, 2011.

[5] S. Tomforde, B. Sick, and C. Müller-Schloer, “Organic computing in
the spotlight,” arXiv:1701.08125 [cs.MA], 2017.

[6] D. Adam, J. Froeschl, U. Baumgarten, A. Herkersdorf, and H.-G.
Herzog, “Cyber Organic System-Model New Approach for Automotive
System Design,” in ADAPTIVE 2015:The Seventh International Confer-
ence on Adaptive and Self-Adaptive Systems and Applications, 2015, pp.
92–97.

[7] M. Mattos, “Organic computing and operating systems: The big chal-
lenge,” 2015 Ninth International Conference on Complex, Intelligent,
and Software Intensive Systems, pp. 392–1397, 2015.

[8] H. Yang, F. Chen, and S. Aliyu, “Modern Software Cybernetics: New
Trends,” Journal of Systems and Software, vol. 124, pp. 169–186, 2017.

[9] N. Wiener, Kybernetik. Duesseldorf: Econ, 2. Auflage, 1963.
[10] ——, Cybernetics. New York: John Wiley u. Sons, 1948.
[11] S. Beer, Kybernetik und Management. dt. Ausgabe, Fischer Verlag,

1962.
[12] F. Malik, Strategie des Managements komplexer Systeme. Haupt Verlag,

9. Auflage, 2006.
[13] S. Barile, B. Quattrociocchi, M. Calabrese, and F. Iandolo, “Sustainabil-

ity and the viable systems approach: Opportunities and issues for the
governance of the territory,” Sustainability, vol. 10, pp. 1–17, 2018.

[14] H.-G. Herzog and et. al., “Applications of the viable system model in
automotive and battery storage systems,” in 2016 IEEE International
Conference on Systems, Man, and Cybernetics; SMC 2016 — October
9-12, 2016; Budapest, Hungary, 2016, pp. 1714–1752.

[15] D. Adam, Concept of bionic E/E architecture for future vehicles based
on the model of the human body (in German). Dissertation at TUM,
2016.

[16] A. Heimrath, J. Froeschl, and U. Baumgarten, “Reflex-augmented re-
inforcement learning for electrical energy management in vehicles,”
in Proceedings of the 2018 International Conference on Artificial
Intelligence, CSREA Press, 2018, pp. 419–430.

[17] C. Herring and S. Kaplan, “The Viable System Model for Software,”
4th World Multiconference on Systemics, Cybernetics and Informatics
(SCI’2000), 2000.

[18] A. Heimrath, J. Froeschl, R. Rezaei, M. Lamprecht, and U. Baumgarten,
“Reflex-augmented reinforcement learning for operating strategies in
automotive electrical energy management,” in Proceedings of the 2019
International Conference on Computing, Electronics & Communications
Engineering (iCCECE), IEEE, 2019, pp. 62–67.

[19] M. Shaw, “Beyond objects: a software design paradigm based on process
control,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. 1, pp.
27–38, 1995.

[20] G. Klein and et. al., “sel4: Formal verification of an os kernel,”
in Proceedings of the ACM 22nd Symposium on Operating Systems
Principles, ACM, 2009, pp. 207–220.

[21] FIASCO, “The fiasco.oc microkernel,” http://os.inf.tu-dresden.de/fiasco/
(Visited on28.02.2020).

[22] A. S. Tanenbaum, “Lessons learned from 30 years of minix,” Commu-
nications of the ACM, vol. 59, p. 3, 2016.

[23] FUCHSIA, “The zircon microkernel,” https://fuchsia.dev/fuchsia-src/
concepts/kernel (Visited on28.02.2020).

[24] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen, “Skybridge: Fast and
secure inter-process communication for microkernels,” in EuroSys 19,
March 2528, 2019, Dresden, Germany, 2019.

[25] A. S. Tanenbaum, Operating Systems Design and Implementations.
Pearson, 2006.

[26] A. S. Tannenbaum, Modern Operating Systems. Prentice Hall, 2001.
[27] D. A. Krefft, “Flexible task management for self-adaptation of mixed-

criticality systems with an automotive example,” Ph.D. dissertation,
Technische Universitaet Muenchen, 22.08.2018.

111Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

