
SOBA: A Self-Organizing Bucket Architecture
to Reduce Setup Times in an Event-Driven Production

Martin Krockert, Marvin Matthes, Torsten Munkelt
Faculty of Computer Science

Dresden University of Applied Sciences
Dresden, Germany

Email: firstname.lastname@htw-dresden.de

Abstract—Modern industry prefers self-organization in pro-
duction over central production planning for the sake of greater
flexibility, faster response to disruptions and to deviations, and
less effort. The strategy also propagates highly customizable
products. These products mostly require different group tech-
nologies and therefore cannot be grouped into lots. This leads
to a huge number of operations that have to be scheduled
and processed, which in turn leads to high computation times
for scheduling algorithms and high setup costs for production
due to frequent setup changes. To ensure high flexibility and
robust planing, we present a self-organizing bucket architecture
(SOBA) to group equal operations which require the same
group technology to reduce setup times and even maintain high
flexibility and robust planning for any scheduling algorithm. In
this paper, we explain our approach and show an implementation
of the approach in our self-organizing production. Furthermore,
we show a set of empirical studies that compares our approach
to simple and exhaustive queuing rules. The tests show the
superiority of our approach and indicate further development
opportunities.

Keywords—Self-Organization; Self-Adaptation; Production;
Group Technology; Job Shop; Setup Time Reduction

I. INTRODUCTION

Industry 4.0 propagates a lot size of one for modern
production of piece goods, because customers more often
expect individual products and there is no reason to combine
individual products into conventional lots, because machines
process individual products differently and have to be setup
for every individual product [1]. If a machine only processes
lots the size of one in no specific sequence and the products
differ from each other, more frequent setups are necessary
which lead to longer overall setup times. Irrespective of
all measures to shorten setup times technologically, setup
times of considerable length still occur [2]. It is well known
that long setup times extend throughput times and reduce
effective capacity utilization [3]. In order to reduce the number
of setups, thereby shortening the overall setup time and
ultimately reducing their negative effects, we propose our
Self-Organizing Bucket Architecture (SOBA) that combines
separate operations into so-called buckets. All operations in
a bucket require the same setup, but can belong to different
products. SOBA only combines operations to be processed
on the same machine successively in a certain period of time.
The machine processes the operations from the bucket succes-
sively according to urgency. Buckets exist only temporarily:

Before SOBA creates a bucket and fills it with operations,
the operations are independent of each other; and after the
machine processed all operations from the bucket, the bucket
dissolves and its operations are then independent of each other
again. In this way, SOBA differs from conventional lot sizing,
which usually keeps lots together during the processing of their
production orders (although it sometimes splits and overlaps
lots). In this paper, we present the implementation of SOBA
and some results of an empirical study. SOBA is part of our
event-driven, self-organizing production, and SOBA itself is
driven by events and organizes itself.

The paper is organized as follows: The next section classi-
fies the problem and provides a review of related work. Section
III declares the concept including architecture and algorithms
of SOBA. Subsequently, Sections IV and V describe the
implementation of SOBA into our self-organizing production
system and our empirical study. Finally, Section VI concludes
and gives an outlook on further work.

II. PROBLEM CLASSIFICATION

In job shop production, an efficient and reactive scheduling
for a given set of machines and jobs is essential to meet the
economical objectives. In the context of manufacturing each
product is represented by a job, which contains a sequence of
operations. In job shop scheduling every operation has to be
processed without interruption on any capable machine, while
a machine can only process operations one by one. The job
shop problem considering more than two machines is known
to be NP-complete [4]–[6].

Operations with similar characteristics, which require the
same machine setups are called group technology (GT), as
they share the same technology requirements but are assigned
to different products [7], [8].

Consequently, the operations combined to one group can
be seen as a horizontal cross-linked aggregation of different
products over the same GT. The optimization problem for
scheduling job shop systems reaches another dimension of
complexity by integrating setup times [9]. By grouping oper-
ations requiring the same technology, the schedule becomes
more efficient, because operations of the same group can
be processed without intermediate machine setups, which
eliminates additional setup times compared to pure priority
heuristics. In real-world manufacturing, especially simple dis-
patching rules become the most applied solution to solve the

98Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

scheduling problem in a highly unpredictable and dynamical
environment [10]. Dispatching rules are applied to queues to
prioritize the operation to be processed next.

Moreover, Dispatching rules can be divided into two groups,
exhaustive and non-exhaustive rules. While exhaustive rules
perform all operations of a GT existing in one queue, non-
exhaustive rules allow splitting of grouped operations and
therefore switching of setups even though there are still
operations remaining requiring the same setup. In previous
research from Frazier, exhaustive rules prove to be superior
to non-exhaustive rules in flow shop production [11]. As our
research focuses on high flexibility and robustness in a job
shop scenario, we developed a non-exhaustive approach and
compare it with an exhaustive rule. Therefore, the problem is
classified as a job shop scheduling problem including setup
times and it differs from the flow shop problem analyzed
by Frazier. But like Frazier, we cover uncertainty: Customer
orders/Sales orders/Jobs arrive after exponentially distributed
inter-arrival times, and processing times of operations are
log-normally distributed. Because of this uncertainty, it is
impossible to generate a optimal schedule. In order to still gain
a robust schedule, we need a dynamic grouping and scheduling
of operations. Therefore, we create dynamic time scopes based
on forward and backward scheduling, then apply the dynamic
time scopes to group operations within one GT, and delegate
the group to a scheduling mechanism afterwards.

Under the term of group planning heuristics, dispatching
rules resulted in approaches that solve the planning problem of
operations that require the same technology. Those heuristics
have received increasing attention. They reduce setup times
and increase processing efficiency in production [11]–[14].
Several studies with focus on flow cell manufacturing and
group heuristics already exists [10], [11], [15] and were an
inspiration to this paper. Aside from dispatching rules, mixed
integer linear programming (MILP) can be used to solve the
GT-based scheduling. For our research, we do not consider
MILP as it requires complete knowledge of all operation
instances to find a solution; and using a suitable algorithm
already leads to high computational costs, even for small
instances of scheduling problems as [16] showed.

To sum up, our approach to reduce setup times combines
non-exhaustive dispatching rules with a dynamic time scope to
solve the job shop scheduling problem under uncertainty. Our
approach differs from previous research, as the focus lies on a
job shop scheduling problem. Most previous concepts focus on
cell manufacturing, where the queuing of operations happens
in front of a cell with identical machines [10]. Forward and
backward scheduling is a well known technique, but to the best
of our knowledge, we are not aware of other research applying
forward and backward scheduling to group operations in a job
shop production.

III. THE CONCEPT OF SOBA

A. Structure of the self-organizing bucket architecture

Figure 1 shows the structure of SOBA. It consists of three
elements: a set of jobs, one or more ”SOBA - Bucket Man-

agers” and a set of machines. Each job contains a sequence
of operations. Thus, alternative and parallel operations are not
considered yet. Moreover, all operations contain the following
information: estimated processing time, due time of the job,
average transition time, required setup time, and earliest start
as well as latest start obtained by forward and backward
scheduling.

Figure 1. Self-organizing bucket architecture

The resources are represented by machines in the context
of our production. Each resource can be assigned to one or
more setups, but only be equipped with one setup at a time.
Each setup represents a certain group technology to process
an operation, i.e., drill a hole with a diameter of 4 mm. The
same group technology can be provided by different resources.
As shown in Figure 1, Setup 1 is assigned to Machine 1
and Machine 2. Thus, setups can be assigned to more then
one machine and each machine can be equipped with one of
the assigned setups. This way, it is possible to have multiple
machines equipped with the same setup at the same time.

The bucket manager is a persistent instance. It assigns open
operations requiring the same group technology to buckets
linked to the same setup. If there is no suitable bucket for an
operation, the bucket manager creates a bucket and assigns the
operation to this bucket. After creating a bucket, the allocation
of the bucket to the resource can start. How the allocation
is carried out is irrelevant for the creation of the buckets.
The bucket manager organizes the varying number of buckets,
which are created upon or filled with incoming operations. As
the number of potential operations in a bucket can be equal
to the number of all operations of the same group technology,
multiple buckets can be created for each setup to maintain
flexibility by splitting or merging operations into new buckets.
But each bucket must contain at least one operation. This is
the operation the bucket manager originally created the bucket
for. After the initial creation of the bucket, further operations
can be added depending on the time scope. To determine the
time scope we use forward and backward scheduling when
the job and its operations enter the production initially. After
processing the last operation of the bucket and removing it
from the bucket, the bucket dissolves.

B. Creating the scope for buckets

Considering industry 4.0, materials become smart by giving
them not only essential information about their current status.

99Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I
SYMBOL DEFINITION

Symbol Definition

gt group technology with gt ∈ GT

d duration with d > 0 , d ∈ N
dt due time with dt > 0 , dt ∈ N
sbt start time from backward scheduling

sft start time from forward scheduling with (sbt > sft)

o is a column vector with (gt, d, dt, sbt, sft)T

O is a set {o1, · · · , on} of operations sorted by sft(o)

b is a vector with



O

gt ← gt(o1)

d←
∑
o∈O

d(o)

dt ← dt(o1)

sbt ← sbt(o1)

sft ← sft(o1)

scp ← sbt(o1)− sft(o1)



Moreover, the materials get digital twins providing them with
further details, i.e., their locations, their bills of materials and
their operations. We aim to calculate a time scope from the
processing and transition times for each operation.

The bucket manager should assign the operation to the
bucket which is the most suitable bucket regarding processing
and completion time. The procedure to find a suitable bucket
is shown in Figure 2.

While exploding the bill of material, each operation is
scheduled individually. Crucial for the scheduling, the oper-
ation’s duration includes the processing and transition time.
After calculating the schedule both, the start and end times
for the backward schedule and the forward schedule for each
operation, are set. As example, Operation 1 in Figure 3 has an
earliest start time of 0 from forward scheduling and a latest
start time of 9 from backward scheduling. The resulting time
frame is the scope, in which the operation shall be processed
in order to finish the product in time.

Let us assume an empty production without any bucket. By
scheduling the first operation, the Bucket Manager responsible
for the group technology required by the operation would
create a new bucket with the earliest start time 0 and the latest
start time 9. The scope of the bucket would be a total of 9
time units. Usually scopes between earliest start time and latest
start time can be very large, if the orders enter the production
immediately. Therefore, we apply a maximum bucket scope,
to avoid blocking of resources. We suggest a setup-specific
maximum bucket size depending on working shifts, such as
8 hours, 4 hours, 2 hours or less. To ensure high flexibility,
we do not set a minimum bucket size, as we want single
urgent operations to be processed as fast as possible. In our
experiment we make sure, that the start time from backward
scheduling is always higher then the start time from forward
scheduling. Thus, a time scope can be determined. Otherwise
buckets would only contain single operations.

Data: S is a set of all existing buckets
A is a priority queue of operations

ordered by → sft(o)
T is a set of buckets requiring equal gt

Input: An operation o

1 Procedure: ManageBuckets(o)

2 A← {o}
3 while A 6= ∅ do

4 // take the most important
5 // operation and remove it from A

6 o← o1 ∈ A

7 A← A \ {o}
8 // create a set of possible
9 // matching buckets

10 T ← {b ∈ S|gt(o) = gt(b)}
11 // find all buckets with later
12 // start to dissolve them and
13 // remove them from T

14 tmp← {b ∈ T |sft(b) > sft(o)}
15 A← A ∪ {o|(o ∈ b) ∧ (b ∈ tmp)}
16 T ← T \ tmp

17 // find fitting buckets in T
18 // and take one bucket with the
19 // least start time from forward
20 // scheduling

21 tmp←
{
b ∈ T

∣∣∣(∑
p∈b

d(p)
)
+ d(o) ≤ scp(b)

}
22 if tmp 6= ∅ then
23 b← an arbitrary b ∈ argmin

t∈tmp
sft(t)

24 O(b)← O(b) ∪ {o}
25 else
26 new b with O(b)← {o}
27 S ← S ∪ {b}
28 end
29 end

Figure 2. Procedure assign operation to bucket

C. Procedure to create, find and modify buckets

As mentioned before, buckets are virtual elements organized
by the bucket manager. The buckets are created, modified or
deleted if any event occurs concerning the involved group
technology. All properties of a bucket shown in Table I are
calculated based on the operations assigned to the bucket.
As shown in Algorithm 2, by receiving a new operation, the
bucket manager determines the matching buckets depending
upon their group technology (see line 10).

All buckets with an earliest start higher than the earliest start

100Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 3. Scope definition by forward and backward scheduling

of the newly arrived operation dissolve into their operations
(see lines 14 to 16). These operations are rescheduled during
the next loop. Then, the bucket manager calculates for all
remaining buckets whether the new operation still fits in the
bucket scope or not and returns a set of fitting buckets (see
line 21). If at least one fitting bucket can be found, the bucket
manager chooses the bucket with the smallest earliest start
time to assign the operation to the bucket (see lines 22 to 24).
If no fitting bucket can be found, a new bucket will be created
for the operation (line 26).

After assigning an operation to a bucket, this newly created
or modified bucket can be scheduled at any of the capable
resources. Scheduled buckets can still be rescheduled in case
the bucket is modified afterwards.

D. Releasing buckets to production

Crucial for the event-driven production, we use a releasing
mechanism to process buckets on shop floor. After assigning
the bucket to a machine, the bucket remains in a planning
queue in front of the machine. The machine picks the next
bucket from the planning queue using the Least Slack Time
(LST) rule. LST is known to be the best due date criteria
based rule for timeliness and throughput [17]. Of course this
rule can be replaced with any other priority rule, but that is
not part of this contribution. Our approach includes the setup
time into the calculation of the LST.

All buckets are queued regardless of their precondition. It is
likely that a bucket contains operations that are not ready to be
processed as their materials are not yet in stock or preceding
operations of the same job are not yet completed. We solve the
issue by giving buckets a state. When operations of a bucket
receive material and their predecessors are completed, we set
the state of the bucket to ready. Once setting the bucket ready,
we enable the machine to select the bucket from the planning
queue in front of the machine. At this time, new operations can
still be inserted into the bucket. The bucket reaches the status
fix when the machine selects the bucket as the next bucket
to be processed. At that moment, all operations of the bucket
without satisfied preconditions, are sent back to the bucket
manager and trigger the algorithm in 2 to find or create a new
bucket. Moreover, it is not possible to insert new operations
into the bucket in status fix. The transitions between the states
are shown in Figure 4.

Figure 4. The main status flow for one bucket.

After the resource chooses the bucket and sets its status
to fix, the resource organizes the handling of the operations
from the bucket. In general the operations in the bucket are
unsorted. However, the operations of the bucket are processed
applying again the LST-rule.

IV. ADAPTATION OF SOBA TO OUR EVENT-DRIVEN
PRODUCTION

ACATECH promotes self-organizing production systems
with ”intelligent” resources and ”intelligent” materials in their
Industry 4.0 concepts to meet all upcoming challenges of
future production [1], [18]. In our self-organizing production,
resources and materials are agents and can be physically
attached to the product or have a virtual representation known
as digital twin [19]. Our agents communicate asynchronously
and cooperate based on an event-driven system [20]. Thus,
we created a robust and reactive multi-agent production that
we named SOPA - ’Self Organizing Production Architecture’
shown in Figure 5. Each symbol represents one type of agent.
Each arrow is a communication path between two types of
agents. In the text below, the numbers (#number) refer to the
communication paths. The letters in brackets describe the type
of the agents according to their lifetime: (P) for persistent and
(T) for transient. [21] introduced the self organizing production
in detail. Therefore, it is only described in short here.

The ”intelligent” resources and materials of Industry 4.0
suggest multi-agent systems (MAS) to realize self-organization
in production. Figure 5 shows the agents and their communi-
cation. At the beginning there are the supervisor agent (SA),
the warehouse agents (WA), the imparting agents (IA), the
resource agents (RA), and the hub agents (HA). The SA is
responsible for communication with the system’s environment.
The HA manages a resource group. The IA imparts knowledge
about resource capabilities between HA and production agents
(PA). When a customer order arrives, the SA creates a new
contract agent (CA) (1). For each sales order item, the CA
creates a disposition agent (DA) (2) that represents the product
of the sales order item. Each DA asks the corresponding WA if
the material is available (3). If the material is not available and
is manufactured externally, the WA transmits a purchase order
for the required material via the SA (4). Then the WA informs
the DA about the availability (5) of the requested material. If

101Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 5. Architecture of our multi-agent-based self-organizing production

the material is available, the DA send a completion notification
(6) to the CA. Otherwise, the DA creates a PA for the material
(7). The PA creates a new DA for each of its BOM items,
and the process described starts again until all BOM elements
have been completely exploded. During BOM explosion, a
backward scheduling is carried out. Each PA requests an HA
from the IA for each of the PA’s containing operations (8),
and the IA returns the responsible HA (9). Now, the PA sends
a request to the HA (10) for the next time slot in which the
resources can execute the operation. The HA forwards the
request to each of its RAs (11). Each RA calculates a start time
based on his current workload and returns it as an offer to the
HA (12), which chooses the best offer, sends a confirmation to
the corresponding RA, and informs the requesting PA of the
start time of the operation (13). The RA queues the operation
according to its start time, removes those operations from the
queue that are delayed by the newly queued operation, and
asks the HA to reschedule these operations (12), as this enables
other RAs to submit better offers. If the processing time of
an operation deviates from its expected duration, the same
mechanism reorganizes subsequent operations so that the self-
organizing production always reacts to deviations immediately,
which is one of its superior advantages. After a resource
carried out an operation, its RA sends a completion message
to the HA (12), which forwards the message to the PA of
the operation (13), whereupon the PA sets the status of the
following operation to ”ready”, so that the assigned resources
can start processing the operation. If no subsequent operation
exists, the PA sends its completion message to its DA (14)
and informs the WA about incoming material (15). The WA
supplies that DA with the material (5) which needs it most

urgently. After all DAs of the PA have been received their
materials, the production of the PA starts and the described
process starts again until the end product is finished and the
sales order can be fulfilled.

V. EMPIRICAL STUDY

A. Structure of the simulation model

In order to test SOBA, we use simulation model of a
production with three machine types as shown in Figure 6.
The main production flow involving two cutting machines,
one drilling machine, and two assembly units. The production
allows different routings for every material. The drilling ma-
chine is the bottleneck. Each machine is able to yield at least
two different kind of tools. The production is able to produce
two types of wooden toy trucks. The bill of material of each
product is three levels deep and contains approximately 30
materials, were each material is either produced or purchased.
Each material to be produced is manufactured in up to three
operations. The operations of one material can seize a machine
more than once.

Figure 6. Production line of our simulation model

The operations sum up to 20 per product. Transportation
times are not considered yet, but can be represented by an
additional operations assigned to the material. In our empirical
study, we compare SOBA with two different approaches and
thus compare three approaches in total:

1) Default: No rules for setup time improvement are
applied. Therefore, the resources do not group any
operations and only process operations from the queue
applying shortest slack time rule.

2) Stacked: All operations in the resource queue which are
matching the current setup and having all preconditions
satisfied, will be processed before the resource decides
which group technology to setup next. The selection
of the next technology and the selection of the next
operation both apply the shortest slack time rule.

3) Bucket (SOBA): In order to determine an appropriate
value for a maximum bucket size we increase the value
step by step. To take the proportions of usage of group
technologies into account and to force a more frequent
change of group technology on the resources, we use dif-
ferent proportions based on the average required usage in
our production. The proportions per category are shown
in Table III. For instance, for all resource groups, we
define the same overall bucket size of 1440 time units.
The maximum bucket size for each group technology is

102Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

determined by proportion of its usage shown in Table
III. Therefore we calculate: 1440 ∗ 50% = 720 and gain
the maximum bucket size for the screwdriver in resource
group assembly. To ensure a reasonable bucket creation,
the maximum bucket size cannot drop below 60 minutes,
so at least 4 operations with the maximum processing
duration of 15 minutes can join a bucket. Creating and
processing buckets with only one operation should be
possible to ensure fast processing of urgent operations.
Therefore we do not set a minimum bucket size.

TABLE II
SIMULATION PARAMETERS

Value Unit Description
28 days simulation end time

2 days settling time

36 hours average time from order placement to delivery

20 % deviation of estimated operation processing time

80 % target machine utilization

TABLE III
PROPORTIONS OF USAGE OF GROUP TECHNOLOGIES IN BUCKET

MANAGER

Category Group technology
Proportion Group
Usage

Cutting
Blade Big 50%

Blade Small 50%

Drill
Drill Head M4 25%
Drill Head M6 75%

Assembly
Screwdriver 50%

Holding 33%
Hammer 17%

During the simulation of the production, new customer orders
arrive continuously at the production. The inter-arrival time of
customer orders is exponentially distributed as suggested in
[22] and [23]. We choose an inter-arrival time, which leads
to a well-utilized production but does not cause an overload.
The production runs for four weeks, 24 hours a day. The
production will produce approximately 33 products per day
if the processing times do not deviate. To examine the flexi-
bility of the production, we vary the processing times of the
operations. According to [22], processing times are distributed
log-normally. The inter-arrival times, the processing times,
the capacity of the machines as well as the duration of the
simulation can be configured separately for each simulation
run. All simulation parameters of our empirical study are listed
in Table II. However, the production have to dynamically adapt
upon fluctuating effects. Those effects are caused by varying
arrival rates and delivery dates of orders as well as deviations
in processing time of operations. The production reaches its
steady state after approximately 24 hours. We add another 48
hours before we start the measurement of the KPIs. All our

simulations run with a deviation of processing times of ±20
% and an average time to delivery of 36 hours.

B. Simulation results
Table IV, Bucket shows overall good results. In comparison,

Bucket is superior to Stacked in work in progress and average
setup time, which indicates less capital commitment and fewer
setups. However, using Bucket with unlimited bucket size
creates significant bigger buckets which lead to the expected
phenomenon of potentially blocking bottlenecks in the pro-
duction. Thus, our results indicate that finding a suitable
maximum bucket size is crucial for SOBA. By reducing
the maximum bucket size, we obtain smaller buckets which
force the machine to setup different group technologies more
frequently. Consequently the setup time increases significantly.
Moreover, using a suitable bucket size such as Bucket 1200
leads to better results in terms of throughput time. Generally
for our simulation model, bucket sizes from Bucket 720 to
Bucket 960 are superior to Stacked in terms of work in progress
and setup times, while delivering almost the same results
at timeliness and throughput time. Default as our reference
behaviour is inferior in all KPIs. Although Default results
in the smallest amount of work in progress and therefore
less capital commitment, the simulation run for four weeks
only completes 652 orders in total, which is by far the worst
result for completed orders regarding all experiments. How-
ever, using Stacked already leads to significant better results.
These results are consistent with [11], which demonstrates that
exhaustive rules are superior to non-exhaustive rules in terms
of timeliness.

VI. CONCLUSION

The target of our research was to develop a concept to
group operations requiring the same group technology and
prove SOBA empirically. We developed the concept and
implemented a prototype of SOBA in our self-organizing
production. Then, we simulated a four week production cycle
and were able to prove the viability of SOBA. The results
show that the production system is still as robust as before
in terms of disruptions and deviations. We were also able to
reduce the work in progress, throughput times and average
setup times by completing the same amount of orders. The
trade off for these savings is a slightly lower timeliness.
For now, our approach is limited to a single scenario with
focus on discrete manufacturing. In general, the concept can
be adapted to any production size in terms of machines,
setups and production structure. To cope with this, we will
investigate further simulation parameters like different priority
rules, load dependent delayed production starts and different
bucket limitations. Furthermore, we will experiment with
larger production models to gain more general results and
afterwards transfer the solution to a real world scenario with
production data from different cooperating companies.

ACKNOWLEDGEMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry of Education and Research within the

103Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE IV
TEST SCENARIO FOR BUCKET

Behaviour Timeliness
Work in
Progress

Throughput
time

Average
machine

utilization time

Average
machine

setup time

Completed
orders

Comparison to Stacked

4 Timeliness
4 Work in

Progress
4 Average
setup time

Default 21.00% 25.81 6882.27 52.00% 41.60% 652 -79.29% -65.49% 118.95%
Stacked 99.28% 92.43 476.72 78.82% 18.74% 931 0.00% 0.00% 0.00%
Bucket 600 92.64% 83.08 483.84 78.94% 15.26% 931 -6.69% -10.12% -18.57%
Bucket 720 96.09% 85.37 503.93 78.82% 15.24% 931 -3.21% -7.64% -18.68%
Bucket 840 95.35% 82.87 509.79 78.94% 15.02% 931 -3.96% -10.34% -19.85%
Bucket 960 96.63% 79.41 522.64 78.94% 17.60% 931 -2.67% -14.09% -6.08%
Bucket 1080 94.35% 80.58 520.21 78.96% 14.80% 931 -4.97% -12.82% -21.02%
Bucket 1200 94.65% 80.07 506.82 78.96% 15.04% 931 -4.66% -13.37% -19.74%
Bucket 1320 94.49% 81.73 509.93 79.08% 14.64% 931 -4.83% -11.57% -21.88%
Bucket 1440 94.38% 83.48 493.03 78.98% 14.84% 931 -4.93% -9.68% -20.81%
Bucket 1920 93.63% 83.29 448.69 79.06% 14.74% 931 -5.69% -9.88% -21.34%
Bucket 2400 91.42% 83.59 443.22 79.34% 14.52% 931 -7.92% -9.57% -22.52%
Bucket ∞ 88.68% 77.02 448.27 79.94% 14.14% 931 -10.68% -16.68% -24.55%

funding program ”Forschung an Fachhochschulen” (contract
number: 13FH133PX8).

REFERENCES

[1] acatech, Recommendations for implementing the strategic initiative
INDUSTRIE 4.0 (Abschlussbericht Industrie 4.0). Munich: acatech,
2013.

[2] S. C. Kim and P. M. Bobrowski, “Impact of sequence-dependent setup
time on job shop scheduling performance,” International Journal of
Production Research, vol. 32, no. 7, pp. 1503–1520, 1994.

[3] A. M. Spence and E. L. Porteus, “Setup reduction and increased effective
capacity,” Management Science, vol. 33, no. 10, pp. 1291–1301, 1987.

[4] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Mathematics of Operations Research, vol. 1,
no. 2, pp. 117–129, 1976.

[5] W. Domschke, A. Scholl, and S. Voß, Production planning: aspects
of industrial engineering (Produktionsplanung: Ablauforganisatorische
Aspekte), 2nd ed., ser. Springer-Lehrbuch. Berlin: Springer, 1997.

[6] F. Herrmann, Operational planning in IT systems for production plan-
ning and control(Operative Planung in IT-Systemen für die Produktion-
splanung und -steuerung). Wiesbaden: Vieweg+Teubner, 2011.

[7] I. Ham, K. Hitomi, and T. Yoshida, Group technology: Applications
to production management, ser. International series in management
science/operations research. Boston: Kluwer-Nijhoff, 1985.

[8] R. W. Brennan, “Modeling and analysis of manufacturing systems. isbn
0-417-51418-7 [pp.461],” International Journal of Computer Integrated
Manufacturing, vol. 8, no. 2, pp. 155–156, 1995.

[9] C. T. Ng, T. C. E. Cheng, A. Janiak, and M. Y. Kovalyov, “Group
scheduling with controllable setup and processing times: Minimizing
total weighted completion time,” Annals of Operations Research, vol.
133, no. 1-4, pp. 163–174, 2005.

[10] A. Klausnitzer, J. S. Neufeld, and U. Buscher, Scheduling dynamic job
shop manufacturing cells with family setup times: a simulation study.
U. Logist. Res., 2017.

[11] G. V. Frazier, “An evaluation of group scheduling heuristics
in a flow-line manufacturing cell,” International Journal
of Production Research, vol. 34, no. 4, pp. 959–
976, 1996. accessed: November 2019. [Online]. Available:
https://www.tandfonline.com/doi/pdf/10.1080/00207549608904945

[12] R. A. Ruben, C. T. Mosier, and F. Mahmoodi, “A comprehensive analysis
of group scheduling heuristics in a job shop cell,” International Journal
of Production Research, vol. 31, no. 6, pp. 1343–1369, 1993.

[13] B. Grabot and L. Geneste, “Dispatching rules in scheduling dispatching
rules in scheduling: a fuzzy approach,” International Journal of Produc-
tion Research, vol. 32, no. 4, pp. 903–915, 1994.

[14] D.-J. van der Zee, G. J. Gaalman, and G. Nomden, “Family based
dispatching in manufacturing networks,” International Journal of
Production Research, vol. 49, no. 23, pp. 7059–7084, 2011. [Online].
Available: https://hal.archives-ouvertes.fr/hal-00669040/document

[15] G. Egilmez, E. M. Mese, B. Erenay, and G. A. Süer, “Group scheduling
in a cellular manufacturing shop to minimise total tardiness and nt: a
comparative genetic algorithm and mathematical modelling approach,”
International Journal of Services and Operations Management, vol. 24,
no. 1, p. 125, 2016.

[16] D. Giglio, “A milp model for single machine family scheduling with
sequence-dependent batch setup and controllable processing times.”
[Online]. Available: http://arxiv.org/pdf/1501.07396v2

[17] H. Corsten and R. Gössinger, Production management (Pro-
duktionswirtschaft): Introduction to industrial production manage-
ment(Einführung in das industrielle Produktionsmanagement), 13th ed.,
ser. Lehr- und Handbücher der Betriebswirtschaftslehre. München:
Oldenbourg, 2012.

[18] C.-C. Kuo, J. Z. Shyu, and K. Ding, “Industrial revitalization via industry
4.0 – a comparative policy analysis among china, germany and the usa,”
Global Transitions, vol. 1, pp. 3–14, 2019.

[19] R. Stark and T. Damerau, “Digital twin,” in CIRP Encyclopedia of
Production Engineering, S. Chatti and T. Tolio, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2019, vol. 66, pp. 1–8.

[20] G. Di Marzo Serugendo et al., “Self-organisation: Paradigms and appli-
cations,” in Engineering Self-Organising Systems, ser. Lecture Notes in
Computer Science, G. Goos et al., Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, vol. 2977, pp. 1–19.

[21] T. Munkelt and M. Krockert, “Agent-based self-organization versus
central production planning,” in 2018 Winter Simulation Conference
(WSC). [Piscataway, NJ]: IEEE, 2018?, pp. 3241–3251.

[22] G. Zäpfel and R. Braune, Moderne Heuristiken der Produktionsplanung:
Am Beispiel der Maschinenbelegung, ser. WiSo-Kurzlehrbücher Reihe
Betriebswirtschaft. München: Vahlen, 2005.

[23] J. Košturiak and M. Gregor, Eds., Simulation of production systems (Sim-
ulation von Produktionssystemen). Vienna: Springer Vienna, 1995.

104Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

