
Dynamic Adaptive System Composition Driven By Emergence in an IoT Based
Environment: Architecture and Challenges

Nils Wilken∗1 Mohamed Toufik Ailane†2 Christian Bartelt†3 Fabian Burzlaff∗4 Christoph Knieke†5

Sebastian Lawrenz†6 Andreas Rausch†7 Arthur Strasser†8
∗Institute for Enterprise Systems (InES), University of Mannheim

Schloss, 68131 Mannheim, Germany
†Institute for Software and Systems Engineering (ISSE), Clausthal University of Technology

Arnold-Sommerfeld-Straße 1, 38678 Clausthal-Zellerfeld, Germany
Email: 1wilken@es.uni-mannheim.de 2mohamed.toufik.ailane@tu-clausthal.de

3christian.bartelt@tu-clausthal.de 4burzlaff@es.uni-mannheim.de
5christoph.knieke@tu-clausthal.de 6sebastian.lawrenz@tu-clausthal.de

7andreas.rausch@tu-clausthal.de 8arthur.strasser@tu-clausthal.de

Abstract— Applications provided by software intensive systems
in an Internet of Things environment offer new business oppor-
tunities from the industry. An application describes the expected
behavior of the software system. Thereby, the steps of a business
process (e.g., event booking) are determined using objects from
the Internet of Things environment at run-time. The system
behavior is determined at run-time and described as a com-
position of software components based on service descriptions.
These software systems can be developed as so-called dynamic
adaptive systems. Therefore, developers define a structure based
on software components of the system for an application from
the system context at design-time. Then, the selection of software
components instances by the system takes place at run-time.
However, an Internet of Things environment changes its state
constantly over life time and thus, the required structure of
a software system can not be defined at design-time. Hence,
applications of a dynamic adaptive system must be determined at
run-time. In this paper, we introduce our vision of an emergent
platform as an architecture for the development of a dynamic
adaptive system. Such a system is capable of determining an
application and compose a service based process that fulfills this
application at run-time. Furthermore, we provide two Internet
of Things scenarios and describe challenges on the basis of the
scenarios which need to be tackled to enable the implementation
of our architecture.

Keywords–Internet of Things; Dynamic Adaptive System; Ser-
vice Interoperability; Emergence.

I. INTRODUCTION

The environment of today’s software systems (e.g embed-
ded systems and information systems) can consist of com-
plex and powerful objects connected. Each object is running
software and providing applications for customers over the
internet. This environment is well-defined as the Internet Of
Things (IoT) [1]. For example, the software running on these
devices can be provided as software components from the
domain of social events, the domain of transportation or the
domain of home automation. Such an environment offers
new business opportunities to component providers and to
providers of business applications from the industry. From the
technological point of view, a software system is then needed
to enable providers to offer applications and enable customers
to make use of these applications: We refer to such a software
system as a Platform Ecosystem [2].
In the field of business to customer applications, IoT objects

from an environment are used to provide business related
applications. All necessary objects for an application are
represented in a structure as user requirements. This structure
can be described as steps of a business process, which are
expected by customers and thus must be fulfilled by an
application provided by the system. In this context, we refer to
formal user requirements as an appropriate machine readable
representation of user requirements. Hence, an application can
be defined as a structure that describes a set of component-
based software interfaces, which must fulfill the formal user
requirements.
Consequently, the application and all required IoT components
can not be predefined at design-time because an IoT environ-
ment changes its state continuously over life time [3]. Hence,
a software system providing applications must automatically
and dynamically conduct a composition in response to a state
change. We refer to this as an emergent property of a software
system in an IoT environment. The resulting behavior of the
system is not predefined at design-time and not anticipated
by individual components. As a consequence, a composition
containing executable software components and their bindings
for interfaces of a software system is neither known at de-
velopment time, nor at deployment time. Its composition is
changing over time considering changes of its environment.
Hence, each time its IoT environment changes, the software
system must be maintained. However, in each maintenance
phase additional costly steps must be conducted to find a
suitable application from available services. To avoid these
problems, a dynamic adaptive software system must be de-
veloped, such that it is capable to determine an application
from available service at run-time using the state of the IoT
environment at run-time.
Thus, we introduce our vision of an software architecture for
the development of a dynamic adaptive system, which can
fulfill the emergent property required for its applicability in an
IoT based environment. The goal of this paper is to investigate
if our proposed software architecture can be used by software
engineers to develop the appropriate system in practise.
The remainder of this paper is structured as follows: In
Section II, the vision architecture of the Emergent Platform
and its building blocks are introduced. The activity booking
and home automation examples are then used to describe how
our Emergent Platform can be applied in the IoT environment

48Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

in Section III. In Section IV an investigation of challenges
follows on the feasibility of approaches from research to
discuss how a possible development path of our Emergent
Platform can be realized.

II. OUR VISION OF AN ARCHITECTURE FOR AN
EMERGENT PLATFORM DESIGN

Dynamic adaptive software systems in an IoT based envi-
ronment can be designed from reusable software components
[1], e.g., as proposed in the DAiSI component model [4],
which describes the structure and the behavior of the system.
Therefore, software components and interfaces are used to
describe the building blocks of the architecture. The behavior is
described on the basis of a contract based approach. The con-
tracts are used by the system to check required and provided
interfaces of software components for semantic compatibility
at run-time.
As introduced in Section I, the software components used
in our scenario are service software components. A service
software component is similar to the definition of a software
component in component-based software development [5][6].
Here, a software component is a deployable and executable
software entity. It defines required and provided interfaces. A
software component is executed by calling functions from its
implemented provided interfaces, whereas a service instance
is defined as a software component which has been already
deployed for execution by en execution environment.
An interface defines a set of actions, which is understood
by the provider and the user of an interface [7]. An action
contains a function name, a list of parameters that are inputs
and an output. Thereby, the interpretation of a parameter from
a service description is called semantic and thus are used to test
semantic compatibility of software components. Furthermore,
an interface can exist independently of a component which
makes it possible to specify and test the system behavior
without its concrete implementation. Hence, the syntax of an
interface can be described by a service description language
(e.g., WSDL defined by W3C).
In order to check the compatibility of a provided and required
interface, the term contract is used [7]. A contract can be hier-
archically classified on the syntactic, semantic, behavioral and
non-functional level. A contract is instantiated by defining all
necessary mappings between required and provided interfaces.
As already explained in Section I, the process of a dynamic
adaptive system must fulfill the expected system behavior. The
latter is described as a sequence of business process related
steps. A process is a composition of service descriptions from
many service software components to describe the developed
system behavior, which can be executed by an execution
engine.
After introducing the basic terms, we now show our vision
of a software architecture for the development of a dynamic
adaptive system. Figure 1 illustrates the architecture of our
emergent platform. The architecture consists of six major parts
(see letters A-E in Figure 1) and will be briefly explained in
the following:
Run-Time. At first, the system determines formal user re-
quirements from interactions with the end user of an IoT
environment in (A). Next, an appropriate application needs
to be identified for identified user requirements. Therefore, a
set of implementation independent component based interfaces

is calculated. In principle this calculation checks if a subset
of service descriptions, which are useful to fulfill the formal
user requirements from (A), can be found. In a next step, the
software system must determine available and executable soft-
ware components for an application by evaluating registered
software components from (D) of the software system and by
compositing them to a process (B). (B) then provides a set
of software components for execution to (C). The expected
system behavior is then fulfilled by the system behavior as
an ongoing interaction (E) between user and system invoking
software components (C).
Design-Time. In (D), all those service descriptions and soft-
ware components are developed and maintained by a service
integrator which could not be identified by (C) at run-time.
In the following subsections, we explain how the interplay
between the blocks (A) to (E) of a dynamic adaptive system in
an IoT based environment is achieved in detail. The numbering
of the subsections refers to the letters A-E as used in Figure 1.

A. User Goal and Requirements Handling

The user requirements handler (A) (see Figure 1) is respon-
sible for automatic elicitation and formalization of emerging
user requirements. Basically, user requirements of a software
system express what a user wants to achieve and partially also
how this should be achieved by the help of the software system
[8]. Thus, more formally, user requirements specify parts of
the process (i.e., how) that should be executed to achieve
one or several user goals (i.e., what). Where we consider a
user goal to be defined by a distinct state of the operating
environment of a software system. A software system is then
considered to fulfill the user requirements when the execution
of its underlying process eventually leads to an environmental
state that corresponds to a set of specified user goals.
Usually, such user requirements are elicitated and formal-
ized manually by requirements engineers during requirement-
analysis-time and design-time of software systems. However,
as already mentioned in Section I, a key aspect of IoT based
execution environments is that user requirements do emerge
during the run-time of software systems. As a consequence,
the software system has to handle the challenges of eliciation
and formalization of emerging user requirements automatically
at run-time. In our proposed architecture, the user requirements
might be communicated in two different ways: As an explicit
request or as an implicit request. The difference between
explicit and implicit user requests is characterized by different
interaction patterns between user and platform. An explicit
user request is actively formulated (e.g., in Natural Language
(NL)) and forwarded to the platform by a user. Further, the user
requirements handler might actively interact with the user (e.g.,
via a chatbot) to clarify possible ambigiouties in the request.
In contrast, an implicit request is not actively provided by
a user, but rather triggered implicitly by conclusions drawn
from inference over constant monitoring of a user. Besides a
request, the user requirements handler (A) takes a user profile
as a second type of artifact as input. Such a user profile can
capture any kind of additional information about a user like
for example information about a personal profile, preferences,
or interests. Therefore, in the case of an explicit user request,
the user requirements handler (A) takes an actively formulated
request and a user profile that captures additional information
about the user as input. Based on this input, it tries to

49Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Emergent Pla�orm

User Requirements
Handler

End User

monitors
(implicit request)

interacts
(explicit request)

Composi�on
Mechanism

Service Integrator

/register
<serviceDescrip�on>

Service
Instance A_[1..n]

Service
Instance B_[1..n]

Service
Instance C_[1..n]

Process A�ributes:
- Life�me: [1 OR n Execu�on(s)]
- List of Parameters: [0 to n]

user feedback

Service Registry

/evaluates

/invokes

<<interface>>
Service

Descrip�on C

<<interface>>
Service

Descrip�on C

<<interface>>
Service

Descrip�on B

<<interface>>
Service

Descrip�on A

<process>

D

A B

E

Run-Time

Design-Time

Execu�on EngineUser Interface

C

Request

Response

Informal Request

use/
implement

use/
implement

use/
implement

Block A calls Block BA B

Knowledge

<process
result>

<user feedback>

Figure 1. Our architecture to enable composition of software services based on emergence

automatically elicitate and formalize the formulated user goals
and requirements. In this context, “formalized” means that
the determined user requirements are encoded in a structured,
machine-readable format (e.g., JSON). In contrast, in the case
of an implicit user request, the user requirements handler (A)
takes unstructured observational data of the end user and a
user profile that captures additional information about the user
as input. Then it tries to extract and formalize meaningful user
requirements through continuous analysis of the data stream
from user monitoring and creation of an implicit request when
it is recognized that the user currently plans to achieve a
supported user goal. In both cases, a formal domain model
of the environment is needed that models important aspects
of the operating environment of the software system (e.g.,
user goals, objects, possible user actions, etc.). As a next step,
the service registry (D) component is checked to determine
available and executable software components that are relevant
for an application. Here, the main challenge is to match the
identified user requirements from the domain model of the
environment with service descriptions. As the composition
mechanism should support an emergent property, the matching
is performed by an algorithm at run-time. After determining
an application for the identified user requirements, the user
requirements handler forwards the service descriptions to the
composition mechanism (B).

B. Composition Mechanism
The composition mechanism (B) is responsible on deter-

mining a process of a set of service instances that reflects the
order by which services are supposed to be called, to fulfill an
application which is provided by the user requirements handler
(A). An evaluated service instance in (D) can represent one
among many implementations for one service description.
Consequently, different compositions can be identified by the
mechanism to fulfill the same application. The decision of
choosing the right composition is influenced by many factors.
In our architecture we consider the user feedback (see Section
II-E) and quality attributes (e.g., economic costs).
In this regard, we aim to enable new composition patterns that
can emerge dynamically at run-time as illustrated in Figure
2. A pattern describes the structure of a process considering

the factors mentioned above. The most optimal pattern is the
pattern that achieves a high score meeting the factors after
evaluation. As an example, Figure 2-B shows a chain pattern
consisting of different providers and consumers as service
instances. Yet, a different pattern (e.g., a tree pattern as shown
in Figure 2-B) might be more optimal. For this, an evaluation
mechanism that reasons over the factors is needed (as also
mentioned in [9]). For these patterns to emerge, we review
the description languages and discovery mechanism that can
contribute not only to a pre-designed dynamic solution, but
also enable these patterns to emerge and offer the possibility
for the system to adopt one pattern. Hence, in order to define
a robust composition mechanism, a unified formal description
for both: (i) the service description of the interfaces (achieved
by (B) in Figure 1), and (ii): the available software and
component services (which will be invoked by (D) in Figure
1) are necessary.

InputS1

S4InputS2

InputS3

InputS1 InputS2 S3

(A)

(B)

RequirementsRequirements

Figure 2. Service Composition Patterns: (A): Tree pattern, (B): Chain pattern

Fulfilling an application and ensuring a positive feedback of
the end user can be seen as a problem of navigation in a three
dimensional space as shown in Figure 3. The first axis consists
of the availability of services, that are the available service
instances or descriptions at a given point in time: The more
services are available, the more flexible is the composition
mechanism towards different end user feedback. The second
axis consists of the environments, each environment can be re-
lated to different applications that require a variety of available
services, which has to be handled by the composition mecha-
nism. This cross-environments composition is a key element in
the emergent composition of services. Thirdly, the application
axis consists of a set of applications that are present in one or

50Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

more environments, they may share the same service instances
or reuse the same process. Hence, an emerging composition
pattern is the result of a en efficient navigation through this
space and thus, can not be provided at design-time, but rather
emerges from the continuous interaction of the system with its
environment (e.g., end user and IoT environment) at run-time.
To evaluate a pattern composed from service instances for
given subset of service descriptions, the results from three dif-
ferent evaluation mechanisms must be considered: The service
registry block must evaluate the interface compatibility of the
service instances. As shown in Figure 3, new applications can
be identified after the execution of an emergent composition.
Thus, the service descriptions used by service instances of
the new application must be evaluated. If the interfaces are
compatible (see in Subsection II-D) and the new application
from the emergent composition can be semantically matched
to formal user requirements, then a pattern can be considered
for evaluation in the three dimensional space.

C. Execution Engine and User Interface
The execution engine (D) is responsible for executing the

process generated by the composition mechanism (B). The user
interface (E) is a front-end component that is accessed by the
end user to execute the generated process. As user interface
design and process execution are not part of our main research
focus, we rely on state-of-the-art technologies. In general, the
following steps are performed:
An ordered set of service descriptions (i.e., a process) which
has been identified by the composition mechanism (B) is
displayed to the user. All services contained within the set of
services descriptions are available or compatible to available
service instances.
Next, the user interface collects feedback from the user and for-
wards this feedback to the user requirements handler (A) and
the composition mechanism (B). Components (A) and (B) use
the feedback to improve their performance for future requests
and compositions. Afterwards, when positive user feedback is
received, the execution engine invokes the respective service
instances by using the needed interaction style.
Finally, values and messages as returned by the provided
service instances are passed from the service registry (D) to
the execution engine (C).

D. Service Integration in the Service Registry
The service registry (D) answers the questions which ser-

vice instances and descriptions are available and which service
instances fulfill a request. Hence, the service registry stores a
set of service descriptions and manages the location as well

A set of processes
which fulfills the

user comfort
application

S1

S2

S3

Home
Environment

Car
 Environment

S4

Environments

Applications (Models)

Ava
ila

bilit
y o

f s
erv

ice
s

Requirements

End user feedback

A set of processes
which fulfills the

energy
management
application

Figure 3. Composition space as a Cartesian plane,

as the interaction style with the service instances. Here, the
execution engine (C) invokes available services during process
execution. Now, the question becomes how service descriptions
and service instances are managed within the platform and by
whom.
Service descriptions may or may not conform to standards,
common vocabularies or namespaces. Hence, the semantic
level is unrestricted. However, the composition mechanisms
is based on a service description language which specifies the
syntactical level so that the composition mechanism (B) is able
to process available service descriptions. A service integrator is
responsible to describe service instances with a service descrip-
tion language. Service descriptions contain domain-specific
parameters that are mapped to other service descriptions. The
service integrator has a technical role within the platform team
(e.g., no third parties). One service description can be fulfilled
by multiple service instances (see “[1..n]” in Figure 1). The
following steps are performed during system design-time (i.e.,
every time the system is maintained):
The input to the service registry are service descriptions that
should be registered.
Next, the service integrator must decide whether to create a
new service description or provide a compatibility contract
from a provided (e.g., new service instance) to a required Ser-
vice Description (e.g., already available in the platform). These
mappings are called vertical mappings. Furthermore, service
descriptions can be mapped to existing service descriptions
for establishing a relationship between outputs of a service
that may serve as an input to another service. These mappings
are called horizontal mappings.
Finally, the service registry contains all service descriptions
and associated service instances which potentially can be
accessed by the platform. Furthermore, all possible mappings
found by the service integrator to translate similar service
descriptions into each other are specified. This can be done
based on services or on a process produced by the composition
mechanism (B).

E. Process Result and Feedback
A given process is only accepted based on the feedback

of the end user. In addition to the evaluation of processes,
the end user feedback is necessary to determine if the process
can be accepted for execution by the execution engine. For
example, the user can not afford the quoted price for booking
an event and consequently decline a step of a process. Hence,
a user feedback mechanism has to be defined and deployed
and a validation process is required. Hence, a service instance,
service description or the whole composed process can be
declined by the end user. Based on the end user feedback, new
composition patterns are pushed to emerge by the composition
mechanism (see Section II-B). Once, a composition pattern is
accepted, the execution engine can then execute the chosen
process. In addition, the user requirements handler can use
the feedback to evaluate whether the recognized requirements
matched the real requirements of the user.

III. APPLICATION SCENARIO

In order to get a better understanding of emergence, this
section will present two use cases and discuss their emergent
behavior. The use cases are related to different application
environments.

51Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Emergent System

End User

interacts
(explicit request)

Mannheim Sport
Events Service

Mannheim
Weather Service

Mannheim Search
Restaurant Service

Service Registry

<process>

<process result>

<<interface>>
Taxi

Service

<<interface>>
Restaurant Search

Service

<<interface>>
Weather
Service

<<interface>>
Sports Event

Service

Mannheim Taxi
Service

"I would like
an ac�vity for
next Thursday
from 7-21 pm"

"The game SG
Mannheim vs. USC
Heidelberg starts at
7:30 p.m. Your taxi

will be wai�ng outside
your apartment at

6:45"

User Profile
• Sports: Basketball,

football, yoga
• Food: Mexican,

Kebab
• Mobility: Has no car,

reluctant to walk
• Address: L15, 1-6,

Mannheim
• Communica�on:

iPhone (+49 154
1234567)

D

Execu�on EngineUser Interface
C

E

/evaluates
/invokes

use/
implement

use/
implement

use/
implement

use/
implement

User Requirements
Handler

Composi�on
Mechanism

A B

user feedback

<user feedback>

Figure 4. This scenario illustrates how the taxi service is provided in
addition to the the booking service.

A. Automated Event Booking

The automated event booking can support the end user
to manage his spare time. Therefore, an end user provides
a profile to the software system: For example, favorite sports,
food and public transport (e.g., because he does not own a
car). Figure 4 illustrates the interaction between the end user
and our proposed emergent platform.
The user requirements handler (A) starts to identify possi-
ble formal user requirements from the profile and from the
message explicitly provided by the end user: These can be
basketball, football and yoga as sport activities. Moreover,
it identifies the time schedule and the location of the end
users spare time. As a next step, applications in form of a
set of service descriptions from the service registry (D) are
determined which are semantically equivalent to the identified
formal user requirements.
In this scenario, a set of possible applications can be identified:
One can consist of the service descriptions Sports Event
Service and Taxi Service. Another application can consist of
Restaurant Search Service in addition to, the same service
descriptions as in the first application.
The Sports Event Service can provide different sport events
in a specific area, such as football and basketball games.
The Weather Service provides the current temperature and
the weather forecast. The Restaurant Search Service provides
different restaurants, including the type of kitchen (Spanish fast
food, etc.) in a specific area. And the Taxi Services enables
booking a taxi from taxi companies such as Uber.
The set of applications is then provided to the composition
mechanism (B). Based on the available service instances,
the composition mechanism evaluates possible composition
patterns in order to determine a process. Since the end users
residence is Mannheim, the mechanism determines a set of
services instances regarding their availability: Figure 4 con-
stitutes the service instances used in the service registry (D),
which can be used by (B) to compose a process. The process is
then provided to the front-end software component (C) and is
executed by the execution engine (C). As a result, the software
system provides process steps to the end user which enable the
user to book a football event and a taxi for transportation to
the event-location (E). If the end user accepts this event, the
platform will book the tickets and the taxi for him, if not it will
try to evaluate another activity as an emerged composition: For
example, a dinner in a Mexican restaurant. The emergence is
represented by the behavior of the software system driven by
the feedback from the end user and the IoT environment.

B. Home Automation
The smart home automation is responsible for managing

energy flows of a house. Its goal is to manage the temperature
and controlling the alarm system as economic efficient as
possible for the end user. Unlike the first use case the user
request is implicit, thus the smart home automation is observ-
ing the end user. The alarm should be turned off and the room
temperature adjusted to a comfortable level, when the end user
arrives at home: The user requirements handler (A) observes
the actions and preferences of the end user and, based on the
available services (see Figure 5), evaluates the best subset of
service instance for composition to meet the user preferences
and goals (B). The execution engine starts to execute the
process provided by (B), after the end user acknowledge the
process with the user interface (C) by providing his feedback
(E). The process is executed as follows: It uses the actual
GPS position from the user. When the end user getting closer
to the house, then the home automation starts the climate
control and turns off the alarm. Furthermore, the automation
manages the energy flow in the house. For example, if the
weather conditions are good, then the climate control can be
powered by energy from the solar system of the home. This
can be achieved by a balanced energy consumption strategy in
cooperation urban energy suppliers.

IV. CHALLENGES

A. Regarding User Goal and Requirements Handling
Specifying accurate and correct user requirements is crucial

to ensure that a software system, which is developed from
these user requirements, will be useful to the end users.
As already highlighted in Section II, currently these tasks
are handled manually by requirements engineers that specify
the user requirements at design-time of a software system
in cooperation with the end users. Over the past decades
several different frameworks for requirements engineering
were proposed and researched [8]. One popular framework
is the KAOS framework [10], which is a multi-paradigm goal
oriented modelling framework. Another example is the agent-
oriented modelling framework i* [11], which is built around
concepts such as goals, abilities, beliefs and commitments, and
is the base of the Tropos methodology [12] which allows for
validation by model-checking. However, all these frameworks
include much manual work of requirements engineers during
design-time of a software system. This contradicts to an
important envisioned ability of the proposed platform, which is
the automatic eliciation and formalization of user requirements

Emergent System

End User

monitors
(implicit request)

Android GPS
Service

MyAlarmSystem
Service

MySensorSystem
Service

Service Registry

<process>

<process result>
/evaluates/invokes

<<interface>>
Weather Service

<<interface>>
Temperature

Sensor Service

<<interface>>
Alarm API
Service

<<interface>>
Smartphone GPS

Service

Mannheim
Weather Service

"When I come home, turn
off the alarm and make
sure the temperature is

comfortable.

User Profile
• Address: L15, 1-6,

Mannheim
• Likes a temperature

of 23-25°C
• Usually works

between 9 and 5 pm
• Emphasizes saving

energy

D

Execu�on EngineUser Interface
C

E

• If the user is s�ll 10
minutes away,

• deac�vate the alarm
system

• measure the room
temperature (19°C) and

• switch on the
thermostat

use/
implement

use/
implement

use/
implement

use/
implement

User Requirements
Handler

Composi�on
Mechanism

A

user feedback

B

<user feedback>

Figure 5. This scenario illustrates how the different services are provided in
addition to the the alarm service.

52Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

that emerge during run-time of a software system. Hence, the
following two challenges are relevant in the context of the user
requirements handler (A):

How can user requirements be elicitated automatically
from unstructured data? Along the lines of the distinction
between explicit- and implicit user requirements, this challenge
can be further subdivided into two sub-challenges. Both cases
represent significant challenges that require different methods
to be solved. In the case of an explicit request (like the example
described in Section III-A) untrained end users are usually not
able to express their requirements in a structured, machine-
readable format, but rather describe their goals in NL. This
is a major challenge, as descriptions in NL are commonly
incomplete and ambiguous [13]. The same holds for an implicit
request, where user goals are not even explicitly described,
but are rather hidden in unstructured observational data that
is generated through continuous monitoring of the end users.
In the context of the example scenario described in Section
III-B, an implicit request could be created when the system
recognizes that the end user currently has the goal to go
home from the past observed changes of the environment
(e.g., change of user location). Hence, to achieve automatic
elicitation of user requirements, the proposed platform has to
be able to extract the relevant user goals and requirements from
an unstructured input data format (e.g., NL or observational
data), in order to use them for the composition of a useful
software service.
Over the past decade first efforts towards automatic extraction
of user requirements from explicit user interaction appeared.
For example, van Rooijen et al. [14] try to automatically
generate user requirements from sets of input examples that
are created by the end users in the form of sequence diagrams.
As an extension to this approach, van Rooijen et al. [15] try to
learn such sequence diagrams directly from NL descriptions.
Recently another approach uses a chatbot to refine user re-
quirements that were extracted from NL input in a feedback
communication cycle with the end users [16]. Some of these
approaches might also be applicable in the context of the
platform architecture proposed in this paper. In contrast, there
has not been done much work yet towards the direction of
automatically recognizing user requirements from unstructured
observational data in the field of software systems engineering.
However, the topic of automatically recognizing user goals
and plans from observational data is a long standing research
area in the Artificial Intelligence (AI) community. First works
in this area appeared in the mid 80s and early 90s [17][18].
Several prominent recent approaches formulate the goal recog-
nition problem as a planning problem which can be solved by
the use of classical AI planners [19][20]. Another approach
that adopts machine learning techniques, was proposed by
Zeng et al. [21]. They use inverse reinforcement learning to
model human behaviour to recognize goals in a dynamic local
network interdiction environment. We envision that some of
these approaches might be useful for automatic requirement
elicitation in the context of implicit user interaction.

How can user requirements be formalized? Once the rel-
evant user goals and requirements were extracted, they have
to be transformed to a formal, machine-readable format so
that the composition mechanism (B) can handle them. In
literature there exist several approaches to formalize user re-
quirements like for example state machines, activity diagrams,

or sequence-diagrams [14][22]. Another possibility would be
to use a Domain Specific Language (DSL) to formally encode
the elicitated user requirements. Besides these formats that
focus on behavioral aspects, there are also some approaches
that focus on the structural aspects of software systems, like
class diagrams or entity relationship models [22]. However, as
the structure of the composed software component process is
considered to be an emergent property, which emerges during
composition, of the proposed platform, these kinds of models
might be to restrictive regarding the structure of composed
services. Hence, it is not clear which kind of formalization
format is suited best for the application in the context of the
proposed emergent platform architecture.
In addition, also the transformation which is required to trans-
late the elicitated requirements to such a format is challenging,
because it requires a mechanism that is able to interpret the se-
mantic meaning of them. To achieve this some kind of domain
model (e.g., a domain ontology) that encodes relevant semantic
information about the environment is required. Overall, the
formalization format and transformation mechanism that are
used have to provide a level of semantic, behavioral, and
structural information that on the one hand is sufficient to
compose meaningful software component processes from it,
but on the other hand does not restrict the degrees of freedom
of the composition mechanism (B) in a way that its emergent
behaviour is harmed or prohibited.

Energy management
application

User comfort Application

S1

S2

S3

Home
Environment

Car
 Environment

S4

S1: Explicit requirement by the user

S1: Implicit requirements base
on user profile

S2: Calculate distance from home

S3: Measure room temperature

S4: Specific time of switching on the ACEnvironments

Applications (Models)
Ava

ila
bilit

y o
f s

erv
ice

s

Requirements

Figure 6. Composition space navigated using Markov Decision Process
(MDP)

B. Regarding Composition Mechanism
As introduced in Section III, several application types can

be identified in the home automation use case. Two examples
are, energy management and user comfort applications (see
Figure 6). The composition is governed by certain quality
attributes of available service instances to fulfill the two
possible concrete applications described in Section III and
navigate through the three dimensional space (as introduced in
Subsection II-B). Similar research has been made in this regard
such as multi-agent solutions [23] and genetic algorithms [24].
The two challenges are to construct a suitable structure for the
three dimensional problem space and and to evaluate emerged
composition patterns. In order to enable a composition pattern
to emerge, two main questions need to be answered:

How to compose? One fundamental question that rises
when speaking of service composition is how the composition
component is able to compose the relevant service instances.

As the composition mechanism is responsible to compose a
process that fulfills an application, discovering the instances in
the service registry (D) is a main challenge. In our suggested

53Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

solution, which is provided later in this section, we consider
all possible compositions and evaluate each composition if it
fulfills a given application or not. This leads us to the second
question:

How to evaluate a given composition? After composing
a set of service instances, the validity and optimality of the
obtained process has to be evaluated. We also consider this in
our suggested solution later in this section by speaking of an
optimal policy (the formal term for the evaluation function).
To answer the questions, we suggest to formulate the composi-
tion problem as a markovian problem [25]. A Markov Decision
Process (MDP) is a mathematical tool that is used to solve
decision problems, it consists of a 4-tuple M = (S, A, P, R),
such that:

• S: Is a set of the system states (State space)
• A: Is a set of actions that the system can act on based

on the current state (Action space).
• P: Is the probability function that indicates the prob-

ability of transitioning to state s′ when taking action
a at state s (Pr(s′|s, a).

• R: The expected immediate reward for taking action
a at state s and transiting to state s′ (r = R(s′|s, a).

Similar to [9], a dynamic composition is realized using a
reinforcement learning method, the main challenge of such
an approach is the definition of the sets of states and actions.
Furthermore, engineering a reward function for the expected
reward based on an emergent composition is a challenging
task. Once, the challenge of designing the problem as a
MDP, the solution challenge is how to obtain a policy π that
helps detect all emergent behaviors and provide an optimal
one. As shown in Figure 6, a MDP will emerge based on
navigating different environments, applications and available
service instances and descriptions. The compatibility of com-
posed services is referred to as Semantic Interoperability and
explained in the Section IV-C). Finally, the emergent process
that is found to be the most optimal is then provided to the end
user. If the feedback of the end user shows that the emergent
process is accepted, the process is executed by the execution
engine. Otherwise, it is not executed.

C. Regarding Service Integration in the Service Registry
Semantic Interoperability and Semantic Integration is a

research topic since the 90s [26][27]. The interoperability
of a required and a provided service is ensured when their
syntactic level (e.g., data types and representation), semantic
level (e.g., range of parameters or pre- and postconditions)
and behavioural level (e.g., constraints on the ordering of
interactions sequence) can be mapped [7]. In the context
of distributed systems such as the presented platform, inter-
actions styles implemented by the communication protocols
(e.g., client-server) and non-functional properties are added. In
most systems, syntactic incompatibility cannot happen as IoT
components support standard communication protocols like
HTTP over JSON. Consequently, the compatibility challenge
shifts to the semantic level. In a distributed system, this is
commonly referred to as Semantic Interoperability [26].
Semantic Interoperability ensures that services and data ex-
changes between a provided and a required interface makes
sense - that the requester and provider have a common under-
standing of the ”meaning” of services and data [26]. Semantic

interoperability in distributed systems is mainly achieved by
establishing semantic correspondences (i.e., mappings) be-
tween vocabularies of different sources [27]. The question
how to achieve semantic interoperability in dynamic and adap-
tive systems is still actively researched. For instance, formal
domain standards such as ontologies or Linked Open Data
vocabularies quickly lose their claim for correctness. Linked
Open Data sources are prone to errors and inconsistencies (due
to a lack of quality control) and ontologies must be constantly
monitored and updated due to the pervasiveness and volatility
of the underlying IoT environments [28]. In the scope of the
presented architecture, the following challenges are relevant:

How are service components integrated? IoT services can
be combined with other applications and services to create
complex, context-aware business services. Therefore, service
integration can either be performed from top-down or bottom-
up [29]. Bottom-up refers to whether pre-existing service
interfaces are glued together and thus adapter may be required
due to mismatches. Top-down refers to, given a pre-existing
composition model, which suitable interfaces need to be dis-
covered and possibly adapted to fit into the composition.
From the viewpoint of distributed systems (i.e., semantic
interoperability), flow-based composition tools are commonly
used to model an automation process by plugging in service
instances. A common modelling pattern for such tools is If this
then that but only if. This pattern may be visualized by using
graphical elements (e.g., IFTTT [30]) or textual templates
(e.g., TASKER [31]). When a process is modelled, all of
these platforms integrate the available service instances by
implementing a software adapter that manages the commu-
nication between the service description used in the process
and the services instance. Here, no service registry is used
as all software adapters must be manually implemented by
software engineers. Hence, the end user himself must choose 1)
which of the available services satisfies his requirements (c.f.
service registry (D)) and 2) how services may be composed
(c.f. composition mechanism (B)). A modification of just
passing data and services offered by the service instance to
the user interface of a platform is to define a domain-specific
model. For example, the smart home platform openHAB [32]
defines its data properties in a device vendor-independent way.
In fact, the top-down defined domain model must be used
to map device specific characteristic during software adapter
implementation. Hence, the service integrator interprets both,
the provided device interfaces and the required domain-specific
model. However, this integration knowledge is not stored in
a searchable format. Furthermore, this kind of integration
knowledge is hard to reuse as every platform designs its own
domain model.
On the one hand, the proposed platform in this paper should
rely on heterogeneous and dynamically moving software com-
ponents to provide emergent behaviour (i.e., vertical mappings
between service instance and service description). On the
other hand, the composition mechanism (B) requires a uniform
representation of semantically interoperable service instances
(i.e., horizontal mappings between service descriptions). Now,
the question is whether the service integrator maps available
service instances based on a top-down defined domain model
or if a domain model of services is built up from the available
service descriptions. In both ways, mappings are required.
Hence, engineering approaches that can adapt and compensate

54Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

efficiently for a reconfiguration of service provisioning when
context changes are necessary [28].

How can semantic interoperability between service com-
ponents be achieved automatically? If mappings are required
anyways when dealing with heterogeneous software compo-
nents, the service integrator should be supported to create
them. Current approaches such as INTER-IoT [33] heavily rely
on the usage of domain ontologies. Therefore, a wide body
of ontologies for different application domains can be used
(see the website [34] for an overview). For example, Lov4Iot
defines a subset of linked data vocabularies that are relevant
within several domains that are affected by IoT (e.g., Home
Automation or Wearables). When all service descriptions do
refer to the same ontology concepts for a certain domain,
then the ontologies can be queried for available mappings for
needed vocabularies. As a consequence, generating a software
adapter automatically is reduced to a technical challenge.
However, most service instances do not provide semantic
annotations and/or a machine-readable service description.
Furthermore, it must be ensured that the domain ontology
does contain all needed concepts so that the service integrator
can map them based on a service instance. Hence, semantic
annotations are critical for engineering integration knowledge
in IoT.
From the viewpoint of artificial intelligence (i.e., semantic
integration), ontologies are the state-of-the-art for storing the
meaning of data. As IoT systems themselves offer data-
driven service interfaces (i.e., mostly RESTful with no state or
special behaviour), ontologies are often used in platform-based
systems [33][35]. Naturally, the usage of an ontology is also
possible within the proposed architecture.
However, what makes semantic data handling in IoT more
challenging and fraught with technical difficulties is the scale
of data generated by its corresponding resources, continu-
ous changes in the state (and consequently description) of
the resources and volatility of the IoT environments [28].
Hence, creating engineering tools that allow to cope with
the increasing amount of IoT devices, their services and,
most importantly, their combination by providing automation,
reasoning and intelligence need to be designed. Furthermore,
the question which service description language (e.g., Ope-
nAPI or SA-WSDL) [36] and which mapping language is
applicable by the service integrator and, more importantly, how
semantic correspondences are captured during the lifecycle of
the proposed platform must be answered.
To tackle these two challenges, a novel integration method
called Knowledge-driven Architecture Composition that relies
on an incremental formalization process for semantics can be
used [37]. This method explicitly allows for incompleteness of
integration knowledge and supports an evolutionary instead of
an revolutionary definition of domain models (i.e., not based on
fixed domain ontologies at system design-time). The novelty
of this approach is formalizing semantic integration knowledge
per use-case in a bottom-up manner. By focusing on integration
knowledge instead of conforming to technological-oriented
interface descriptions and standards, the method maximizes
the impact for formalizing the semantic mappings as a concrete
use-case must be present. Hence, formalization does only take
place if it is specifically needed. The additional formalization
effort in addition to implementing software adapters pays
off as adapters for future devices can be generated (semi-)

automatically through the usage of reasoning principles.

V. CONCLUSION AND FUTURE WORK

We proposed a vision of an architecture as a so-called
Emergent Platform. Using the architecture, a software engineer
is able to develop a dynamic adaptive system which fulfills
the emergent properties of an IoT based environment. The
main building blocks of the architecture are separated into
run-time and design-time. At run-time, the building blocks
are capable to determine an application for user requirements,
which emerge from the IoT environment based on available
services. In a next step, the composition mechanism of the
system provides the system behavior as a process which fulfills
the expected behavior of an application. Thus, the mechanism
to determine a process for an required application that emerged
at run-time may minimize manual system maintenance. The
feasibility of the architecture is exemplified with two use-cases
from the home automation and event booking domain. In the
future, we plan to evaluate the feasibility of identified tech-
niques. Thus, our next step is a prototypical implementation
including the technical basis for the composition mechanism.

ACKNOWLEDGMENT

This work has been developed in the project BIoTope
(Research Grant Number 01lS18079C) and is funded by the
German Ministry of Education and Research (BMBF). The
following partners were involved in this project: Universität
Mannheim, Technische Universität Clausthal, Wolfsburg AG,
StoneOne AG. Special thanks go to Mohamad Ibrahim, Abram
Lawendy and Michael Pernpeintner for their valuable contri-
bution to the project.

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, 2015, pp. 2347–2376.

[2] M. G. Jacobides, C. Cennamo, and A. Gawer, “Towards
a theory of ecosystems,” Strategic Management Journal,
vol. 39, no. 8, 2018, pp. 2255–2276. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.2904 [re-
trieved: 2020.09.04]

[3] A. Bröring, S. K. Datta, and C. Bonnet, “A categorization of discovery
technologies for the internet of things,” in Proceedings of the 6th
International Conference on the Internet of Things, ser. IoT’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp. 131–
–139. [Online]. Available: https://doi.org/10.1145/2991561.2991570
[retrieved: 2020.09.04]

[4] K. Rehfeldt, M. Schindler, B. Fischer, and A. Rausch, “A component
model for limited resource handling in adaptive systems,” in ADAP-
TIVE 2017: The Ninth International Conference on Adaptive and Self-
Adaptive Systems and Applications. IARIA, 2017, pp. 37–42.

[5] T. Vale et al., “Twenty-eight years of component-based software engi-
neering,” Journal of Systems and Software, vol. 111, 2016, pp. 128–148.

[6] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. USA: Addison-Wesley Longman Publishing Co., Inc.,
2002.

[7] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, 2010, pp. 593–615.

[8] A. van Lamsweerde, “Requirements engineering in the year 00:
a research perspective,” in Proceedings of the 22nd international
conference on Software engineering, ser. ICSE ’00. Limerick,
Ireland: Association for Computing Machinery, Jun. 2000, pp. 5–19.
[Online]. Available: https://doi.org/10.1145/337180.337184 [retrieved:
2020.09.04]

55Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

[9] H. Wang et al., “Adaptive service composition based on reinforcement
learning,” in International conference on service-oriented computing.
Springer, 2010, pp. 92–107.

[10] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Sci. Comput. Program., vol. 20, no. 1–2, Apr.
1993, pp. 3—-50. [Online]. Available: https://doi.org/10.1016/0167-
6423(93)90021-G [retrieved: 2020.09.04]

[11] E. Yu, “Towards modelling and reasoning support for early-phase
requirements engineering,” in Proceedings of ISRE ’97: 3rd IEEE
International Symposium on Requirements Engineering. IEEE, Jan.
1997, pp. 226–235.

[12] J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-driven
information systems engineering: the Tropos project,” Information
Systems, vol. 27, no. 6, Sep. 2002, pp. 365–389. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S0306437902000121
[retrieved: 2020.09.04]

[13] F. S. Bäumer and M. Geierhos, “How to deal with inaccurate service
descriptions in on-the-fly computing: Open challenges,” in Natural Lan-
guage Processing and Information Systems, M. Silberztein, F. Atigui,
E. Kornyshova, E. Métais, and F. Meziane, Eds. Cham: Springer
International Publishing, 2018, pp. 509–513.

[14] L. Van Rooijen and H. Hamann, “Requirements specification-by-
example using a multi-objective evolutionary algorithm,” in 2016 IEEE
24th International Requirements Engineering Conference Workshops
(REW). IEEE, 2016, pp. 3–9.

[15] L. van Rooijen et al., “From user demand to software service: Using
machine learning to automate the requirements specification process,”
in 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 2017, pp. 379–385.

[16] E. Friesen, F. S. Bäumer, and M. Geierhos, “Cordula: Software require-
ments extraction utilizing chatbot as communication interface,” in Joint
Proceedings of REFSQ-2018 Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track co-located with the 23rd International
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2018), vol. 2075. CEUR-WS.org, 2018.

[17] H. A. Kautz and J. F. Allen, “Generalized plan recognition,” in Proceed-
ings of the Fifth AAAI National Conference on Artificial Intelligence,
ser. AAAI’86. AAAI Press, 1986, pp. 32––37.

[18] E. Charniak and R. P. Goldman, “A bayesian model of plan recognition,”
Artif. Intell., vol. 64, no. 1, Nov. 1993, pp. 53––79. [Online]. Available:
https://doi.org/10.1016/0004-3702(93)90060-O [retrieved: 2020.09.04]

[19] M. Ramı́rez and H. Geffner, “Plan recognition as planning,” in Proceed-
ings of the 21st International Jont Conference on Artifical Intelligence,
ser. IJCAI’09. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2009, pp. 1778—-1783.

[20] ——, “Probabilistic plan recognition using off-the-shelf classical plan-
ners,” in Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, ser. AAAI’10. AAAI Press, 2010, pp. 1121–
–1126.

[21] Y. Zeng et al., “Inverse reinforcement learning based
human behavior modeling for goal recognition in dy-
namic local network interdiction,” 2018. [Online]. Avail-
able: https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16162
[retrieved: 2020.09.04]

[22] T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of trans-
formation approaches between user requirements and analysis models,”
Requirements Engineering, vol. 16, no. 2, 2011, pp. 75–99.

[23] H. Wang, X. Wang, X. Hu, X. Zhang, and M. Gu, “A multi-agent
reinforcement learning approach to dynamic service composition,”
Information Sciences, vol. 363, 2016, pp. 96–119.

[24] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach
for qos-aware service composition based on genetic algorithms,” in
Proceedings of the 7th annual conference on Genetic and evolutionary
computation. Association for Computing Machinery, 2005, pp. 1069–
1075.

[25] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[26] S. Heiler, “Semantic interoperability,” ACM Computing Surveys
(CSUR), vol. 27, no. 2, 1995, pp. 271–273.

[27] N. F. Noy, A. Doan, and A. Y. Halevy, “Semantic integration,” AI
magazine, vol. 26, no. 1, 2005, pp. 7–7.

[28] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the
internet of things: early progress and back to the future,” International
Journal on Semantic Web and Information Systems (IJSWIS), vol. 8,
no. 1, 2012, pp. 1–21.

[29] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in
Web services. Springer, 2004, pp. 123–149.

[30] IFTTT, “IFTTT.” [Online]. Available: https://ifttt.com [retrieved:
2020.09.04]

[31] Tasker, “Tasker for Android.” [Online]. Available:
https://tasker.joaoapps.com/ [retrieved: 2020.09.04]

[32] openHAB Foundation e.V., “openHAB,” 2019. [Online]. Available:
https://www.openhab.org/ [retrieved: 2020.09.04]

[33] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and
K. Wasielewska, “Semantic interoperability in the internet of things:
An overview from the inter-iot perspective,” Journal of Network and
Computer Applications, vol. 81, 2017, pp. 111–124.

[34] “Linked Open Vocabularies for Internet of Things (LOV4IoT).”
[Online]. Available: http://lov4iot.appspot.com/ [retrieved: 2020.09.04]

[35] A. Bröring et al., “The big iot api-semantically enabling iot interoper-
ability,” IEEE Pervasive Computing, vol. 17, no. 4, 2018, pp. 41–51.

[36] K. Kurniawan, F. J. Ekaputra, and P. R. Aryan, “Semantic service de-
scription and compositions: A systematic literature review,” in 2018 2nd
International Conference on Informatics and Computational Sciences
(ICICoS). IEEE, 2018, pp. 1–6.

[37] F. Burzlaff and C. Bartelt, “Knowledge-Driven Architecture Compo-
sition: Case-Based Formalization of Integration Knowledge to Enable
Automated Component Coupling,” in 2017 IEEE International Confer-
ence on Software Architecture Workshops (ICSAW). IEEE, Apr. 2017,
pp. 108–111.

56Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

