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Abstract—Existing scientific approaches that integrate non-
standardized software components automatically are seldom
used in practice. Consequently, practitioners currently rely on
standardization initiatives or they implement software adapters
manually. However, standards quickly lose their claim for cor-
rectness as fast innovation cycles prohibit timeliness of machine-
understandable domain standards for open and dynamically
evolving software ecosystems. Although scientifically driven ap-
proaches can be applied in order to automatically generate
software adapters reliably, they require a formal mapping
specification for all possible integrations between a provided
and a required interface at system design-time. In contrast,
imprecise matching approaches based on service specifications
can be applied at run-time but cannot produce reliable interface
mappings. In this paper, we provide our first evaluation for a
novel integration method that can integrate components auto-
matically based on incomplete mapping knowledge. Although
this method explicitly embraces manual integration efforts, we
aim at achieving automatic adapter generation by making ad-
ditionally formalized integration knowledge reusable. By storing
integration knowledge only when a concrete use case is present,
generated software adapters remain reliable. Using an empirical
within-subject evaluation design, we quantify how reusing formal
interface mappings can speed up integration tasks in an agile
development setting. We expect the proposed method to be
applied in adaptive software ecosystems that evolve in short
innovation cycles such as the Internet-of-Things.

Keywords–Semantic Interoperability; Knowledge Reuse; Soft-
ware Component Compatibility; Engineering Methods

I. INTRODUCTION

Manual integration effort for open dependable software
systems currently increases exponentially [1]. Although there
exist standardization initiatives, semantic service interoperabil-
ity is still a challenge [2] [3]. Software innovation cycles
iterate faster each year and top-down standardization initia-
tives are too slow to keep up with the increasing rate of
change. Furthermore, most standards pre-define a machine-
readable (can be parsed) or machine-understandable (can be
reasoned about) domain-specific vocabulary by relying on the
assumption that syntactically identical words also expose the
same meaning. Despite the fact that formalized and executable
model checkers to ensure software component interoperability
exist (e.g., AUTOSAR [4] for the automotive industry), stan-
dards describing a domain completely and unambiguously are
currently not applied by other industries. Hence, independent
software engineers implement point-to-point adapters without
having the ability to reuse existing integration knowledge
across software ecosystems. Standards quickly lose their claim
for correctness as fast innovation cycles prohibit timeliness
of domain knowledge for open and dynamically evolving

software systems [5].
Formal approaches can couple heterogeneous software

components in an automated way [6] [7]. Although selected
semantic interface mappings can be deduced by exploiting
reasoning, the applicability of such logic-based approaches
is limited in practice. One key challenge such approaches
face is the high specification effort needed upfront for open
software ecosystems [6] [8]. Describing all interfaces for use
cases based on fixed requirements and an increasing number
of Internet-of-Things (IoT) devices is not practical for most
open software systems [9]. From a platform owner viewpoint,
it is not guaranteed that formalized integration knowledge
derived from requirements is used during run time by the
available components. This is mainly due to the circumstance
that end-users express their requirements and use cases during
run-time (e.g., by using If-this-then-that statements) and IoT
device manufacturers cannot be forced to adhere to one service
specification syntax and one domain-specific model. Formal
mapping approaches can automatically generate highly reli-
able software adapters for closed and well-defined application
contexts. They assume that integration knowledge is specified
in an almost complete manner.

Service Matching Solutions, such as semantic interface
matching approaches [10] [11] or fuzzy matching approaches
[12] for comprehensive service specifications (e.g., MatchBox
[2] [13]) allow for matching required against provided services
based on their interfaces and/or behavioural description. Al-
though these approaches can be applied in an open system con-
text, they produce only probabilistic results. If no perfect match
is found, then these approaches only serve as an assistant for
manually selecting relevant interfaces. Furthermore, they may
outsource knowledge engineering for a domain to an ontology
which, like industrial standards, are prone to be outdated and/or
contain inconsistencies [5]. Consequently, their matching result
cannot be processed automatically and cannot be used reliably
for adapter synthesis. Matching approaches abstract away from
concrete use cases and device interfaces and are therefore
widely applicable in open systems. Nonetheless, they do not
produce reliable results as they mainly work on concrete syntax
and only approximate service meanings in a given context.
Practitioners require a method that maximizes interface map-
ping formalization effort in open software systems. Otherwise,
similar software adapters are implemented all over again.

In this paper, we apply a novel integration method that
formalizes interface mappings incrementally in the context of
a home automation system. We evaluate the applicability of
the method onto this system class by performing an empiri-
cal experiment to demonstrate how integration knowledge is
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formalized, stored and reused by 15 students. In Section 2,
we define all the required terms. Next, in Section 3 the novel
integration method is introduced within the smart home context
and in Section 4 we outline the experiment and its results.
Finally, in Section 5 we conclude our work.

II. CONTEXT AND DEFINITIONS

In order to explain the concepts of the novel integration
method within an open IoT software ecosystem, the following
definitions are used:

Software Component: A software component is a software
element that conforms to a component model that can be
independently deployed and that can be composed without
modification according to a composition model [14]. Software
component’s actions can be accessed by a well-defined inter-
face. An action contains a function name, a list of parameters
that are inputs, and an output.

Interface Description Language: An Interface Description
Language defines a set of actions in a programming-language
independent way. Depending on the expressiveness of the
language, the syntactic level (e.g., data types and representa-
tion), the semantic level (e.g., range of parameters or pre- and
postconditions), and the behavioural level (e.g., constraints on
the ordering of interactions sequence) can be described.

Component Integration: An interface description can be
either used to express actions a component requires from
its environment or to express actions that are provided to
the environment. Hence, software components are compatible
if there exists a contract between their interfaces that maps
all necessary interface description elements (i.e., they can
be integrated). In distributed systems (e.g., based on web
services), this is similar to the concept of interoperability -
or integration in a more colloquial style.

Semantic Interoperability: Semantic Interoperability en-
sures that services and data exchanged between a provided
and a required interface makes sense - that the requester and
provider have a common understanding of the ”meaning” of
services and data [15]. Semantic interoperability in distributed
systems is mainly achieved by establishing semantic corre-
spondences (i.e., mappings) between vocabularies of different
(data) sources [16].

Software Ecosystems: A Software Ecosystem is a socio-
technical system (e.g., it contains organizations, people, digital
systems, and partnerships). Independent participants collabo-
rate together to generate mutual benefits.

Adaptive Software Ecosystems : Adaptability in Software
Ecosystems can be achieved by engineering principles (e.g.,
explicitly planned component configurations), emergent prop-
erties (e.g., implicitly derived from cooperation patterns of
the participants) or evolutionary mechanisms (e.g., replacing
components) [17]. The higher the degree of adaptability, the
more the human is involved.

Open- vs. Closed-world models : A closed-world model
of a system directly represents the system under study. This
means that there is a functional relation between language
expressions and the modelled world. Even when modelling is
used to create a conceptual model of a domain, the represented
knowledge is implicitly viewed as being complete. As software
ecosystems have to be aware of constraints for ensuring
adaptability and controllability, an open-world assumption is
being assumed for this system class [17].

Top-Down vs. Bottom-Up System Engineering Approaches:

In the context of web services, service compositions can be
either performed from top-down or bottom-up [18]. Bottom-up
refers to whether pre-existing service interfaces are composed
and thus adapters may be required due to mismatches. Top-
down refers to given a pre-existing composition model, which
suitable interfaces need to be discovered and possibly adapted
to fit into the composition.

Semantic Integration happens in a software ecosystem
within the digital software system. This task is mostly per-
formed by a System Integrator. Now, based on the assumption
that Software Ecosystems are based on open-world models (see
Definition II), bottom-up integration approaches for software
adapter creation are required. Hence, a system integrator has to
take the inter-dependencies between the models of all involved
systems (e.g., IoT components and the platform models) into
account. Consequently, integrating software components from
bottom-up may be a valuable engineering approach, in con-
trast, to designing a machine-readable domain-model from top-
down. Nevertheless, a formal underpinning is still required as
it facilitates meaningful integration and transformation among
models, which is needed for automation through tools.

A. Example

Assume that there exist multiple software component in-
terfaces that were developed by independent software vendors.
A semantic integration effort between provided and required
software component interface exists when domain models are
used by heterogeneous parties. This is mainly due to the
circumstance that the device developer determines the concrete
syntax based on a self-created semantic domain S for each
interface element at component design-time. The semantic
domain S is imagined (e.g., Open door in the living room) and
the respective mappings from the concrete syntax to a semantic
domain element is identified. At component integration time,
a mapping can be identified by a system integrator to semanti-
cally map two syntaxes each from one distinct vocabulary by
providing e.g., a function ”map(close,close)” (see Figure 1).

Figure 1. Semantic Interoperability Example for a Home Automation
Platform

This mapping does not only take place on the syntactic
but also on the semantic interface level. Depending on the
use case (i.e., context), close can mean to undo open or
close in proximity. This semantic integration knowledge is
codified into the respective software adapter. Please note that
this example is more related to being able to execute a
corresponding automation process on various IoT devices (i.e.,
vertical integration). Another integration case is to connect
home automation process elements in a horizontal way. For
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instance, a wall switch defines a required interface to close a
door.

III. KNOWLEDGE-DRIVEN ARCHITECTURE COMPOSITION
APPLIED TO HOUSE AUTOMATION RULES

In this section, we briefly introduce the novel integration
method [19]. This method is one answer to the underlying re-
search question How can software components be semantically
coupled in an automated way based on partially incomplete
integration knowledge? Then, we will mainly focus on how this
method has been applied to integration tasks within a home
automation platform.

A. Principles of Knowledge-driven Architecture Composition
As most IoT-related communication, the messages being

sent within a smart home environment are predomenantliy
data-driven (i.e., following the HATEOS principle) for REST
(Representational State Transfer) services. Similar to most
engineering approaches that aim at achieving semantic inter-
operability, this method also abstracts away from network-
ing protocols (e.g., HTTP) and syntactic characteristics (e.g.,
JSON). Overall, the method aims at 1) storing mappings
between two devices based on their interface definition using
a declarative language and 2) to logically reason about these
mappings. Finally, platform-specific software adapters can be
automatically generated by reusing stored mappings or based
on derived mappings. The method aims at finding all necessary
mappings between a provided and required interface based on
the following four principles:

• We do not require all component interface specifica-
tions and mappings to be present at system design-
time but formalize them incrementally when a con-
crete use case is available

• If all mappings for one use case are present, then a
software adapter can be generated in an automated
way

• Manual implementation effort (e.g., software adapter)
is explicitly allowed

• By storing and evaluating interface mappings for each
use case, integration knowledge becomes reusable and
decreases manual implementation effort

The set of all principles for semantic component integration
can be subordinated under the term Knowledge-driven Archi-
tecture Composition (KDAC).

During the component design phase at time t=0, compo-
nent provider, as well as requester can design their service
interfaces without using a machine-readable interface descrip-
tion language that contains semantic data annotations based
on a machine-understandable domain model (see Figure 2).
Furthermore, a home automation process is created which uses
software component B.

Assume at time t=1, an integration is necessary as a new
device is present and the home automation process should
not be changed. In addition to writing an individual software
adapter to connect component model A (see Syntactic Domain
A in Figure 1) to the component model of B (see Syntactic
Domain B in Figure 1), the system integrator adds declarative
mappings between both data vocabularies. This is illustrated
in the rectangles above the KB in Figure 2 where a node
represents a word from a vocabulary and an edge represents a

mapping. These mappings are stored in a knowledge base KB
(e.g., specifying map functions from the running example).

Over time, various other components are integrated as well
(i.e., indicated by frames in Figure 3) and new mappings are
added. For example, software component A* (i.e., another
door from another manufacturer in Figure 1) uses the same
domain model as software component A. Hence, the stored
mappings for component A can be reused automatically. Now
assume that there exists no common domain model between
component A and A*. However, there exist mappings between
components A and C (not shown in Figure 2) and from compo-
nent C to A*. Due to the transitive relationship A↔ C ↔ A∗,
the mappings from component A↔ A∗ can be calculated by
logical reasoning.

At time t=n, only a few new mappings are required
which could ultimately result in fully automated component
integration at run-time by generating the required software
adapter.

IFPROVIDER IFREQUIREDIntegration

t=0

t=1

t=n

Component 
Design

Integration 
System 1

Integration 
System n

ifProv

A

ifProv

A*

ifProv

B

ifReq

KB

KB

B

ifReq

B

ifReq

A

Figure 2. Knowledge-driven Architecture Composition Method

The novelty of this approach is the evolutionary process of
formalizing integration knowledge without requiring a closed
domain model from requirements. Rather, the focus lies on the
incremental formalization of semantic mappings per use case.
More details about the proposed method itself can be found in
[19] [20].

B. Related Work
In general, there are two movements for solving syn-

tax/semantic interoperability problems for independently de-
veloped components: 1) Interface Mapping Solutions [6] [7]
as well as 2) Interface Matching Solutions [13].

Bennaceur et al. [6] [21] present MICS, a mapping ap-
proach that can infer interface mappings between operations
and data of software components based on a formal compo-
nent composition model. Their main motivation lies within
the fact that other adapter synthesis approaches assume that
all interface mappings are provided for all components at
hand. Assuming that each application domain has its machine-
understandable vocabulary, they use description logic proper-
ties (i.e., SHOIN(D) to identify implicit interface mappings
(e.g., using subsumption). For modelling the behaviour of a
software component interface, they used labelled transition
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systems, which implement concepts of finite-state processes. In
contrast to KDAC, this approach can deal with more complex
interfaces (i.e., stateful services) but relies on the assumption
that sub-models used in the service descriptions for each IoT
component are fixed at component design-time.

When the semantic domain of an application domain is
not formally specified, then matching solutions can be ap-
plied. For example, in the component-based software engi-
neering community, configurable matching approaches such
as MatchBox [13] are currently regarded as the state-of-the-
art. Matchbox automates the re-configuration of individualized
matching scenarios in service discovery scenarios. In this
approach ontological signature matcher, condition matcher, pri-
vacy matcher and others can be combined automatically. The
difference to KDAC lies within the automation property. Here,
the matching approach always provides a probabilistic value
for unseen automation rules. In contrast, mappings formalized
within KDAC can be automated as a use-case with tested
automation rule and device properties must be present (i.e., it
can be applied in dependable systems such the presented home
automation scenario). Other matching approaches for service-
based components emerged in the web service community [10]
[11]. For example, semantic web service descriptions such
as SAWSDL and corresponding matching approaches such as
SAWSDL-MX2 [10] can be applied similarly as code-based
component matchers like MatchBox [13].

In practice, there is a tendency to solve interoperability
problems by creating informal, machine-readable or machine-
understandable standards. Such standards are created by mul-
tiple companies (e.g., OPC UA [22] or ZigBee [23]) or are
dictated by a dominating market player (e.g., Apple Smart
Home [24]). Some standardization such as IoT-Lite [25] also
provide a machine-understandable domain models for device
description. If one standardized vocabulary was used and
interpreted by all device developers identically, then there
would not be interoperability problems at the syntax/semantic
interface. However, standards cannot cope with the increasing
rate of change with software innovation cycles iterate faster
each year in most application domains. If no single standard
exists, then the system integrator must interpret the software
component interface in the context of the automation rule.
This currently means implementing similar imperative soft-
ware adapters manually all over again (no domain model or
multiple machine-readable domain models) or automated re-
configuration is not feasible in a dependable way (no machine-
understandable domain model). The latter problem is primarily
tackled by KDAC.

C. Applying KDAC within Home Automation Platforms
To enable a system integrator to apply the KDAC method,

the following infrastructure assumptions must hold for an IoT
software ecosystem (see Figure 4)

• All software components must be already integrated
at the technical and the syntactical level. This means,
that the platforms must support all required commu-
nication protocols (e.g., MQTT or HTTP) as well as
the syntactic payload definition (e.g., JSON or XML)

• The platform handles all calls/requests and the serial-
ization/deserialization to/from the components

• A Formalization Editor must be able to retrieve
all syntactically available device attributes provided

by the connected software components. Furthermore,
there must be a declarative language that can be used
to formalize interface mappings

• The Formalization Editor must be connected to a
knowledge base that is used to store, retrieve and
evaluate available interface mappings

The main architectural components are the following:
Formalization Editor: For specifying interface mappings in

a declarative style, we use JOLT [26]. JOLT is a JSON to JSON
transformation library where the specification for the transfor-
mation itself is a JSON document. An example of a declarative
JOLT specification can be seen in Figure 3. Platform A: We
used openHAB [27] as a home automation platform. Open-
HAB can syntactically integrate various IoT components out-
of-the-box by providing over 200 adapters from heterogeneous
device manufacturers. In addition, openHAB can be accessed
using a REST-like interface to manipulate home automation
rules, data channels that are offered by the IoT devices, a rule
execution environment and a user interface to monitor the state
of all devices.

Knowledge Base: The Knowledge Base stores formalized
mappings in JOLT. Here, a graph-based structure is imple-
mented where each node represents a data-channel and each
edge represents a mapping specification. This allows for calcu-
lating new mappings (e.g., traversing the graph from a required
to a provided interface to identify transitive relationships).

Component: A component is an IoT-device, which is con-
nected to the platform by its interface. The required software
adapter, that makes all data channels syntactically available
within the platform, is provided by the platform.

User Interface for Formalization Editor: Automation Rules
within the IoT context often follow the IFTTT (If-This-Then-
That) structure. This structure also holds for openHAB. For
example, the automation rule Turn on Heating contains a
trigger, a condition and an action (RuleBuilder panel in Figure
3). Each rule part contains a drop-down menu where all
available data channels provided by the connected devices are
listed. A data-channel is called Item in openHAB and has a
unique name, a description label and a type. For instance, the
data-channel Living Heating offered by a software compo-
nent A has been used within the automation rule Turn on
heating. Now, the rule should be executed in another envi-
ronment where only the data-channel Heating GF Living
exists. Hence, the required interface Living Heating by the
automation rule must be integrated with the provided data-
channel Heating GF Living. Now, the system integrator
can map the data-channels Heating GF Living provided
by software component B to Living Heating. All currently
provided data-channels are displayed in the Integration-Items
perspective and all required items for one rule are displayed
in the Remote-Items panel.

If no mapping for a data-channel exists, it must be created
by the system integrator in addition to re-configuring the
automation rule (i.e., adapting the software adapter over a
user interface). The operation shift displayed in the Mapping-
Specification panel is part of the JOLT specification language
and is the application of the map function as seen in the
running example. This mapping is stored to the knowledge
base.

If a mapping specification for a data-channel within the
rule is available, then it is retrieved from the knowledge base,
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Figure 3. User Interface Formalization Editor

displayed (see Mapping Specification and selected Remote-
Items). The availability of an interface mapping is indicated to
the system integrator by a green background. If no specification
or not all required specifications for an automation rule are
found, then the system integrator has to create new mapping
specifications and configure the system accordingly.

If all required mappings are available, the required con-
figuration calls (cf. software adapter from the method) are
generated and issued automatically to the connected platform.
Finally, the system integrator can test the adapted rule by
executing it and supervising the device status changes within
the dashboard provided by openHAB (not displayed).

The main effect of applying the proposed method is helping
to achieve automated adaptability in software ecosystems.
Based on the provided definition II in the section Context and
Definitions, this method focuses on engineered adaptability
and evolutionary adaptability. Engineered Adaptability as the
platform is now able to re-configure itself during run-time

Figure 4. Logical System Architecture

and execute context-sensitive automation rules. Evolutionary
adaptability as new components can be integrated manually
by the system integrator. Furthermore, human involvement is
minimized over time as mapping specifications can be reused
and/or generated by reasoning principles without having to
rely on a predefined machine-understandable domain from
requirements. As this method always requires a concrete use
case, the formal specification effort gets controllable without
losing the ability to automatically integrate new devices on-
the-fly.

IV. EVALUATION

We designed a controlled experiment based on a within-
subject evaluation design to validate our claim. Therefore, we
used well-known design principles for empirical studies in
software engineering [28] [29]. Our goal is to provide evidence
that, over time, reusing interface mappings formalized based
on concrete use-cases speeds up integration tasks. Hence, ad-
ditional specification effort should pay off regarding system re-
configuration. Therefore, we measure the time in seconds per
home automation rule until the correct data-channels are found.
Furthermore, we measure the time for additional specification
creation and the time for specification reuse. Thus, in our study,
the independent variable is determined by either using the
conventional approach (i.e., re-configuring the platform each
time a new IoT device enters the environment) or by using
KDAC. The dependent variable is the required time for solving
integration tasks [28].

Participants: We conducted the experiment within a project
cooperation between a German and a Romanian university. All
students studied within an Informatics-related profession and
can either speak English, German or Romanian. Overall 15
students participated in the evaluation.

• 7 students are currently pursuing their master studies
and 8 students their bachelor studies

• 4 out of 15 students own IoT devices and 2 out 15 have
been already involved in IoT software development
projects

44Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



• 4 out of 15 students have read about home automation
platforms like openHAB [27] and 3 have already
worked with IFTTT rules

• 5 out 15 students knew the IoT-related protocol MQTT
[30]

Student Setup: Two groups of students were formed and
competed against each other [31]. By assigning students to one
group, it was made sure that they were balanced in terms of
experience and knowledge. The control group could not reuse
interface mappings, but the experimental group could. This
means that the control group had to manually re-configure the
automation rule. The experimental group could reuse already
specified mappings. However, if no mapping was found they
had to re-configure the system (i.e., perform the task of the
control group) and specify a mapping using JOLT in addition.

Evaluation Execution: The story line that was presented to
the students is:
A new automation rule has been downloaded to your home
automation platform. However, the rule is not working as other
devices have been initially used. Your task is to replace all
data-channels until the graphical state visualization provided
by the home automation platform of each device is acting ac-
cordingly to the meaning conveyed by the displayed automation
rule.

Overall, all participants had to work on six automation
rules. As an example for the experimental group, one automa-
tion rule was:
Task 1: Find the correct item for the rule Turn on Heating
based on the data-channels

1) Living Heating
2) Heating Living
3) Heating GF Living

at the ground floor.
If the correct item is found, select (1) Living Heating from
the Remote Item Panel and create the mapping specification.

Hence, the automation rule was initially configured with
the data-channel Living Heating, but the device that pro-
vided this data-channel was not available anymore. The other
automation rules exposed a similar structure.
The participants were instructed that they had to follow the
given order of data-channels replacements and then performed
the following loop:

• Configuration Time: Configure next data-channel from
the task and export it to the connected home automa-
tion platform by using the tool (see Figure 3).
◦ The experimental group could also directly

select a correct data-channel if a mapping
has been retrieved from the knowledge-base
(i.e., indicated by a green background). Hence,
existing mappings are automatically evaluated
and the necessary re-configuration calls to the
platform are generated, but the students had to
manually trigger their invocation. Otherwise,
they had to stick to the data-channel order from
the task.

• Testing Time: Next, the participant switched to the
home automation platform user interface and executed
the adapted rule. Then, the respective device state icon
was inspected if the desired action had been executed

(e.g., the heating icon label switched its status from
OFF to ON). If the item changed its status according
to the rule, then the task is solved. If not, the next
item had to be tested.
◦ Specification Time: As soon as the correct item

is found, then a mapping specification had to
be created based on a template (experimental
group only).

All created mapping specifications are stored in the knowledge
base and are available to other students that have been assigned
to the experimental group.

A. Results
The main reason for carrying out an empirical evaluation

was the trade off between the cost of having additional for-
malization effort for automated data-channel replacement and
the benefits of reusing interface mappings for configuring the
home automation platform (i.e., software adapter generation).
Each task involved different amounts of item replacements and
only task 1, 3 and 5 were equipped with mapping specifications
for the experimental group. Overall, the following total times
for all reuse rules have been measured (see Figure 5).
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Therefore, we first calculate the total time in seconds for
the rule using 3 for the control group and 4 for the experimental
group. Here, Y returns the average time in seconds and X is
an integer. Then, the sum of each rule result per group is
calculated.

X = AmountOfReplacementOperationsPerRule (1)

Y =
TotalAmountOfReplacementOperations

TotalT imeForAllRules
(2)

TimeControlGroup = X ∗ Y (3)

TimeReuseGroup =
(X − 1) ∗ Y +ReuseT ime

X
(4)

Table I displays the averages and variances per rule in
more details for both groups. Here, Baseline refers to the
sum of Configuration Time and Testing Time for the control
group. Specification Time means the time to create a mapping
specification in JOLT (experimental group only). Reuse (also
Configuration and Testing Time translates to a task (i.e., one
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of 1,3 or 5) where a mapping specification was found and
evaluated so that one correct data-channels is available (exper-
imental group only). Overall, Specification Time occurred only
once to a student of the experimental group. This specification
then influenced the Configuration Time for the next student
in the experimental group as it was automatically evaluated.
Testing Time was almost identical for all students and groups.

TABLE I. INTEGRATION TIME IN SECONDS PER DATA-CHANNEL
(AVERAGE : VARIANC)

Baseline Specification Reuse
Rule 1 42 : 12 57 : 30 38 : 22
Rule 2 38 : 10 59 : 26 0 : 0
Rule 3 32 : 9 54 : 29 25 : 13
Rule 4 31 : 10 43 : 18 0 : 0
Rule 5 31 : 10 40 : 20 30 : 16
Rule 6 34 : 16 51 : 19 0 : 0

If a green data-channel (i.e., indicated by a green back-
ground as depicted in Figure 3) was present, measured Reuse
times also refer to the sum of Configuration Time and Testing
Time for the experimental group. However, the difference
between the control group is the number of replacement
operations. For instance, assume that 5 data channels must
be tested in the given order. Furthermore, data channel 4 is
the correct one and there exist a mapping from data channel
1 to 4. Then, the control group must perform 3 replacement
operations (i.e., 1-2, 2-3, 3-4) and the experimental group must
perform 1 replacement operation (i.e., 1-4).
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Figure 6. Average Participant Performance

Overall, 211 item replacement operations have been mea-
sured (i.e., Average Config Time) and have been tested within
the home automation environment (i.e., Average Testing Time).
For specification tasks, we measured 54 runs. On average,
configuration time lasted 24 s, testing time lasted 11 s and
specification time 49 s (see Figure 6).

Figure 5 suggests that the experimental group (i.e., reuse)
is faster than the control group (i.e., baseline). Hence, our
initial claim to outline the applicability of KDAC within an
IoT software ecosystem is fulfilled. However, the point in time
where specification effort pays off can only be estimated (e.g.,
based on the metrics in Table I).

B. Threats to Validity
There are several threats to internal and external validity.

Internal Validity: Our evaluation targets the causal relationship
between either re-configuring the home automation platform
each time a new IoT device enters the system or by using
KDAC (independent variable) and time (dependent variable).
However, the presented results provide one result for one
concrete implementation that may be subject to change in
another run. This is mainly due to confounding factors (e.g.,
User Interface Design). Furthermore, the evaluation design
ensured an early applicability of data-channels mappings. In
large-scale engineering projects, it is unclear when and how
often such mappings can be actually reused.

External Validity: The population size is too small to be
generalized from. Hence, we cannot say whether the presented
results are statistically significant. The respective variances
strengthen this circumstance. However, the empirical evalu-
ation, the presented architecture and the technical implemen-
tation illustrate how the novel engineering method KDAC can
be applied in a home automation system.

V. CONCLUSION AND FUTURE WORK

Interoperability without modifying software component
interfaces is needed in today’s open and adaptive IoT software
ecosystems. In this paper, we applied and evaluated a novel in-
tegration method called Knowledge-driven Architecture Com-
position that explicitly allows for manual integration effort
without sacrificing reliability. First, we propose an adapted
architecture for a home automation platform. Second, we
provide a tool and six use-cases that allow for specifying
interface mappings for data-driven IoT devices and automation
rules from bottom-up. By using the tool, created mappings can
be stored in a knowledge base and are made reusable for future
integration scenarios. By doing so, we do not lose the ability
to re-configure adaptive home automation platforms in an
automated way. Formalization effort becomes controllable as a
concrete use case must be present. There is no need to specify
all possible interface mappings completely at design-time.
Third and last, we evaluate the novel incremental, bottom-up
integration method with 15 students. We could show that the
data-channel mapping specifications created by the proposed
method do speed up the overall reconfiguration of the home
automation platform.

In the future, we plan to transfer our approach to other
system classes such as HTTP-based micro-services in an en-
terprise setting. This will require more complex transformation
functions and will enable a practical comparison to existing
mapping approaches. Furthermore, we are currently working
on incorporating reasoning services that can transitively infer
extended mapping specifications by a sequential execution of
mappings. By doing so, we expect to decrease the manual
specification effort for the presented approach even further.
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