
Towards Improving Software Architecture Degradation Mitigation
by Machine Learning

Sebastian Herold
Karlstad University
Karlstad, Sweden

Email: sebastian.herold@kau.se

Christoph Knieke, Mirco Schindler, Andreas Rausch
Clausthal University of Technology

Clausthal-Zellerfeld, Germany
Email: firstname.surname@tu-clausthal.de

Abstract—Mitigating software architecture degradation is a task
in evolving large and complex software-intensive systems that is as
important as it is challenging. One aspect adding to the complexity
of the task is the amount of information in the implementations of
most real-world systems to be digested in order to detect, analyse,
and remedy degradation. In domains with similar challenges,
machine learning techniques have been applied in recent years
and partially delivered exciting results. Hence the question arises
whether, and to which degree, machine learning can be success-
fully applied to tackle software architecture degradation. In this
paper, we propose a novel combination of existing techniques for
different phases of the task of mitigating software architecture
degradation from detecting it to repairing it. We outline how
these techniques could be complemented by machine learning to
increase their accuracy and efficiency over time.

Keywords–Software Evolution; Software Architecture Degrada-
tion; Machine Learning.

I. INTRODUCTION

Mitigating Software Architecture Degradation (SAD) plays
an important role for the longevity of evolving software-
intensive systems. Today SAD is a big challenge in modern
architectures like the architecture of software ecosystems and
services and leads to a deteriorates of the quality of such
systems. Architecture degrades/erodes when the implemented
architecture of a software system diverges from its intended
architecture [1]. This usually happens during software evolution
when the software undergoes changes as a result of bug fixes
and further development, but may also happen during initial
implementation of the system. Architecture erosion hinders the
further development of systems and leads to less reusability,
maintainability, understandability and decrease in performance.

There has been a lot of research on how to mitigate SAD
[1]. However, studies show that in practice it is still difficult
to remedy SAD [2]. The study in [1] concludes that none
of the available methods singly provides an effective and
comprehensive solution for controlling architecture erosion.

There are many reasons why the reduction of SAD causes
so many difficulties. One is the inherent complexity of the
task. Modern software systems are highly complex and have
a long lifespan. The system experts have to filter and find
the information relevant to SAD in the huge amount of data
contained in large (and potentially old) repositories of source
code and other relevant artefacts. Current approaches to SAD
seem not to scale well with this complexity [1].

In other domains with similar challenges Machine Learning
(ML) techniques are already used to support maintenance and
evolution tasks (“predictive maintenance”). Generally, ML is
taken to encompass automatic computing procedures based on

logical or binary operations that learn a task from a series of
examples, i.e., ML provides systems the ability to automatically
learn and improve from experience without being explicitly
programmed to so [3]. ML is divided into three subdomains
supervised, unsupervised, and reinforcement learning [4].

Over the past decade, ML techniques have been widely
adopted in a number of massive and complex data-intensive
fields such as medicine, biology, and astronomy, for these
techniques provide possible solutions to mine the information
hidden in the data [4]. The question motivating this article is
whether and how such techniques can be applied to mitigate
SAD more effectively and efficiently. In this paper we look at
the state of the art in mitigating SAD and propose a combination
of existing techniques and how to add ML to them in order to
increase the techniques’ accuracy and efficiency over time.

The paper is structured as follows: Section II gives an
overview on the related work. Our idea towards a learning
environment for mitigating SAD is presented in Section III.
Finally, Section IV concludes.

II. STATE OF THE ART IN MACHINE LEARNING FOR
DEALING WITH SAD

In order to characterize the state of the art in using
ML, or related techniques, to mitigate SAD, we conducted
a systematic literature review of 26 eventually relevant papers.
This review is currently being finalized, however, a few
important characteristics can already be noted.

We were particularly interested in which activities of SAD
mitigation are covered by research. In an earlier mapping study
on SAD in general, activities were distinguished into detection,
analysis, repairing, and prevention of degradation [5]. We added
architecture recovery as an important subsequent step that is
intertwined with detection in many techniques and categorized
the relevant papers according to the five resulting activities
(multiple categories per paper were possible). The results show
that a majority of papers fall into the activities of recovery
(7 papers) and detection (9 papers). These can be considered
the “early” phases of SAD mitigation as one has to have the
intended architecture and to know the present inconsistencies
before actions against SAD can be taken. Seven papers were
considered to cover the analysis of degradation and only three
look at the usage of ML for repairing degradation. Preventing
erosion was the motivation for four papers.

The use of ML for architecture recovery appears quite
natural as clustering is one of the commonly used techniques
used in this activity and also a main application of many
unsupervised learning techniques. Hence, these techniques are
used relatively frequently in this context [6] [7] [8].

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

The usage of such techniques as a part of detecting and
analysing SAD is very diverse. It covers very distinct activities
like automating the creation of architecture-implementation
mappings required in most consistency checking techniques [9],
the detection of design defects [10], or the analysis of the use of
architectural tactics [11]. To our best knowledge, no approach
applies ML to help software engineers understand potential
causes of instances of SAD to better mitigate it as proposed in
literature [12]. In preventing SAD, the identified studies were
mainly about preventing architecture smells which are often
considered to be an important factor leading to degradation
(e.g., Fontana et al. [13]).

Most of the studies report positive results regarding the
performance of the applied ML techniques as measured by
precision, accuracy, or recall. It can thus be concluded that the
use of ML techniques in the context of SAD seems beneficial
even though a potential publication bias in favour of positive
results cannot be completely excluded. However, a few studies
outline that there is space for improvement. Khomh et al., for
example, apply Bayesian Belief Networks for code and design
smell detection with comparably low precision [14]. Lenhard et
al. describe a study in which they investigate whether “smelly”
code can be used as an indicator for architectural inconsistencies
[15]. They tried to train a classifier for this task and describe
the results as unsatisfying as they show low precision and
recall.

We can conclude from these preliminary findings that an
holistic approach making use of ML techniques, supporting
the software engineering coherently from the detection of
degradation to counteracting it, is missing. Moreover, ML
is less frequently applied directly to the phenomenon of
degradation, i.e., the divergence between intended architecture
and implementation of a system but with aspects indirectly
connected to it, such as code/design/architecture smells, design
defects, architecture tactics, etc. A stronger research focus
on the analysis activity in general with the goal of providing
insights to degradation causes might also provide a better
ground for applying ML techniques in the activities of repairing
and preventing degradation.

III. THE ENVISAGED APPROACH

In this section, we present our idea towards a learning
environment for mitigating SAD.

A. Overview
The suggested approach follows conceptually the ideas of

repairing architecture degradation presented by Mair et al. and
extends them [12]. The authors follow the analogy of medical
doctors that, for treating a disease, first assess symptoms to
exclude and diagnose possible diseases or conditions to even-
tually suggesting and executing a suitable therapy. According
to that metaphor, we propose an approach consisting of three
main activities as depicted in Figure 1: Architecture Recovery
and Consistency Checking (ARC), Degradation Cause Analysis
(DCA), and Recommending Repair Actions (RRA).

Comparable to assessing medical symptoms, the ARC
step aims at assessing the status quo of software architecture
degradation in the software system at hand. This means it
consists of inspecting its intended software architecture and
the implementation of a system and detecting inconsistencies
between them. It might also involve recovering (parts of) the

Intended
Architecture

Implemen-
tation

Architectural
Inconsistencies

Violation
Causes

Repair Recom-
mendations

ARC DCA RRA

Knowledge about architecture concepts, types of inconsistencies &
violations, violation causes, and repairings

Software Engineer

input to /
output from activities

Information flow for learning

Figure 1. Conceptual Overview of the Proposed Approach

intended architecture as its specification might not exist or be
outdated. The result of this activity is—beside a potentially
updated intended architecture—primarily a set of architectural
inconsistencies each of which might either be considered
tolerable or to represent an actual, potentially harmful violation
of the intended architecture.

Similar to how the presence or absence of several different
symptoms might point to a certain medical condition, combi-
nations of several architectural inconsistencies and properties
of the implementation fragments connected to them might
indicate a deeper problem behind those inconsistencies. The
activity DCA is hence about aggregating information about
single instances of architectural inconsistencies to form an
overall picture of the underlying causes of the degradation
which potentially helps to remedy it more efficiently.

Recommending Repair Actions (RRA): In analogy to
deciding on the appropriate therapy based on the diagnosed
medical condition, decisions on whether and how to repair the
present architecture degradation based on the identified causes
have to be made. The activity RRA targets at recommending
repairing of the implementation and the intended architecture
based on the identified degradation causes in the system under
investigation.

One essential aspect of the proposed approach is to
complement existing techniques for each of these activities
by a “learning component” with the aim of making the use
of those techniques more accurate and efficient. ML shall be
applied to interpret feedback from and interaction with the user,
a software engineer, to increase accuracy and efficiency of those
techniques over the lifetime of a system and for application in
other systems. For example, a classifier could learn over time
to distinguish architectural violations from inconsistencies that
are considered allowed architectural divergences based on a
software architect’s manual classification of such exceptions in
the set of identified inconsistencies in the past. We postulate
the hypothesis that such a classifier could improve the accuracy
of an architecture consistency technique.

37Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

Most techniques for any of these three activities rely on
explicitly specified conceptual knowledge as depicted in the
upper part of Figure 1. This knowledge is system-independent
and comprises architectural concepts and the constraints they
imply in the implementation, types of architectural inconsis-
tencies and violations, etc. This knowledge is either embodied
in the technique applied (e.g., reflexion modelling as ARC
technique with its fix set of dependency constraints [16]) or to
be specified by the user (like in tools like ArCh [17]). In the
proposed approach, ML techniques shall be applied to extend
such conceptual knowledge over time semi-automatically.

In the following sections, we look at these activities in more
detail and the potential and envisaged usage of ML techniques.

B. Architecture Recovery and Consistency Checking
The techniques proposed to be used in this step are those

suggested by Schindler and Rausch for architecture recovery
[18] and by Herold for architecture consistency checking [17].
In the first approach, architectural concepts (e.g., patterns,
conventions, communication paradigms, or architectural tactics)
are described as set of properties that source code elements
implementing these concepts have to fulfil. Based on these
formally specified properties, instances of known architectural
concepts can be recovered from a system’s implementation. The
difficulty lies in the exact definition of the relevant properties
for such a concept. The authors instead suggest to make use of
ML techniques to classify elements as instances of a particular
architectural concept based on the already existing instances
and their properties. This classifier could be refined over time
and lead to more accurate recovery results.

This approach can be easily connected to the aforemen-
tioned approach to architecture consistency checking [17]. In
this approach, architectural rules are attached to architecture
concepts as first-order logic statements expressing constraints
that a consistent implementation needs to fulfil. These rules are
very similar to the properties used by Schindler and Rausch
[18]. An interesting area for the application of ML techniques
is the detection of exceptions from those architectural rules.
Often, identified violations of consistency rules are considered
acceptable exceptions from the rules (see also Buckley et al.
[19]). ML techniques could help to identify common properties
among such exceptions to reduce the number of such false
positives in future consistency checks.

Moreover, almost all checking techniques and architectural
concepts require some form of mapping between architecture
elements and implementation elements. This is often considered
a cumbersome and time-consuming task [19]. While there exist
techniques to semi-automate this task [20] [21], the use of ML
techniques has been investigated only for reflexion modelling
with promising results [8] [9].

C. Degradation Cause Analysis
For the step of analysing degradation causes, we propose

to further extend an approach proposed by Herold et al. [22].
This approach originally complemented reflexion modelling
as ARC technique of choice but can be easily adapted to
the technique suggested here. Violation causes are expressed
as a combination of (1) structural patterns over architectural
models, source code, and architectural inconsistencies between
them and (2) quantitative properties formulated as metrics and
target values to express likely properties of architecture or

implementation elements if a specific degradation cause seems
to be the reason for an identified architecture violation. The
closer the actual metric values are in the context of a specific
violation, the more likely the degradation cause is considered
to be the actual reason. A recommendation system integrated
into a reflexion modelling tool proposes the potential causes
in descending order according to their computed probabilities
to the user.

We assume that ML techniques can improve these recom-
mendations based on previous user feedback that confirmed
or declined suggested recommendations. In particular in cases
of competing degradation causes (with similar probabilities),
supervised techniques could utilize other features of the relevant
architecture and implementation fragments to prioritise certain
causes over others based on previous experiences. In a similar
way, a system could learn weightings of the “symptoms”
expressed in the quantitative properties of a degradation cause,
to adapt to system-specific characteristics. If, for example, degra-
dation causes refer to textual similarity metrics (among other
metrics) to measure conformance with naming conventions,
but users very often decline such causes despite high scores
computed by the recommendation system (because the naming
convention does not apply in the system at hand), a lower
weight decreasing the naming convention’s influence might be
beneficial. Furthermore, unsupervised techniques could help
to identify new types of degradation causes based on existing
but yet unclassified inconsistencies and relevant features of the
implementation elements related to them.

D. Recommending Repair Actions
For the step of recommending repair actions, we envisage

to adapt the approach proposed by Terra et al. who describe a
recommendation system that suggests refactorings for violations
of dependencies as modelled in an architectural model of
a system [23]. Instead of producing recommendations per
single violations as in the original approach, the degradation
causes identified during DCA will be the units for which
recommendations will be made such that they do not look
at violations in isolation but consider their semantic context.

ML techniques can help to overcome one of the main
limitations of the technique so far which is the fix and
predefined priorities of refactorings. If two or more refactorings
are applicable to resolve an architecture inconsistency, the
one with the higher priority will be recommended. Again, the
technique could be improved in this regard through learning
from previous actions of the user, having accepted and rejected
recommended refactorings, and looking at which recommenda-
tion alternatives were chosen in different contexts. Moreover,
we envisage to also observe how these recommendations are
actually turned into actions. If the recommended (series of)
refactorings are frequently extended by additional actions, for
example, the recommended refactoring could be adapted, or a
new recommendation could be added to the recommendation
system. Similarly, unsupervised learning techniques could
identify recommendations from repair actions that the user
performs without following any of the suggestions of the system
at all.

IV. CONCLUSION AND FUTURE WORK

In this paper, we sketched a novel holistic approach to
counteracting software architecture degradation in software-
intensive systems through extending existing techniques by

38Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

machine learning. Based on the preliminary results of a
systematic literature review, we conclude that an holistic
approach making use of machine learning techniques is missing.
We assume that this new direction leads to improved accuracy
and efficiency in mitigating SAD and, hence, to a higher
acceptance of the corresponding techniques in practice.

In the immediate future work, we intend to adapt and
extend the tools for the three activities identified. This includes
extending them by the means to retrieve feedback on suggested
architecture violations, degradation causes, etc. from the
user and to feed this information into appropriate learning
mechanisms.

In addition, this involves gathering and formalising some of
the conceptual knowledge as outlined in Section III and Figure 1.
This would serve as baseline knowledge in the evaluation of
the approach based on which the learning mechanisms would
adapt to project or system-specific settings over time. This data
can partially come from literature, such as the formalization
of patterns as architectural constraints. Given the lack of
studies in analysing degradation causes, however, empirical
observations from case studies with real-world software projects
and potentially from experiments with students or practitioners
will be performed. Based on this, we will thoroughly evaluate
our approach to identify the strengths, and possible weaknesses.

REFERENCES
[1] L. De Silva and D. Balasubramaniam, “Controlling software architecture

erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1, pp.
132–151, 2012.

[2] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley, “Architec-
ture consistency: State of the practice, challenges and requirements,”
Empirical Software Engineering, vol. 23, no. 1, pp. 224–258, 2018.

[3] Y. Zhang, New Advances in Machine Learning. BoD–Books on Demand,
2010.

[4] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, no. 1, p. 67, 2016.

[5] S. Herold, M. Blom, and J. Buckley, “Evidence in architecture degra-
dation and consistency checking research: Preliminary results from a
literature review,” in Proceedings of the 10th European Conference on
Software Architecture Workshops, ser. ECSAW ’16. ACM, 2016, pp.
1–7.

[6] A. Grewe, C. Knieke, M. Körner, A. Rausch, M. Schindler, A. Strasser,
M. Vogel, and (Keine Angabe), “Automotive software product line
architecture evolution: Extracting, designing and managing architectural
concepts,” in International Journal on Advances in Intelligent Systems,
Hans-Werner Sehring, Ed. IARIA, 2017, pp. 203–222.

[7] A. Corazza, S. Di Martino, V. Maggio, A. Moschitti, A. Passerini,
G. Scanniello, and F. Silvestri, “Using machine learning and information
retrieval techniques to improve software maintainability,” in Trustworthy
Eternal Systems via Evolving Software, Data and Knowledge, A. Mos-
chitti and B. Plank, Eds. Springer, 2013, pp. 117–134.

[8] S. M. Naim, K. Damevski, and M. S. Hossain, “Reconstructing
and evolving software architectures using a coordinated clustering
framework,” Automated Software Engineering, vol. 24, no. 3, pp. 543–
572, Sep 2017.

[9] T. Olsson, M. Ericsson, and A. Wingkvist, “Semi-automatic mapping of
source code using naive bayes,” in Proceedings of the 13th European
Conference on Software Architecture - Volume 2, ser. ECSA ’19. ACM,
2019, p. 209–216.

[10] A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of design
defect examples to detect model refactoring opportunities,” Software
Quality Journal, vol. 24, no. 4, p. 947–965, Dec. 2016.

[11] M. Mirakhorli, J. Carvalho, J. Cleland-Huang, and P. Mäder, “A domain-
centric approach for recommending architectural tactics to satisfy quality
concerns,” in 2013 3rd International Workshop on the Twin Peaks of
Requirements and Architecture (TwinPeaks), July 2013, pp. 1–8.

[12] M. Mair, S. Herold, and A. Rausch, “Towards flexible automated software
architecture erosion diagnosis and treatment,” in Proceedings of the
WICSA 2014 Companion Volume, ser. WICSA ’14 Companion. ACM,
2014, pp. 1–6.

[13] F. Arcelli Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda, “A study on
architectural smells prediction,” in 2019 45th Euromicro Conference on
Softw. Eng.and Advanced Applications (SEAA), Aug 2019, pp. 333–337.

[14] F. Khomh, S. Vaucher, Y. Guéhéneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in 2009 Ninth
International Conference on Quality Software, Aug 2009, pp. 305–314.

[15] J. Lenhard, M. M. Hassan, M. Blom, and S. Herold, “Are code smell
detection tools suitable for detecting architecture degradation?” in
Proceedings of the 11th European Conference on Software Architecture:
Companion Proceedings, ser. ECSA ’17. ACM, 2017, p. 138–144.

[16] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” SIGSOFT
Softw. Eng. Notes, vol. 20, no. 4, p. 18–28, Oct. 1995.

[17] S. Herold and A. Rausch, “Complementing model-driven development
for the detection of software architecture erosion,” in 2013 5th Int.
Workshop on Modeling in Software Engineering (MiSE), May 2013, pp.
24–30.

[18] M. Schindler and A. Rausch, “Architectural concepts and their evolution
made explicit by examples,” in Proceedings of The Eleventh International
Conference on Adaptive and Self-Adaptive Systems and Applications,
ADAPTIVE 2019. IARIA, 2019, pp. 38–43.

[19] J. Buckley, N. Ali, M. English, J. Rosik, and S. Herold, “Real-time
reflexion modelling in architecture reconciliation: A multi case study,”
Information and Software Technology, vol. 61, pp. 107 – 123, 2015.

[20] A. Christl, R. Koschke, and M.-A. Storey, “Automated clustering to
support the reflexion method,” Information and Software Technology,
vol. 49, no. 3, pp. 255 – 274, 2007, 12th Working Conference on Reverse
Engineering.

[21] R. A. Bittencourt, G. J. d. Santos, D. D. S. Guerrero, and G. C. Murphy,
“Improving automated mapping in reflexion models using information
retrieval techniques,” in 2010 17th Working Conference on Reverse
Engineering, Oct 2010, pp. 163–172.

[22] S. Herold, M. English, J. Buckley, S. Counsell, and M. Ó Cinnéide,
“Detection of violation causes in reflexion models,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 2015, pp. 565–569.

[23] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “A
recommendation system for repairing violations detected by static
architecture conformance checking,” Software: Practice and Experience,
vol. 45, no. 3, pp. 315–342, 2015.

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications

