
A Catalog-based Platform for Integrated Development of Simulation Models

Arthur Strasser1, Peter Engel2 and Mirco Schindler3

Institute for Software and Systems Engineering
Clausthal University of Technology

Clausthal, Germany
1 Email: arthur.strasser@tu-clausthal.de

2 Email: peter.engel@tu-clausthal.de
3 Email: mirco.schindler@tu-clausthal.de

Wilhelm Tegethoff4, Sebastian Lempp5

TLK-Thermo GmbH
Brunswick, Germany

4 Email: w.tegethoff@tlk-thermo.com
5 Email: s.lempp@tlk-thermo.com

Abstract—In the automotive domain, it is common practice to
develop a vehicle system with reusable components in order
to reduce development time and costs. Several suppliers are
responsible for the development of the components on behalf of
one leading manufacturer, who ensures the integration of the com-
ponents into the system. Thereby, models are used for simulation
and test of components in advance. The manufacturers integrate
these models of different suppliers into their system under
development using its own simulation environment. However, in
order to optimize the system in a simulation, manufacturers often
rely on the supplier’s expert knowledge regarding components
property values. But often the models must also be modified to
allow their execution in a target simulation environment. Thus,
manufacturers have to cope with manual steps and a decreasing
re-usability of models. To overcome these difficulties, significant
additional effort and costs in every development iteration is
involved. A platform for automating the optimization and version
management of models is a promising approach, to reduce this
development effort as a common basis of the development teams.
Hence, we propose a component simulation-software catalog plat-
form for a cooperatively organized development environment. It
provides a domain specific language as a meta model for modeling
catalogs consisting of model variants and versions. Furthermore,
the platform provides automation services for model import and
export, refactoring and simulation.

Keywords–Metamodeling; Software Ecosystem; Software Plat-
form; Architecture Description; Simulation.

I. INTRODUCTION

In the development of electrical vehicles, manufacturers
apply model-based system simulations to a great extent. In gen-
eral, a simulation can be used to approximate the behavior of a
system before its construction in a real world environment. In
the field of Heating, Ventilation and Air Conditioning (HVAC)
system development, for example, the energy saving potential
of different topologies can be estimated within a simulation
before starting the construction in a further development step.
The development of such a system simulation is cooperatively
organized. The models are usually developed by suppliers us-
ing model-based simulation tools. Then, a system manufacturer
integrates these models into his own simulation environment,
such as, for example, as a so-called co-simulation. Thereby,
these models are coupled in an execution environment, which
is different than initially planned by the design of the models.
Thus, each model must be configured in such a way that it
can be executed in conjunction with all other models within a
third party simulation environment. As a result, manufacturers
have additional expenses for software licenses and training of
software developers. In addition, the interfaces of models are
often modified to enable their integration into the simulation

environment. But this approach hampers the reuse of models
in different system simulations.

The following scenario illustrates the cooperative
development of a system simulation: In order to fulfill
the requirements of a future electric vehicle generation,
existing subsystems of a car are further developed. For
example, a manufacturer must identify the potentials for
energetic savings of the next generation HVAC system. The
manufacturer selects suitable components from the supplier’s
component catalog to develop a HVAC system simulation.
However, the interfaces of the selected models can be either
in a standardized format (e.g., Functional Mock-up Unit
[1]) or other third party formats as Matlab or Dymola. As
depicted in Figure 1, a catalog consists of hierarchies of
models, which are differentiated as series and variants. For
example, there are mechanically or electrically driven air
conditioning compressor series. A variant from a series
represents a model of a specific compressor with its specific
properties (e.g., refrigerant type, discharge volume, etc.). All
models are managed in version managed repositories: The
further development of a model is then represented as a model
version. For example, the modification of the model interface
or the fix of a model error can be stored in the repository.
The description of the properties of series, variants and
versions is hereafter referred to as metadata. Those metadata
are managed in-house by the supplier. As a consequence,
the models must be selected on the basis of their metadata
and configured to be compatible with each other in order to
achieve energy savings. Hence, the manufacturers have to
cope with the following additional effort.

System
variants

Component
series

Component
variants

Figure 1. Current state of practice in the development of simulations models:
Each developer uses his own development environment in each layer.

29Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



• Selection and configuration of a suitable model with
regard to the individual requirements with the support
of the supplier.

• To carry out the optimization and commissioning
of FMUs, the manufacturer must implement ad hoc
solutions that cannot be reused for the development
of next-generation systems.

• Using ad hoc solutions to implement the model in the
own simulation environment, which hampers the reuse
of models.

In order to complete the development in a time and
cost efficient manner and to ensure the reuse of models in
a cooperative organized development, we propose a catalog
based platform, which is described in greater detail in the
following.

According to German Association of Engineers (VDI)
guideline 2206 [2], a seamless tool support is necessary for
a systematic system development. However, the current devel-
opment practice is often not seamless, as seen for example
in the development of customer-specific solutions used in the
supplier’s tool chain. Thus, the contribution of this paper is a
proposal for a software-driven catalog platform that provides
components for developers and users to support integrated
development of simulation models in a systematic, cost and
time-efficient way. To achieve these goals, the platform must
fulfill the following targets:

• The platform must enable developers to describe meta-
data on the basis of a model’s description language.

• The platform must enable developers to describe cat-
alogs as compositions of components and systems.

• The platform must provide a versioning and refactor-
ing services to increase the reusability of simulation
models.

• The platform must provide model inversion techniques
to ensure a maximum of usability for different devel-
opment and simulation environments.

• The platform must provide services to facilitate model
search, model commissioning and model changes on
the basis of the catalog.

In the following, it is assumed that the exemplary models are
based on the FMU format as one exemplary format for the
catalog.

In Section II, the current research topics are discussed.
To tackle the issues in the cooperative development, such as
the HVAC systems, the concepts for the development of the
catalog platform are proposed as infrastructure and as services
in Section III. Afterwards, in Section IV the realization of
the concepts as an overall architecture design is presented and
Section V concludes from the results.

II. RELATED WORK

In the following, we introduce the related work that ad-
dresses some aspects of our contribution. To the best of our
knowledge, no overall infrastructure, and services - platform
for seamless development and integration of catalog models in
the field of HVAC system simulation modeling exists.

A. Frameworks for Modeling Compositions from FMUs
The creation and adaptation of simulations are develop-

ment steps that belong to the composition. There are some
frameworks from research approaches for the composition of
FMUs.

In [3], the MOKA framework for object-oriented modeling
of FMU-based CoSimulations is presented. The framework
provides a language for modeling the structure of integrated
FMUs based on the classes FMUBlock, FMUPort. The FMU-
Master takes over the execution and instantiate the FMU
blocks. An algorithm for the master-slave based execution of
composed FMUs is also presented in [4]. The OMSimulatior is
another FMU based modeling and simulation tool presented in
[5], which provides Transmission Line Modeling connectors to
enable the composition of TLM based buses using connectors.
Furthermore, there are approaches to adapt the communication
behavior of an FMU through wrappers. [6] presents a FMU
wrapper descriptions framework for the implementation of a
client-server interface. DACCOSIM [7], FMIGo [8] and FMU-
Proxy [9] are further approaches for the distributed execution
of an FMU based simulation. Another work deals with seman-
tic adaptation to adapt the interaction for the communication
of FMUs [10].

B. Merge of Simulation Models
In collaborative development processes, system variants are

developed in parallel by different teams. In order to automate
the integration step, an approach for the integration of ASCET-
based simulation models with the Team.Mode tool is presented
in [11]. The tool provides a mechanism to import ASCET
models in AXL format and automatically integrates them into
one ASCET model in a subsequent step.

C. Integrated Development Environment
In the automotive sector, seamless integration is known as

the integration of tools using a common development environ-
ment. In [12] Broy et al. present requirements which a seamless
development environment has to meet. A fundamental property
of the concept is a one main repository for storing and
maintaining information common to all development teams.
Reichmann et al. present approaches for the implementation
of this concept [13] [14].

III. CATALOG PLATFORM INFRASTRUCTURE AND
SERVICES

We define the catalog platform as a platform for the
administration, development and versioning of the catalogs
and their components. This includes the description of catalogs
and modeling metadata using the catalog description language
as well as services for the configuration on the basis of
metadata from the catalogs. These concepts are then used
for the integration of the platform into an overall architecture
design for simulation development environments in Section IV.

Infrastructure. In Section III-A, we present the descrip-
tion language and their modeling rules. We call it infrastructure
of the platform, since it is the basis for the description of
catalogs and metadata as well as their composition to complex
systems.

Services. The services of the platform provide additional
user interfaces in order to automate the development steps

30Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 2. The Platform Meta Model for the description of workspaces and catalogs.

when reusing models from the catalog. All services are de-
scribed in more detail in Sections III-B, III-C, III-D, III-E.

A. Description Technique
Catalog The catalog is the shared resource between manu-

facturers and suppliers in the economic market for simulation
models of physical components. Using the platform, the man-
ufacturer is able to import the catalogs of various suppliers
into his development environment and is then able to create
a simulation model, for example, a HVAC system. Therefore,
these sections present the description language as the meta
model of the platform to describe catalogs. The meta model
defines the syntax and the semantics of the language, which
is depicted in Figure 2. In the following paragraphs, all class
names are written in italic lower case letters - clarifies the
textual notation - for the explanation of the meta model from
Figure 2.

Workspace The workspace is the working area integrated
into the development environment. It can contain catalogs,
where areas a catalog can contain systems and components.
The language syntax defines a workspace that can contain
any number of catalogs. Catalogs for components and for
systems can then be created using the simulation environment
in the workspace. Therefore, the meta model defines the
classes component, system as subclasses of the superclass
catalogelement.

Component A component from the catalog represents a
model that can be executed in a simulation environment of a
simulation tool. It declares interfaces for the communication
to other components. Hence, for example, an FMU or a
composition of FMUs can be described by a component. A
catalog that contains only systems and can be used as the
manufacturers in-house catalog, which is not offered on the
market to other competitors. As depicted in Figure 2, the
system can contain any number of components and connectors.

Connector A connector describes a directed point-to-point
connection for the communication from one component to
another component by using connectorstart and connectorend.
Therefore, a connector must have a reference to a connec-
torstart and to a connectorend.

Metadata The metadata is defined as the superclass of dif-
ferent metadata subclasses that can be assigned to a particular

catalogelement. The versioning subclass describes a unique
node in a version graph for the description of further develop-
ments of catalogelements and variants of catalogelements (see
Section III-B). An interface class describes the declaration of
a variable with a data type from the platform. The component
is the origin of a variable declaration description and hence
is part of a particular component that uses it to define its
communication to other components. The parameterization
subclass describes differential states and initial values that are
required to calculate the initial conditions of a component that
is a prerequisite to execute it in a simulation (see Section III-E).

Basecomponent To ease development of a catalogelement
from reused components, we introduce the basecomponent.
The basecomponent is a catalogelement, that is defined only
by the interfaces from its metadata record. It is an abstract
catalogelement, as it does not implement its interface. But, it
describes a template for the development of a component that is
expected to implement that interface from the basecomponent.
For example, a new component variant, in addition to an
existing component variant, can be introduced as part of a
commonly shared basecomponent.

Basesystem A basecomponent can also be used to develop
new composition variants from existing catalogelements. For
that purpose, the basesystem is used to describe a composition
from basecomponents. To develop a new system variant from
a basesystem, components must be selected by developers
that are compatible to the basecomponents from a particular
basesystem.

Constraints for valid descriptions. Developers can create
correct and not correct descriptions using the description
language. A description is in the set of all correct catalog
descriptions, if it holds the following constraints:

• A connector must reference a connectorstart and a
connectorend.

• The interface of a connectorstart and of the connec-
torend must be compatible.

• A catalog contains only a basecomponent set and a
model set. Each component depends on a basecompo-
nent.

• A basesystem must only contain a set of basecompo-
nents.

31Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



• The metadata of a basecomponent has an interface
description but has no versioning and no parameteri-
zation descriptions.

B. Version and Variant Management
This section describes the version and variant management,

which is a central service of the introduced platform. This
is of fundamental significance, as all catalogelements evolve
over time. Therefore, each catalogelement can be assigned to a
version information via the concept of metadata. The version
is defined as a successor relationship: If ni is a catalogelement,
then i ∈ INDEX is the version number of a given index set
INDEX and ni+1 the successor of ni and represented by the
following relation:

successorOf := {(x, y) | y is successor of x
with x, y ∈ CATALOGELEMENT} (1)

As described in the meta model (see Figure 2) a component
as well as a system can be derived from a basecomponent
or basesystem. In the following, all relations are specified
regarding a component, for systems the same relations are de-
fined accordingly. This allows the implementation of variants,
whereby the base element is the smallest feature shared by
all variants. The variant concept is defined by the following
relation:
basedOnCOMPONENT := {(x, y) | y is derived from x
with x ∈ BASECOMPONENT and y ∈ COMPONENT}

(2)
If n and m without loss of generality are two components
and x is a basecomponent from which both components are
derived, then n and m are variants of the same basecomponent.
Like the components themselves, a basecomponent can of
course also be versioned, generally, the basedOn relation
can exist between concrete versions of catalogelements. Each
catalogelement can be assigned to one or more catalogs. There
are no restrictions regarding the version or variant, e.g., a
component can be contained in different versions or a derived
component without its basecomponent in one catalog. The
assignedTo relation between a catalog C and a catalogele-
ment n is defined as follows:

assignedTo := {(n,C) | n ∈ C
with n ∈ CATALOGELEMENT and
C ∈ CATALOG}

(3)

A successor relationship, known as a version, can also be
defined between two catalogs. The introduction of a catalog
as a group for versioning, distinguishes this approach from
existing ones such as CVS (concurrent versions system), SVN
(subversion) or git. Another special feature of common ver-
sioning systems is shown in Figure 3 by the replacedWith
relation. This relation describes a successor relation but not in
the sense of a new version, because it does not have to be a
further development of the previous component. In practice, the
most common case for this relationship is when a product is no
longer supported and, as a consequence, another product has to
be used instead. This is also a relation, as the succesorOf
relation, which can be defined between two components as
follows:

replacedWithCOMPONENT := {(x, y) | x is replaced
with y whereby x, y ∈ COMPONENT}

(4)

Figure 3. The versioning graph notation for the representation of the version
snapshot provided by the versioning service.

As an exemplary, in Figure 3, the five specified relations
between the different catalogelements and the catalog itself
are illustrated. For the purpose of simplicity not all existing
or possible connections and elements have been drawn up.
Another notation constituted in Figure 3 allows to illustrate a
remove, as a development step, of a basedOn relation. This is
another typical case from real practice, which is the customer-
specific or prototypical development, result in the fact that a
component is no longer part of a series.

In addition to the new types of relations described above,
the challenges of version and variant management include
the storage of this information and the construction of the
customer-specific version graph. This is determined by the
architecture of the platform, but it also offers mechanisms for
a solution. Due to the fact that a customer does not have to
purchase every catalog, it might be that the customer does not
own all versions of a catalog, e.g., the version and variant
graph has to be constructed for every platform instance. From
this, the requirement for a catalog instance is derived. The
new instance has to keep all necessary information available.
This can be automated by another central service: The service
provides additional or up-to-date information for the catalog
owned by the producer. This mechanism allows that not every
version and variant must necessarily be assigned to a catalog.
This is also consistent with practical experience, because only
certain releases of a component are offered to customers of
catalogs.

C. Thumbnail Search
The common use cases with regard to data intensive or file-

based systems are searching and comparing, so this is also the
case with the platform introduced here. Finding and accessing
of catalogelements is not only, as described in this section, an
important tool for human interaction. But also important as a
base for the automated discovery of components. For example,
this automation is mandatory for the refactoring service.

To improve the search and also the comparability between
components, an own variant of the so-called tag cloud [15] was
developed. In general, the information stored in the metadata
is used as a basis for the search.

32Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



The metadata are also used to generate the thumbnail
shown in Figure 4, which shows two tag clouds, each visu-
alizing series of fans. This view constitutes an overview of the
stored properties and their distribution within the series at a
glance. In most cases the properties are technical ones. Hence,
the illustration is based on the triplet consisting of identifier,
value and unit. Furthermore, the following rules are used for
the generation step:

1) Elements that have the same identifier are grouped
together.

2) Elements that have the same unit are grouped to-
gether.

3) The font size per group is determined as follows:
a) The font size of an identifier is the larger the

more variants exist for this identifier.
b) The font size of a value is the larger the more

elements have this value.

These rules can be adapted or extended as required. For
example, the added value can be further increased. Also,
semantic approaches are applicable as described in [16].

Figure 4. Thumbnail Example: Visualization of Variants

The thumbnail based search allows to create an overview
even of a large number of different variants. To reduce the
storage space, the thumbnails themselves are generated exclu-
sively from the metadata.

D. Refactoring
The versioning of a catalog was introduced in Section

III-B. A new version in the version graph describes a change
to a component as a relation to its predecessor version.
Customers of components from that version graph must be
aware of these changes, in particular critical bug fixing updates
should be made available in their catalogs and catalogelement
compositions, e.g., systems. In the following, we introduce
a platform service that provides automation in the following
distinct cases:

1 To replace a component, because it has a bug.
2 To improve an existing component.

3 To replace a component by another different compo-
nent (The behavior of the new component and the
original component need not be identical).

Using the service in the last case, can make changes to the
bahavior of a simulation. Hence, notwithstanding with the
general definition [17], we define Refactoring as a service for
the automatic propagation of changes of a component to all
catalogs and systems which use this component.

If a new version of a component exist, in the first case,
the service replaces the component with the new component
version. If no new component version exist, then the service
informs the user to treat the error in that particular compo-
nent manually. In the second case, the service automatically
replaces the component by the improved component, if the
interface of the improved component is identical to the in-
terface of the predecessor component. In the third case, it is
often necessary to replace an outdated and no longer supported
component by a another component. The outdated component
is then automatically replaced, if one of the conditions from
case one or two can be applied.

E. Modelinversion

As stated in Section I, HVAC simulation components can
influence their performed control tasks to achieve a certain
system behavior, e.g., to control the temperature of a vehi-
cle cabin. To control the temperature to a certain operating
range, an appropriate state of the simulation behavior must
be reachable. Therefore, the overall simulation behavior must
consider error signals of the control environment to reach
the necessary state of operation called steady-state. Moreover,
the control operations of the component must be performed
in such a way that the system consumes as less energy as
possible. In the first case, initialization conditions must be
found for a component. In the second case - in addition
to correct initialization conditions - a certain optimization
and solution method must be applied to find an optimized
solution. We introduce Modelinversion as a platform service
that allows the robust and accurate as well as fast solving of
algebra-differential equation systems to calculate steady-state
simulation results. The calculation of simulation results for
different stationary operating points is the core application of
the Modelinversion.

The service forms the basis for the following applications:
(1) for stationary model fitting, (2) for calculating optimal
experimental designs (DoE) and (3), it offers ”numerical
inversion”. Thereby, differential states, which are otherwise
calculated by integration, can be specified externally using
the metadata from the catalogs. The robustness, accuracy and
speed of solution finding is achieved by a combination of
DAE solvers and algebraic solution methods. Depending on
the model, the appropriate solution method or a combination
is selected: DAE solvers integrate a simulation model over time
and can simulate robustly down to the steady state by methods
such as flexible step size and event handling. Algebraic solvers
based on a zero-point search of the state derivatives provide
accurate results and are very fast in calculating many similar
operating points, e.g., for different measurement points.

33Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



Manufacturer 
B

Supplier 
A

use 

generate sold to

Market

catalog integra�on
Catalog

Figure 5. The overall design of the platform

IV. THE OVERALL CONTEXT AND DESIGN OF THE
PLATFORM

The design and the usage context of the platform are
depicted in Figure 5. The platform enables suppliers and
manufacturers to exchange catalogs on a common market to
develop simulation models based on components and systems.
The catalog description language from the platform defines a
standardized format for the automation of the exchange tasks
and simulation model commissioning tasks using platform
services. This eliminates the time-consuming manual effort
required to implement ad hoc solutions in the cooperatively
organized development of simulation models. Manufacturers
can obtain the catalogs from the market and reuse them for
the development of different system simulations. The metadata
from the descriptions of the catalogs is used for the purchase
process via a web service of a certain supplier or via a market
place organized centrally by all suppliers. This enables suppli-
ers to provide customer information about the components of
catalogs in advance without having to provide the catalogs
themselves. From the technical point of view, the client-
server architecture was selected as the architecture style for
the platform: several developers can access the catalogs of a
centrally managed repository bidirectionally and independently
of each other, regardless of the development environment
they use, and carry out their development locally on their
client workspace. The clients use the graphical user-interface
for developing the catalogs and for using the services. The
platform, as the server, then manages clients access to the
repository and to the platform services.

V. CONCLUSION

The current state of practice in the development of the
HVAC system domain requires great expertise from compo-
nents suppliers and additional manual handling from suppliers

and system manufacturers to exchange and to commission
simulation models in the cooperatively organized development
of process system simulations. We proposed a catalog platform
particularly for components that are exchanged to enable
seamless and integrated simulation based development process.
Therefore, an infrastructure for modeling and for the exchange
of catalogs was introduced. Catalogs contain components
and compositions from components called systems. Both are
generalized as catalogelements and differentiated by metadata
assigned to them. Thereby, the metadata of catalogelements is
used for platform services and is used to support marketplace
technologies, e.g., purchase procedures. Besides the infras-
tructure, we proposed also a set of services provided by the
platform to automate several development tasks. This proposal
is part of an ongoing research, where we study upcoming use
cases for the application of our platform as a future research
work.

ACKNOWLEDGMENT

The results of this contribution are based on the work of the
project “Kataloggestützte interdisziplinäre Entwurfsplattform
für Elektrofahrzeuge (KISEL)”. KISEL is supported by a fund-
ing from the Federal Ministry of Education and Research of
Germany in the framework of “KMU-innovativ: Informations-
und Kommunikationstechnologien”.

REFERENCES
[1] Modelica Association. Fmi standard.
[2] “Design methodology for mechatronic systems,” Verein Deutscher

Ingenieure, Beuth Verlag GmbH, 10772 Berlin, Standard, Jun. 2004.
[3] M. Aslan, H. Oundefineduztüzün, U. Durak, and K. Taylan, “Moka:

An object-oriented framework for fmi co-simulation,” in Proceedings of
the Conference on Summer Computer Simulation, ser. SummerSim ’15.
San Diego, CA, USA: Society for Computer Simulation International,
2015.

[4] M. U. Awais, W. Gawlik, G. De-Cillia, and P. Palensky, “Hybrid
simulation using sahisim framework: a hybrid distributed simulation
framework using waveform relaxation method implemented over the hla
and the functional mock-up interface,” in SimuTools, 2015, pp. 273—
-278.

[5] L. Ochel and et al., “Omsimulator–integrated fmi and tlm-based co-
simulation with composite model editing and ssp,” in Proceedings of the
13th International Modelica Conference, Regensburg, Germany, March
4–6, 2019, no. 157. Linköping University Electronic Press, 2019, pp.
69–78.

[6] L. I. Hatledal, A. Styve, G. Hovland, and H. Zhang, “A language and
platform independent co-simulation framework based on the functional
mock-up interface,” IEEE Access, vol. 7, 2019, pp. 109 328–109 339.

[7] V. Galtier and et al., “Fmi-based distributed multi-simulation with
daccosim,” in Proceedings of the Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, ser. DEVS ’15. San
Diego, CA, USA: Society for Computer Simulation International, 2015,
pp. 39––46.

[8] C. Lacoursière, “FMI Go! A simulation runtime environment with
a client server architecture over multiple protocols,” in Linköping
Electronic Conference Proceedings. LiU E-press, 2018, pp. 653–662.

[9] L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland, “Fmu-proxy:
A framework for distributed access to functional mock-up units,” in
Proceedings of the 13th International Modelica Conference. Linköping
University Electronic Press, 2019.

[10] C. Gomes and et al., “Semantic adaptation for FMI co-simulation with
hierarchical simulators,” Simulation, vol. 95, no. 3, 2019.

[11] M. Janßen, C. Bartelt, and A. Rausch, “Tool-support in cooperative
modeling and variantmanagment of electronic control unit software,” in
INFORMATIK 2012, U. Goltz, M. Magnor, H.-J. Appelrath, H. K.
Matthies, W.-T. Balke, and L. Wolf, Eds. Bonn: Gesellschaft für
Informatik e.V., 2012, pp. 843–852.

34Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications



[12] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu,
“Seamless model-based development: From isolated tools to integrated
model engineering environments,” Proceedings of the IEEE, vol. 98,
no. 4, 2010, pp. 526–545.

[13] C. Reichmann, M. Kiihl, P. Graf, and K. Müller-Glaser, “Generalstore
- a case-tool integration platform enabling model level coupling of
heterogeneous designs for embedded electronic systems.” 06 2004, pp.
225 – 232.

[14] C. Reichmann, D. Gebauer, and K. D. Müller-Glaser, “Model level
coupling of heterogeneous embedded systems,” in 2nd RTAS Workshop
on Model-Driven Embedded Systems, 2004.

[15] B. Y.-L. Kuo, T. Hentrich, B. M. . Good, and M. D. Wilkinson, “Tag
clouds for summarizing web search results,” in Proceedings of the 16th
international conference on World Wide Web, C. Williamson, Ed. New
York, NY: ACM, 2007, p. 1203.

[16] M. Schindler, A. Rausch, and O. Fox, “Clustering source code ele-
ments by semantic similarity using wikipedia,” in Proceedings of 4th
International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE), 2015, pp. 13–18.

[17] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

35Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-781-8

ADAPTIVE 2020 : The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications


