

Improvement of Self-optimizing in Selection and Composition of Services

Using Reinforcement Learning Algorithm Based on Convex Hull

Hadis khorasaniNasab Abbasi Eslam Nazemi
Faculty of Science& Computer Engineering Faculty of Science& Computer Engineering

Shahid Beheshti University Shahid Beheshti University
Tehran, Iran Tehran, Iran

Email:Hadis.khorasani@gmail.com Email:nazemi@sbu.ac.ir

Abstract—Web services are implemented by using many atomic or

composite services. In a dynamic environment, some Web services

require to select a service with defined Quality of Services(QoS)

through runtime adaptation in changeable environments. In

alignment with user satisfaction requirements, in selection of

services a tradeoff between QoS should be considered, especially at

runtime adaptation in dynamic environments. There are many

methods for service selection and composite services with priority of

QoS, but they do not predict optimizing service composition in the

large scale environment. A self-optimizing method just continually

adjusts the control service's parameters that pass to other services.

In this paper, in a self-optimizing method, the goal and the

procedure for selection and composition of optimal services are

proposed. It includes three parts, services are limited in a defined

scope by convex hull algorithm and then the optimal services are

chosen by the divide-and-conquer algorithm. The optimal service

selection is as input parameter goes to service composition

algorithm. The QoS metrics taken into account and measured for the

optimal service include response time, availability, throughput and

reliability. The simulation results show that the system user

satisfaction gradually increases by about 10% compared with the

results of previous methods and show that the execution time is

comparatively decreased by half.

 Keywords-text; self-adaption; self-optimizing; service composition;

Reinforcement Learning; convex hull.

I. INTRODUCTION

Service-oriented environments have become more and more

important in recent years, where various kinds of Web services

and service-based processes are gathered within a certain domain

or across domains [1][2]. They give people the ability to make,

manage and share their own services, and make it possible to

compose them based on a user's needs, providing them with extra

value [1]. As reported in some previous studies on service

selection, QoS attributes of atomic services are gathered for

calculating the QoS of composite services in service composition

environments [2][3].

Self-optimizing is considered a QoS optimization problem,

choosing atomic services generating the highest QoS overall

value as optimized solution [4][5]. It is presumed by most

existing methods that QoS attributes pre-exist and QoS

information of atomic services does not change. So, the ranking

of declared QoS values is what determines the selection of a self-

optimizing service. These approaches, however, have various

constraints when the following problems are considered in the

real environment. Firstly, service-oriented systems have various

possible services because of the way they operate in distributed

heterogeneous environments. Furthermore, existing services are

ever-changing, so the selector should have the ability to adapt

automatically to the dynamic environment. Finally, system

should select optimal services based on QoS in reasonable time

to meet user requirements.

In this paper, we propose a method for selecting and

composition of services based on the self-optimizing. This is very

important in service selection, because this kind of method can

autonomously react to dynamic environments during its life cycle

and adapt to them. This feature is very useful, and the reason is

that nowadays, all services are distributed in large scale

environment and they are always changing, so the system needs

the method which can adapt to them. The self-optimizing method

is also able to automatically improve behaviors by itself

continually. It is considered as one of its features because one of

the concerns for service composition in previous methods is

selecting optimal services based on QoS.

The rest of the paper is organized as follows: In Section II,

related works are discussed. Section III introduces a self-

optimizing Method and process variability. Section IV

demonstrates the validity of the proposed method by a series of

simulation experiments. Finally, Section V draws some

conclusions.

II. RELATED WORK

In this section, some related work from the perspectives of

the self-optimizing service selection and composition based on

QoS is introduced.

With the growth of Cloud Computing, Service Oriented

Architecture (SOA) and Software as a service, possible services

with similar functions but different QoS increase in numbers,

which has made it far more difficult to select and compose

services [5]. This has led to growing research in composition of

QoS-aware Web service in SOA and Service-Oriented

Computing (SOC) fields [6][7][8]. Yet, service composition is

currently done mostly via approaches that utilize a semi-optimal

approach relying on a single goal, instead of using Pareto optimal

solutions that take into account the balance between various QoS

objectives [9].

One sophistication that may arise is when a user quickly requires

a service with a specific cost and certain performance, yet with

increased availability. In real world usage, however, distinct

dimensional attributes may not be compatible with one another.

44Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

mailto:Hadis.khorasani@gmail.com

Availability pair and the time it takes to respond are two of these

contrasting characteristics. This means that QoS of optimal

service composition has low response time and high Availability.

Thus, reaching the optimal solutions given the different rules on

the measured QoS and the competing goals is an NP-hard

challenge. QoS weighting is used by some algorithms to

dynamically adjust to these tradeoffs via a feedback controller [5].

However, the QoS weight sum method, has some constraints as

follow: 1) weight vector directly influences the solutions, for

which awareness of the problem in advance is needed; 2) there is

a limited selection of solutions, which are not well-distributed; 3)

as the scale of problem rises, so does the complexity and the time

executed is dramatically increase; 4) if solutions are in out of

reach areas of the Pareto front, Pareto optimal solutions may not

be found; and 5) Clients may actually want to see a list of possible

services, while only one, i.e., the Pareto optimal, is offered.

Another field of work concerns utilizing the skyline operator to

measure the real Pareto front [10][11]. The first one, the Bottom

Up Algorithm, measures the biggest sections' workflow in order

to boost the effectiveness of the process. The second Algorithm,

consecutively provides the Pareto optimal services. But having

temporal complexity in these algorithms is not possible, as the

Pareto front might exponentially become larger with more tasks

in the workflow. Also, the way the search area is pruned by the

skyline operator means some possible services could be put aside

even before selection occurs to meet the tradeoffs between multi

QoS objectives, Pareto optimal workflows were set by Mostafa

and Zhang [9]. It is provided tradeoff in linear domains with

convex hall as well as the optimal Pareto front solution. Also

Quick hull operator used to prune the search space may have

polynomial time complexity because in the large number of

workflow tasks, it has execution time at O(n2). Reinforcement

Learning algorithm [12] has been introduced for solving

sequential decision-making issue and makes learner optimal

policy of Markov Decision Process (MDP) for services

composition at runtime. This system can adapt to the dynamic

environment by calculated reward function. It is supposed to

receive reward value, which is equivalent to the cumulative

reward of all the executed services [12]. However, there can be

challenges as to how existing multi-goal service composition

methods can work in dynamic environments. For example, to

determine QoS value mathematical methods are used that

presume a static environment. Once there are changes in the

environment, there are no strategies for the system to deal with

the emerging QoS. Also, some of these methods make use of

explicit models so as to determine which services are chosen. No

Rue is present in this model for addressing a new QoS parameter.

Furthermore, in multi-object method, services are chosen by the

weight which is defined in a static environment. Hence, the

weight of a new service or an obsolete service in static

environment cannot be dealt with changing environment. Finally,

a near-optimal runtime policy is used by adaptive service

Composition, meaning that in each of the system's lifecycles

service composition is not optimal and the system cannot self-

optimize.

In this paper, a new self-optimizing method is proposed. This

method is based on Reinforcement Learning for calculated user

satisfaction by reward function. A self-optimizing system is one

that dynamically optimizes the operation of its service

composition while it is running. The optimizer just continuously

adjusts the control service which is selected based on QoS to

compose with other services. In this system two main goals are

followed, service composition can adapt with changing

environment and system can optimize service composition based

on QoS automatically and also multi-objective service

composition approach is considered. In order to achieve those

targets, this paper follows these steps: First, new search algorithm

in convex hull is introduced for selecting multi-objective optimal

services. Then, use Reinforcement Learning algorithm for

compute services user satisfaction. This algorithm will obtain

initial knowledge of the service selection from the divide-and-

conquer algorithm and it will be optimized when service

composition is based on optimal service.

III. PROPOSED METHOD FOR COMPOSITION OF

SERVECES

In this section, the self-optimizing method is introduced for

selection and composition of services in order to improve

Reinforcement Learning method for service composition. In

previous method, proposed service composition is not optimized

in each life-cycle system. In this paper is proposed service

composition that is optimized continuously. A self-optimizing

composite service is one that dynamically own optimizes the

service composition while it is running, so it needs to have some

kind of rules that can follow in the system. The goal of the self-

optimizing method is to maximize service composition based on

QoS at all times. This method has ability to implement in the

Large scale services and follows the goals like user satisfaction,

being self-adaptive to the changeable environment, and

presenting an automatic optimum service composition based on

QoS. Before main algorithm is proposed, the schema of the self-

optimizing method is mapped in MAPE_K loops, and the self-

optimizing cycle in order to define the issue's scope should be

explained.

A. Adaption Loop

Self-adaptive software is based on a closed-loop mechanism

which is called the MAPE-K loop for autonomic computing, and

includes the Monitoring, Analyzing, Planning and Executing

functions. Self-optimizing is one of the most remarkable

properties of self-adaptive systems. Therefore, my recommended

plan for the self-optimizing is mapped in the MAPE-K loop in

order to shows the workflow of the method.

Accordingly Figure 1, the QoS values are defined. In this paper

response time, availability, throughput and reliability are as QoS

parameters which are collected in “monitoring” step. Then, the

collected data are analyzed in the “analysis” step. In this step, the

value of those parameters is normalized. Then especial selected

algorithm is executed in “Planning” stage. Optimal selected

service as input parameter goes to the “execution” stage. In this

stage, by Reinforcement Learning algorithm the best services are

predicted for the user. MAPE-K loop is based on learning so there

is one stage to share Knowledge with each part for predicting the

system's behavior. In this case, the system needs to predict service

45Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

composition to achieve high user satisfaction. Using reward

function in Reinforcement Learning algorithm, the learning

process is defined.

Figure 1. Abstract schema of the proposed method based on MAPE-K
architecture.

B. Self-optimizing cycle mapping

The scope of service selection and composition is mapped on

the cycle of the self-optimizing, which is depicted in Figure2.

The first step is “analyzing the current state”. It is defining

some QoS parameters which are normalized in a certain data

range. The second step is “determining the goal of system”. In

this step the main goal of the system is defined. In this paper, the

main target is selecting optimal services among distributed

services, according to (1).

 𝜋 ≔ 𝑆 → 𝐴. (1)

Figure 2. Self-optimizing cycle mapping for the selection and composition of
service.

Geometric convex hull operator is used in order to reduce number

of services. The convex hull is the smallest convex polygon that

encloses all points in specific space. Here, points are services

which should locate in defined geometric place. The service is

limited as (2).

 𝐶𝐻(𝑆) = {𝑠𝑖1
. 𝑠𝑖2

. … . 𝑠𝑖𝑚
}. 𝑚 ≤ 𝑛. 𝑠𝑖𝑗

∈ 𝑆. 𝑗 = 1.2. … . 𝑚. (2)

Equation (2) shows that the convex hull of services includes "m"

is members and "n" is the number of available services. So the

number of services, which are known as members, are smaller

than the number of available services. New services are adding in

specific space by incremental convex hull algorithm. This process

is implemented in three steps: first, place the visible facets for the

services; the boundary of the visible faces is the set of horizon

ridges for the services. Second, construct a cone of new facets

from the service to its horizon ridges. Third, eliminate the visible

facets. Therefore, the convex hull of the new service and the

previous services is formed. Moreover, Convex hull is clustering

services and categorizes them in a finite-dimensional space to set

services in. In (3), "d" is number of dimensions in convex hull.

In this paper, two dimensions are used. So, this algorithm

translates the interior service to half spaces by dividing offsets

into coefficients. Dimensions are allocated two QoS parameters,

which are analyzed in first step, it shows (3).

 𝑄 = {𝑄𝑖 ∈ 𝑅𝑑|∀𝑄𝑖 ∈ 𝑄. ∃𝑠𝑖 ∈ 𝑆}. (3)

 According to Figure 3, the response time and throughput are

determined with two-dimension space. Services are divided into

four zones by the clustering of convex hull. It determines

services' suitable zones according to the value of their QoS. For

example, the optimal service placed in (b, c) zone which has

highest throughput and lowest response time.

Figure 3. Selecting optimal services by clustering and divide-and-conquer.

 After optimal services are determined in a defined zone,

optimal service is selected by divide-and-conquer algorithm. This

algorithm has O[𝑛 log 𝑛] execution time in all cases. This

algorithm operates as follows. In the first step, vertical line L

divides services into two subsets A and B, each containing N/2

services (seen Figure 3). Since every service in A and B cluster

has an x-value and y-value, in next step, x-value and y-value of

each service in A and B cluster are compared together. In the last

step, rank of each axes for any services is defined. As an example,

when x-value of B dominates x-value of A but the y-value of B is

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

not greater than the y-value of A. Comparing services based two

QoS parameters are continued until the optimal service is

selected; this is a recursive algorithm (4) and (see Figure4).

 𝜋∗ ≔ 𝐷ℎ𝑢𝑙𝑙𝜋(𝑠𝑡). (∀𝑠𝑡 ∈ 𝑆) (4)

Figure 4. Selected optimal services based on convex hull and divide-and-
conquer algorithm.

The third step of self-optimizing cycling is composing optimal

services. In this section, reinforcement learning algorithm schema

to orchestrate service composition is introduced. In this

algorithm, the task of the learner or decision-maker is to learn a

policy based on reward function. The complete learning process

is depicted in the algorithm in Figure 5[12]. In this algorithm, the

task of the learner or decision-maker is to learn a policy based on

reward function [12].

Figure 5. The Baseline Reinforcement Learning for Service Composition [12].

In this algorithm, initial state 𝑠0 , terminal state 𝑠 and Q(s ,a) are

defined. Q (s, a) is simulation of observed reward. In each episode

(round), the learner starts from the initial state 𝑠0, and takes a

sequence of actions by following the €-greedy policy (which is

introduced subsequently). As line 7 shows, optimal service is

chosen based on €-greedy policy and old Q (s, a) value is

completely replaced with the new value of reward function. Rate

of learning is α, which is quantity between 0 and 1. The discount

factor is γ that reflects the learning policy. Both value of α and γ

are different in differ issue. The value of €-greedy is (€ < 1). The

most significant part of this algorithm is computing the reward

function which calculates user satisfaction. In this paper reward

function is used as well as this algorithm [12] to predict service

composition and observe user satisfaction. The policy of reward

function is determined according to (5).

 𝑅(𝑠) = ∑ 𝑤i×
𝐴𝑡𝑡𝑖

𝑠−𝐴𝑡𝑡𝑖
𝑚𝑖𝑛

𝐴𝑡𝑡𝑖
𝑚𝑎𝑥−𝐴𝑡𝑡𝑖

𝑚𝑖𝑛 (5)

where Atti
s shows current value of the ith attribute of service s,

and Atti
max and Atti

min show maximum and minimum value of Atti

for all services. Wi is the weighting factor of Atti. This value is

positive if users prefer Atti to be high value (e.g. throughput). Wi

is negative if users prefer Atti to be low value (e.g. response time).

C. Self-optimizing method for service composition

In this selection, a self-optimizing method is proposed.

According the self-optimizing cycle, the main goal is selecting

optimal services based on QoS through distributed services.

Response time, reliability, availability and throughput are the

QoS parameters which analyze and compute the value of them for

the self-optimizing method. This method has been shown in

Figure6. According to the self-optimizing algorithm, Services and

QoS parameters are initialized. Also, Q (s, a) as seen in

Reinforcement Learning algorithm at the start of this algorithm is

initialized. Line 3 to line 5, clustering convex hull based on QoS

is calculated. All services in the convex hull are shown with H(si).

The main purpose is selecting optimal services which is done with

Figure 6. The self-optimizing for service composition.

divide-and-conquer algorithm of convex hull. The optimal

service selected is imported as an initial service parameter to

composition algorithm. Then new action and next state (s') are

defined in line 16. Reward function is calculated to compute user

satisfaction in line 17. In order to predict services composition in

next step, this algorithm needs to update the value of reward

function for service selected according to calculate quantity of γ

, 𝛼 and new reward value of next optimal service is selected

according line 18. In this line, new optimal service is selected

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

based on divide-and-conquer algorithm of convex hull, it shows

with DAC (s', a').

In this way, the self-optimizing strategy provides maximum user

satisfaction. In each cycle of system, the services that have

maximum user satisfaction are suggested to the user. Also, this

algorithm can adapt itself to the dynamic environment. Service

selection accuracy provides full potential of each service. In order

to compare the result of this method with previous methods,

consider to calculated average value of reward function. If the

system gets higher score in reward function than other methods,

it is optimal behavior in service selection and composition.

IV. EVALUATION OF THE PROPOSED METHOD

One of the vita factors in tourism website produces Web

service with high QoS which are available and can respond to user

requirements in reasonable time. Customers on the Web want to

do anything conveniently and simply, such as booking hotels and

flights with one service, which is called a tourist package, or take

the best service offer from the system. The significant concern in

a self-optimizing tourist website is how to increase user

satisfaction gradually. So, the propose method is implemented on

a tourist website, which is composed of services and adjusts to

dynamic environment in order to meet user requirements.

In this paper, the self-optimizing occurs at the source code

level as done by the program. The tourist website was

implemented by C#.net and Asp.net. The website is based on

MVC Architecture and SQL Server 2016 database. The database

was designed based on the normal equation in such a way that it

does not have redundancy at updating time. Web services are

provided from valid dataset [13] which has 356 real Web services.

Those Web services have nine Quality of Web Service (QWS)

attributes, which are measured with a commercial benchmark

tool. The advantage of this dataset is that Web services are

collected from public source discovery, integration, registration,

search engines and service portals. It is remarkable that each

service was tested over a ten-minute period for three consecutive

days. Therefore, calculation of QoS was ignored. But before using

the value for each QoSs, they should be normalized because they

are distributed over a wide range. Equation (6) was used for

normalization, as introduced in [14].

 𝑄𝑖
′ =

𝑄𝑖−𝑚𝑖𝑛
𝑖

 𝑄𝑖

𝑚𝑎𝑥
𝑖

𝑄𝑖−𝑚𝑖𝑛
𝑖

𝑄𝑖
. (6)

 The main goal of the tourist website is that users choose a

travelling destination. The website is based on two scenarios, both

of which incorporate selection and composition of services to

answer user requirements.

 The first scenario is that the user fills a form in order to access

a weather service. Then the user submits the information to the

website in order to get a list of weather services for their

destination. The website finds a list of weather services and

presents the best ones as the result of the queries to the user. The

second scenario consists of two possible ways. In the first way,

flight and hotel services are chosen same as weather services. But

the second way is definitely deferent, because service of hotels

and flights is represented in one service, which is called tour

package. User requests especial tour package which includes

defined flight and hotel. The tourist agent requests to choose

defined flight services. Then, it is receiving ID of flight services

to send hotel service selector. At the end, it is receiving ID

composition service which consists of flight and hotel services.

The system can predict the best tour package service for users

who enter the same information. The last scenario is payment

services just like the first scenario. In Figure 6, each state is

shown.

Figure 6. The work flow of tourist scenario.

 The second scenario is the main scenario in order to obtain

comparison between this method and the previous one. The

previous method is Reinforcement Learning algorithm which is

developed in the tourist website as well as the self-optimizing

method. The reward function is calculated with deferent QoS

parameters. In the experiment results, the discount factor ϵ is set

at 0.9 and as the amount of α is set to 0.2 (Figure 7). Also

according to Figure 8 , the value of γ is set to 0.5. All of the

experiments were conducted on a Sony laptop with Core i5

3.1GHz processors and 12GB RAM, running Windows 7. All

proposed services are observed on the tourist website after 2

minutes.

Figure 7. Choosing best𝛼.

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 8. Choosing the probability γ.

 In the first stage of evaluation, it is shown how Reinforcement

Learning policy can be improved with the self-optimizing

method. Reinforcement Learning algorithm is executed with zero

knowledge about the QoS of the component of service

composition and in some episodes the value of reward function is

not better than the last stage and shows uniform behavior (see

Figure 9). Proposed method is improved by adding a new policy

about service selection for service composition, it has the ability

to self-behavior and increase user satisfaction by achieving higher

values of reward function. This simulation fixed six episodes; the

number of services in each episode is increased in order to show

the proposed method in large scale of services has the same self-

optimizing attitude.

Figure 9. Comparing the proposed method with the Reinforcement learning

method for increased user satisfaction.

 In the second stage of our evaluation, it can be seen how a

self-optimizing service composition adapts to the changes of the

environment and value of the reward function, which represents

user satisfaction, is steadily increased. Changing environments

are simulated by periodically changing the QoS attributes of the

services. At first environment is changed by 5%. It means, 5% of

basic services are added to the environment with the uniform

probability distribution formula. Then Reinforcement learning

algorithm and the purpose algorithm are executed. Figure 10

shows the growth of the cumulative reward during the self-

optimizing process. In comparison, increasing the change rate in

Reinforcement learning algorithm has delay because it has to

identify QoS and needs to learn optimal execution policy.

Conversely, the reward value of the self-optimizing method is

comparatively higher and changes do not stop the optimizing

process. In second simulation, the environment is changing by

10% and the third simulation based on 15% .When the

environment changes more and more, growth rate satisfaction of

the self-optimizing method is more visible. In the third stage of

our evaluation, Figure 11 shows how the self-optimizing service

composition outperforms the reinforced algorithm in a large scale

environment. In this evaluation, environment scale is represented

by the number of services used in every tourist workflow. At first,

hotel and flight services are increased up to 300, then reward

function of the proposed approach is measured. The reward value

depicts the user satisfaction. In the second and third picture

reward functions are measured based on 400 and 500 services

respectively. Comparing the proposed method with the

Reinforcement learning method in the Large scale environment,

self-optimizng method shows more satisfaction than the

Reinforcement learning method. The fourth experimental results

include test 1, test 2 and test 3. In this experiment, optimal

services with low response time, high availability, high

throughput and high reliability are selected. The results of test 1,

as depicted in Figure 12, clearly show that the optimal tourist

workflows have achieved high throughput, and high reliability

among 50 services or lower response time and high availability.

The outcomes of test 2 are represented in Figure 13, they support

test1 statement, regardless of the bigger number of concrete Web

services assigned to each task (100 services), as the optimal

workflows obviously continue representing the same trend with

lower response time and high availability, high reliability and

high throughput. Finally test 3, as represented in Figure 14, has

the same trends as test 1 and test 2 with large number of services

(150 services). As a result, the size of environment does not affect

selecting optimal services based on QoSs for each task in tourist

website.

 In Figure 15, the proposed method executed composed

services in half the time of Multi-Object Service Composition

algorithm which was introduced by Mostafa and Zhang [9], the

reason is clearly observed; the previous algorithm used fast

convex hull, whose execution time in the worst-case is O[n2] in

contrast execution time of the self-optimizing method in all cases

is O[𝑛 log 𝑛]. Therefore, by this chart, different levels of

execution time of the two algorithms in large scale are more

distinguished

V. CONCLUSION

The main purpose of this paper is to introduce a self-

optimizing method in order to select and compose services.

Optimal services are selected based on QoS and composed with

other services to answer user requirements. The significant

algorithm in the self-optimizing method is the Divide-and-

conquer algorithm used for selection. The reason is that the

execution time of this algorithm is O[𝑛 log 𝑛] in all cases. So the

self-optimizing method behaves similarly on the large scale, with

shorter execution times. This time is half that of pervious method

[9]. Therefore, when the tourist wants to take travel services, it

can get optimal services in a reasonable time. Moreover, the

Reinforcement Learning policy [12] has zero knowledge about

the QoS of the component services, it takes some time to know

services in large environment and predict user behavior.

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Therefore, the rate of rewards value remains in consistent level

when making comparison between

Figure 10. Comparing the self-optimizing method with the Reinforcement Learning method in dynamic environments.

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 11. Comparing the performance of the proposed method with the base method.

Figure 12. Optimal service based on QoS is Selected among 50services.

Figure 13. Optimal service based on QoS is Selected among 100services.

Figure 14. Optimal service based on QoS is Selected among 150services.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 15. Comparing the proposed method with the method of selection service by fast convex hull.

two steps of this algorithm. It has near optimal execution

policies efficiently. In this paper, Reinforce Learning algorithm

is modified with new policy to selected optimal services. This

policy optimizes service composition in each cycle-life. On the

other hand, some QoSs is differing in best value. For example,

response time is lower and availability is high in optimal

services, so convex hull algorithm provides clustering in two

diamonds which can choose optimal services with different

values. The experiments show the efficiency of this algorithm

is optimized in each steps.

 Dynamic environment is one of the issues this day for

websites like tourist website because services are always

changing with improved performance or replaced with new

services. The Self-optimizing method is a good solution to use

here; it can optimize itself in large scale and adapt to a dynamic

environment.

 The proposed method takes about 2 ms to compute QoS.

Therefore, it is useful for non-real-time systems like tourist

systems. But it is not useful for real-time systems where time is

very critical.

 The future work is set to study the self-optimizing and self-

reconfiguring method together. Therefore, when the service

selection and composition fail, there are methods to help the

system to reconfigure itself automatically. The self-optimizing

and self-reconfiguring are implemented in many systems

simultaneously but up to now, they are not implemented in

service-oriented systems. Using this feature can also improve

the proposed method.

REFERENCES

[1] Donghui Lin, Chunqi Shi, and Toru Ishida," Dynamic

Service Selection Based on Context-Aware QoS ", In 2012

IEEE Ninth International Conference on services Computing.

[2] A. Moustafa and M. Zhang, “Learning efficient

compositions for QoS-aware service provisioning,” in 2014

IEEE International Conference on Web services, ICWS, 2014,

Anchorage, AK, USA, June 27 - July 2, 2014. IEEE Computer

Society, 2014, pp. 185–192.

[3] A. F. M. Huang, c.-w. Lan, and S. J. H. Yang, "An optimal

QoS-based Web service selection scheme," Inf. Sci., vol.179,

pp. 3309- 3322, September 2009.

[4] G. F. Franklin, J. D. Powell, and A. E. Naeini, Feedback

control of dynamic systems. Prentice Hall, pp. 928, 2008.

[5] B. Chen, X. Peng, Y. Yu, and W. Zhao, “Requirements-driven self-

optimization of composite services using feedback control,” IEEE

Transactions on Services Computing, vol. 8, pp.107-12, January, 2014.

[6] L. Z. Zeng, B. Boualem, D. Marlon, J. Kalagnanam, and Q. Z.

Sheng, “Quality driven Web services composition,” in Proc. of the

12th International Conference on World Wide Web, pp. 411-421,

2003.

[7] C. W. Zhang, S. Su, and J. L. Chen, “Genetic algorithm on Web

services selection supporting QoS,” Chinese Journal of Computer, vol.

29, pp. 1029-1037, 2006.

[8] R. L. Graham, “An efficient algorithm for determining the convex

hull of a finite planar set,” Elsevier, vol.1, pp. 132-133, 1972.

[9] A. Mostafa and M. Zhang, "Multi-objective service composition in

uncertain environments, " IEEE Transactions on Services Computing,
vol. 99, pp.1-1, June2015.

[10] Q. Yu and A. Bouguettaya.” efficient service skyline computation

for composite service selection”. IEEE Trans. Knowledge and Data

Engineering, volume 25(4), pages 776–789, 2013.

[11] Q. Yu and A. Bouguettaya.” computing service skyline from

uncertain qows”. IEEE Trans. Services Computing, volume3(1), pages
16–29, 2010

[12] H. Wang, X. Zhou, W. Liu, W. Li, and A. Bouguettaya, “Adaptive

service composition based on Reinforcement Learning,” 8th
International Conference ICSOC, pp. .92-107, 2010.

 [13] Available from: https://github.com/wsdream/wsdream-dataset.

[14] Y. Chen, L. Jiang, J. Zhang, and X. Dong,” A Robust Service

Selection Method Based on Uncertain os”, Mathematical Problems in

Engineering, vol2016, p. p10, January 2016.

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://github.com/wsdream/wsdream-dataset

