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Abstract—Web services are implemented by using many atomic or 

composite services. In a dynamic environment, some Web services 

require to select a service with defined Quality of Services(QoS) 

through runtime adaptation in changeable environments. In 

alignment with user satisfaction requirements, in selection of 

services a tradeoff between QoS should be considered, especially at 

runtime adaptation in dynamic environments. There are many 

methods for service selection and composite services with priority of 

QoS, but they do not predict optimizing service composition in the 

large scale environment. A self-optimizing method just continually 

adjusts the control service's parameters that pass to other services. 

In this paper, in a self-optimizing method, the goal and the 

procedure for selection and composition of optimal services are 

proposed. It includes three parts, services are limited in a defined 

scope by convex hull algorithm and then the optimal services are 

chosen by the divide-and-conquer algorithm. The optimal service 

selection is as input parameter goes to service composition 

algorithm. The QoS metrics taken into account and measured for the 

optimal service include response time, availability, throughput and 

reliability. The simulation results show that the system user 

satisfaction gradually increases by about 10% compared with the 

results of previous methods and show that the execution time is 

comparatively decreased by half. 

 Keywords-text; self-adaption; self-optimizing; service composition; 

Reinforcement Learning; convex hull. 

I. INTRODUCTION 

Service-oriented environments have become more and more 

important in recent years, where various kinds of Web services 

and service-based processes are gathered within a certain domain 

or across domains [1][2]. They give people the ability to make, 

manage and share their own services, and make it possible to 

compose them based on a user's needs, providing them with extra 

value [1].  As reported in some previous studies on service 

selection, QoS attributes of atomic services are gathered for 

calculating the QoS of composite services in service composition 

environments [2][3].  

Self-optimizing is considered a QoS optimization problem, 

choosing atomic services generating the highest QoS overall 

value as optimized solution [4][5].  It is presumed by most 

existing methods that QoS attributes pre-exist and QoS 

information of atomic services does not change. So, the ranking 

of declared QoS values is what determines the selection of a self-

optimizing service. These approaches, however, have various 

constraints when the following problems are considered in the 

real environment. Firstly, service-oriented systems have various 

possible services because of the way they operate in distributed 

heterogeneous environments. Furthermore, existing services are 

ever-changing, so the selector should have the ability to adapt 

automatically to the dynamic environment. Finally, system 

should select optimal services based on QoS in reasonable time 

to meet user requirements. 

In this paper, we propose a method for selecting and 

composition of services based on the self-optimizing. This is very 

important in service selection, because this kind of method can 

autonomously react to dynamic environments during its life cycle 

and adapt to them. This feature is very useful, and the reason is 

that nowadays, all services are distributed in large scale 

environment and they are always changing, so the system needs 

the method which can adapt to them. The self-optimizing method 

is also able to automatically improve behaviors by itself 

continually. It is considered as one of its features because one of 

the concerns for service composition in previous methods is 

selecting optimal services based on QoS.  

The rest of the paper is organized as follows: In Section II, 

related works are discussed. Section III introduces a self-

optimizing Method and process variability. Section IV 

demonstrates the validity of the proposed method by a series of 

simulation experiments. Finally, Section V draws some 

conclusions.  

II. RELATED WORK 

In this section, some related work from the perspectives of 

the self-optimizing service selection and composition based on 

QoS is introduced. 

With the growth of Cloud Computing, Service Oriented 

Architecture (SOA) and Software as a service, possible services 

with similar functions but different QoS increase in numbers, 

which has made it far more difficult to select and compose 

services [5]. This has led to growing research in composition of 

QoS-aware Web service in SOA and Service-Oriented 

Computing (SOC) fields [6][7][8]. Yet, service composition is 

currently done mostly via approaches that utilize a semi-optimal 

approach relying on a single goal, instead of using Pareto optimal 

solutions that take into account the balance between various QoS 

objectives [9]. 

One sophistication that may arise is when a user quickly requires 

a service with a specific cost and certain performance, yet with 

increased availability. In real world usage, however, distinct 

dimensional attributes may not be compatible with one another. 
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Availability pair and the time it takes to respond are two of these 

contrasting characteristics. This means that QoS of optimal 

service composition has low response time and high Availability. 

Thus, reaching the optimal solutions given the different rules on 

the measured QoS and the competing goals is an NP-hard 

challenge. QoS weighting is used by some algorithms to 

dynamically adjust to these tradeoffs via a feedback controller [5]. 

However, the QoS weight sum method, has some constraints as 

follow: 1) weight vector directly influences the solutions, for 

which awareness of the problem in advance is needed; 2) there is 

a limited selection of solutions, which are not well-distributed; 3) 

as the scale of problem rises, so does the complexity and the time 

executed is dramatically increase; 4) if solutions are in out of 

reach areas of the Pareto front, Pareto optimal solutions may not 

be found; and 5) Clients may actually want to see a list of possible 

services, while only one, i.e., the Pareto optimal, is offered. 

Another field of work concerns utilizing the skyline operator to 

measure the real Pareto front [10][11]. The first one, the Bottom 

Up Algorithm, measures the biggest sections' workflow in order 

to boost the effectiveness of the process. The second Algorithm, 

consecutively provides the Pareto optimal services. But having 

temporal complexity in these algorithms is not possible, as the 

Pareto front might exponentially become larger with more tasks 

in the workflow. Also, the way the search area is pruned by the 

skyline operator means some possible services could be put aside 

even before selection occurs to meet the tradeoffs between multi 

QoS objectives, Pareto optimal workflows were set by Mostafa 

and Zhang [9]. It is provided tradeoff in linear domains with 

convex hall as well as the optimal Pareto front solution. Also 

Quick hull operator used to prune the search space may have 

polynomial time complexity because in the large number of 

workflow tasks, it has execution time at O(n2). Reinforcement 

Learning algorithm [12] has been introduced for solving 

sequential decision-making issue and makes learner optimal 

policy of Markov Decision Process (MDP) for services 

composition at runtime. This system can adapt to the dynamic 

environment by calculated reward function. It is supposed to 

receive reward value, which is equivalent to the cumulative 

reward of all the executed services [12]. However, there can be 

challenges as to how existing multi-goal service composition 

methods can work in dynamic environments. For example, to 

determine QoS value mathematical methods are used that 

presume a static environment. Once there are changes in the 

environment, there are no strategies for the system to deal with 

the emerging QoS. Also, some of these methods make use of 

explicit models so as to determine which services are chosen. No 

Rue is present in this model for addressing a new QoS parameter. 

Furthermore, in multi-object method, services are chosen by the 

weight which is defined in a static environment. Hence, the 

weight of a new service or an obsolete service in static 

environment cannot be dealt with changing environment. Finally, 

a near-optimal runtime policy is used by adaptive service 

Composition, meaning that in each of the system's lifecycles 

service composition is not optimal and the system cannot self-

optimize.   

In this paper, a new self-optimizing method is proposed. This 

method is based on Reinforcement Learning for calculated user 

satisfaction by reward function. A self-optimizing system is one 

that dynamically optimizes the operation of its service 

composition while it is running. The optimizer just continuously 

adjusts the control service which is selected based on QoS to 

compose with other services. In this system two main goals are 

followed, service composition can adapt with changing 

environment and system can optimize service composition based 

on QoS automatically and also multi-objective service 

composition approach is considered. In order to achieve those 

targets, this paper follows these steps: First, new search algorithm 

in convex hull is introduced for selecting multi-objective optimal 

services. Then, use Reinforcement Learning algorithm for 

compute services user satisfaction. This algorithm will obtain 

initial knowledge of the service selection from the divide-and-

conquer algorithm and it will be optimized when service 

composition is based on optimal service.  

III. PROPOSED METHOD FOR COMPOSITION OF 

SERVECES 

In this section, the self-optimizing method is introduced for 

selection and composition of services in order to improve 

Reinforcement Learning method for service composition. In 

previous method, proposed service composition is not optimized 

in each life-cycle system. In this paper is proposed service 

composition that is optimized continuously. A self-optimizing 

composite service is one that dynamically own optimizes the 

service composition while it is running, so it needs to have some 

kind of rules that can follow in the system. The goal of the self-

optimizing method is to maximize service composition based on 

QoS at all times. This method has ability to implement in the 

Large scale services and follows the goals like user satisfaction, 

being self-adaptive to the changeable environment, and 

presenting an automatic optimum service composition based on 

QoS. Before main algorithm is proposed, the schema of the self-

optimizing method is mapped in MAPE_K loops, and the self-

optimizing cycle in order to define the issue's scope should be 

explained. 

 

A. Adaption Loop 

Self-adaptive software is based on a closed-loop mechanism 

which is called the MAPE-K loop for autonomic computing, and 

includes the Monitoring, Analyzing, Planning and Executing 

functions. Self-optimizing is one of the most remarkable 

properties of self-adaptive systems. Therefore, my recommended 

plan for the self-optimizing is mapped in the MAPE-K loop in 

order to shows the workflow of the method. 

Accordingly Figure 1, the QoS values are defined. In this paper 

response time, availability, throughput and reliability are as QoS 

parameters which are collected in “monitoring” step. Then, the 

collected data are analyzed in the “analysis” step.  In this step, the 

value of those parameters is normalized. Then especial selected 

algorithm is executed in “Planning” stage. Optimal selected 

service as input parameter goes to the “execution” stage. In this 

stage, by Reinforcement Learning algorithm the best services are 

predicted for the user. MAPE-K loop is based on learning so there 

is one stage to share Knowledge with each part for predicting the 

system's behavior. In this case, the system needs to predict service 
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composition to achieve high user satisfaction. Using reward 

function in Reinforcement Learning algorithm, the learning 

process is defined. 

 

Figure 1. Abstract schema of the proposed method based on MAPE-K 
architecture. 

B. Self-optimizing cycle mapping 

The scope of service selection and composition is mapped on 

the cycle of the self-optimizing, which is depicted in Figure2.  

The first step is “analyzing the current state”. It is defining 

some QoS parameters which are normalized in a certain data 

range. The second step is “determining the goal of system”. In 

this step the main goal of the system is defined. In this paper, the 

main target is selecting optimal services among distributed 

services, according to (1). 

             𝜋 ≔ 𝑆 → 𝐴.                                   (1) 

  

 

Figure 2.  Self-optimizing cycle mapping for the selection and composition of 
service. 

Geometric convex hull operator is used in order to reduce number 

of services. The convex hull is the smallest convex polygon that 

encloses all points in specific space. Here, points are services 

which should locate in defined geometric place. The service is 

limited as (2). 

   𝐶𝐻(𝑆) = {𝑠𝑖1
. 𝑠𝑖2

. … . 𝑠𝑖𝑚
}. 𝑚 ≤ 𝑛. 𝑠𝑖𝑗

∈ 𝑆. 𝑗 = 1.2. … . 𝑚.     (2) 

Equation (2) shows that the convex hull of services includes "m" 

is members and "n" is the number of available services. So the 

number of services, which are known as members, are smaller 

than the number of available services. New services are adding in 

specific space by incremental convex hull algorithm. This process 

is implemented in three steps: first, place the visible facets for the 

services; the boundary of the visible faces is the set of horizon 

ridges for the services. Second, construct a cone of new facets 

from the service to its horizon ridges. Third, eliminate the visible 

facets. Therefore, the convex hull of the new service and the 

previous services is formed. Moreover, Convex hull is clustering 

services and categorizes them in a finite-dimensional space to set 

services in. In (3),  "d" is number of dimensions in  convex hull.  

In this paper, two dimensions are used.  So, this algorithm 

translates the interior service to half spaces by dividing offsets 

into coefficients. Dimensions are allocated two QoS parameters, 

which are analyzed in first step, it shows (3). 

                          𝑄 = {𝑄𝑖 ∈ 𝑅𝑑|∀𝑄𝑖 ∈ 𝑄. ∃𝑠𝑖 ∈ 𝑆}.                        (3) 

     According to Figure 3, the response time and throughput are 

determined with two-dimension space. Services are divided into 

four zones by the clustering of convex hull. It determines 

services' suitable zones according to the value of their QoS. For 

example, the optimal service placed in (b, c) zone which has 

highest throughput and lowest response time. 

 

Figure 3. Selecting optimal services by clustering and divide-and-conquer. 

      After optimal services are determined in a defined zone, 

optimal service is selected by divide-and-conquer algorithm. This 

algorithm has O[𝑛 log 𝑛] execution time in all cases. This 

algorithm operates as follows. In the first step, vertical line L 

divides services into two subsets A and B, each containing N/2 

services (seen Figure 3). Since every service in A and B cluster 

has an x-value and y-value, in next step, x-value and y-value of 

each service in A and B cluster are compared together. In the last 

step, rank of each axes for any services is defined. As an example, 

when x-value of B dominates x-value of A but the y-value of B is 
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not greater than the y-value of A. Comparing services based two 

QoS parameters are continued until the optimal service is 

selected; this is a recursive algorithm (4) and (see Figure4). 

                               𝜋∗ ≔ 𝐷ℎ𝑢𝑙𝑙𝜋(𝑠𝑡). (∀𝑠𝑡 ∈ 𝑆)                        (4) 

Figure 4. Selected optimal services based on convex hull and divide-and-
conquer algorithm. 

The third step of self-optimizing cycling is composing optimal 

services. In this section, reinforcement learning algorithm schema 

to orchestrate service composition is introduced. In this 

algorithm, the task of the learner or decision-maker is to learn a 

policy based on reward function. The complete learning process 

is depicted in the algorithm in Figure 5[12]. In this algorithm, the 

task of the learner or decision-maker is to learn a policy based on 

reward function [12]. 

Figure 5. The Baseline Reinforcement Learning for Service Composition [12]. 
 

In this algorithm, initial state 𝑠0 , terminal state 𝑠  and Q(s ,a) are 

defined. Q (s, a) is simulation of observed reward. In each episode 

(round), the learner starts from the initial state 𝑠0, and takes a 

sequence of actions by following the €-greedy policy (which is 

introduced subsequently). As line 7 shows, optimal service is 

chosen based on €-greedy policy and old Q (s, a) value is 

completely replaced with the new value of reward function. Rate 

of learning is α, which is quantity between 0 and 1. The discount 

factor is γ that reflects the learning policy. Both value of α and γ 

are different in differ issue. The value of €-greedy is (€ < 1). The 

most significant part of this algorithm is computing the reward 

function which calculates user satisfaction. In this paper reward 

function is used as well as this algorithm [12] to predict service 

composition and observe user satisfaction. The policy of reward 

function is determined according to (5). 

                     𝑅(𝑠) = ∑ 𝑤i×
𝐴𝑡𝑡𝑖

𝑠−𝐴𝑡𝑡𝑖
𝑚𝑖𝑛

𝐴𝑡𝑡𝑖
𝑚𝑎𝑥−𝐴𝑡𝑡𝑖

𝑚𝑖𝑛                                      (5) 

where Atti
s shows current value of the ith attribute of service s, 

and Atti
max and Atti

min show maximum and minimum value of Atti 

for all services. Wi is the weighting factor of Atti. This value is 

positive if users prefer Atti to be high value (e.g. throughput). Wi 

is negative if users prefer Atti to be low value (e.g. response time). 

C. Self-optimizing method for service composition 

In this selection, a self-optimizing method is proposed. 

According the self-optimizing cycle, the main goal is selecting 

optimal services based on QoS through distributed services. 

Response time, reliability, availability and throughput are the 

QoS parameters which analyze and compute the value of them for 

the self-optimizing method. This method has been shown in 

Figure6. According to the self-optimizing algorithm, Services and 

QoS parameters are initialized. Also, Q (s, a) as seen in 

Reinforcement Learning algorithm at the start of this algorithm is 

initialized. Line 3 to line 5, clustering convex hull based on QoS 

is calculated. All services in the convex hull are shown with H(si). 

The main purpose is selecting optimal services which is done with 

 
Figure 6. The self-optimizing for service composition. 

divide-and-conquer algorithm of convex hull. The optimal 

service selected is imported as an initial service parameter to 

composition algorithm. Then new action and next state (s') are 

defined in line 16. Reward function is calculated to compute user 

satisfaction in line 17. In  order to predict services composition in 

next step, this algorithm needs to update the value of reward 

function for service selected according to calculate quantity of   γ 

, 𝛼 and new reward value of next optimal service is selected 

according line 18. In this line, new optimal service is selected 
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based on divide-and-conquer algorithm of convex hull, it shows 

with DAC (s', a').  

In this way, the self-optimizing strategy provides maximum user 

satisfaction. In each cycle of system, the services that have 

maximum user satisfaction are suggested to the user. Also, this 

algorithm can adapt itself to the dynamic environment. Service 

selection accuracy provides full potential of each service. In order 

to compare the result of this method with previous methods, 

consider to calculated average value of reward function. If the 

system gets higher score in reward function than other methods, 

it is optimal behavior in service selection and composition.  

 

IV. EVALUATION OF THE PROPOSED METHOD  

One of the vita factors in tourism website produces Web 

service with high QoS which are available and can respond to user 

requirements in reasonable time. Customers on the Web want to 

do anything conveniently and simply, such as booking hotels and 

flights with one service, which is called a tourist package, or take 

the best service offer from the system. The significant concern in 

a self-optimizing tourist website is how to increase user 

satisfaction gradually. So, the propose method is implemented on 

a tourist website, which is composed of services and adjusts to 

dynamic environment in order to meet user requirements. 

In this paper, the self-optimizing occurs at the source code 

level as done by the program. The tourist website was 

implemented by C#.net and Asp.net. The website is based on 

MVC Architecture and SQL Server 2016 database. The database 

was designed based on the normal equation in such a way that it 

does not have redundancy at updating time. Web services are 

provided from valid dataset [13] which has 356 real Web services. 

Those Web services have nine Quality of Web Service (QWS) 

attributes, which are measured with a commercial benchmark 

tool.  The advantage of this dataset is that Web services are 

collected from public source discovery, integration, registration, 

search engines and service portals. It is remarkable that each 

service was tested over a ten-minute period for three consecutive 

days. Therefore, calculation of QoS was ignored. But before using 

the value for each QoSs, they should be normalized because they 

are distributed over a wide range. Equation (6) was used for 

normalization, as introduced in [14].  

           𝑄𝑖
′ =

𝑄𝑖−𝑚𝑖𝑛
𝑖

 𝑄𝑖

𝑚𝑎𝑥
𝑖

𝑄𝑖−𝑚𝑖𝑛
𝑖

𝑄𝑖
.                                        (6) 

      The main goal of the tourist website is that users choose a 

travelling destination. The website is based on two scenarios, both 

of which incorporate selection and composition of services to 

answer user requirements.  

       The first scenario is that the user fills a form in order to access 

a weather service. Then the user submits the information to the 

website in order to get a list of weather services for their 

destination. The website finds a list of weather services and 

presents the best ones as the result of the queries to the user. The 

second scenario consists of two possible ways. In the first way, 

flight and hotel services are chosen same as weather services. But 

the second way is definitely deferent, because service of hotels 

and flights is represented in one service, which is called tour 

package. User requests especial tour package which includes 

defined flight and hotel. The tourist agent requests to choose 

defined flight services. Then, it is receiving ID of flight services 

to send hotel service selector. At the end, it is receiving ID 

composition service which consists of flight and hotel services. 

The system can predict the best tour package service for users 

who enter the same information. The last scenario is payment 

services just like the first scenario. In Figure 6, each state is 

shown.   

Figure 6. The work flow of tourist scenario. 

     The second scenario is the main scenario in order to obtain 

comparison between this method and the previous one. The 

previous method is Reinforcement Learning algorithm which is 

developed in the tourist website as well as the self-optimizing 

method. The reward function is calculated with deferent QoS 

parameters. In the experiment results, the discount factor ϵ is set 

at 0.9 and as the amount of α is set to 0.2 (Figure 7). Also 

according to Figure 8 , the value of γ is set to 0.5. All of the 

experiments were conducted on a Sony laptop with Core i5 

3.1GHz processors and 12GB RAM, running Windows 7. All 

proposed services are observed on the tourist website after 2 

minutes. 

  
Figure 7. Choosing best𝛼. 
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Figure 8. Choosing the probability γ. 

      In the first stage of evaluation, it is shown how Reinforcement 

Learning policy can be improved with the self-optimizing 

method. Reinforcement Learning algorithm is executed with zero 

knowledge about the QoS of the component of service 

composition and in some episodes the value of reward function is 

not better than the last stage and shows uniform behavior (see 

Figure 9). Proposed method is improved by adding a new policy 

about service selection for service composition, it has the ability 

to self-behavior and increase user satisfaction by achieving higher 

values of reward function. This simulation fixed six episodes; the 

number of services in each episode is increased in order to show 

the proposed method in large scale of services has the same self-

optimizing attitude. 

Figure 9. Comparing the proposed method with the Reinforcement learning 

method for increased user satisfaction. 

       In the second stage of our evaluation, it can be seen how a 

self-optimizing service composition adapts to the changes of the 

environment and value of the reward function, which represents 

user satisfaction, is steadily increased.  Changing environments 

are simulated by periodically changing the QoS attributes of the 

services. At first environment is changed by 5%. It means, 5% of 

basic services are added to the environment with the uniform 

probability distribution formula. Then Reinforcement learning 

algorithm and the purpose algorithm are executed. Figure 10 

shows the growth of the cumulative reward during the self-

optimizing process. In comparison, increasing the change rate in 

Reinforcement learning algorithm has delay because it has to 

identify QoS and needs to learn optimal execution policy. 

Conversely, the reward value of the self-optimizing method is 

comparatively higher and changes do not stop the optimizing 

process. In second simulation, the environment is changing by 

10% and the third simulation based on 15% .When the 

environment changes more and more, growth rate satisfaction of 

the self-optimizing method is more visible. In the third stage of 

our evaluation, Figure 11 shows how the self-optimizing service 

composition outperforms the reinforced algorithm in a large scale 

environment. In this evaluation, environment scale is represented 

by the number of services used in every tourist workflow. At first, 

hotel and flight services are increased up to 300, then reward 

function of the proposed approach is measured. The reward value 

depicts the user satisfaction. In the second and third picture 

reward functions are measured based on 400 and 500 services 

respectively. Comparing the proposed method with the 

Reinforcement learning method in the Large scale environment, 

self-optimizng method shows more satisfaction than the 

Reinforcement learning method. The fourth experimental results 

include test 1, test 2 and test 3. In this experiment, optimal 

services with low response time, high availability, high 

throughput and high reliability are selected. The results of test 1, 

as depicted in Figure 12, clearly show that the optimal tourist 

workflows have achieved high throughput, and high reliability 

among 50 services or lower response time and high availability. 

The outcomes of test 2 are represented in Figure 13, they support 

test1 statement, regardless of the bigger number of concrete Web 

services assigned to each task (100 services), as the optimal 

workflows obviously continue representing the same trend with 

lower response time and high availability, high reliability and 

high throughput. Finally test 3, as represented in Figure 14, has 

the same trends as test 1 and test 2 with large number of services 

(150 services). As a result, the size of environment does not affect 

selecting optimal services based on QoSs for each task in tourist 

website. 

       In Figure 15, the proposed method executed composed 

services in half the time of Multi-Object Service Composition 

algorithm which was introduced by Mostafa and Zhang [9], the 

reason is clearly observed; the previous algorithm used fast 

convex hull, whose execution time in the worst-case is O[n2] in 

contrast execution time of the self-optimizing method in all cases 

is O[𝑛 log 𝑛]. Therefore, by this chart, different levels of 

execution time of the two algorithms in large scale are more 

distinguished 

 

V. CONCLUSION 

The main purpose of this paper is to introduce a self-

optimizing method in order to select and compose services. 

Optimal services are selected based on QoS and composed with 

other services to answer user requirements. The significant 

algorithm in the self-optimizing method is the Divide-and-

conquer algorithm used for selection. The reason is that the 

execution time of this algorithm is O[𝑛 log 𝑛] in all cases. So the 

self-optimizing method behaves similarly on the large scale, with 

shorter execution times.  This time is half that of pervious method 

[9]. Therefore, when the tourist wants to take travel services, it 

can get optimal services in a reasonable time. Moreover, the 

Reinforcement Learning policy [12] has zero knowledge about 

the QoS of the component services, it takes some time to know 

services in large environment and predict user behavior. 
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Therefore, the rate of rewards value remains in consistent level 

when making comparison between  

 
Figure 10. Comparing the self-optimizing method with the Reinforcement Learning method in dynamic environments. 
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Figure 11. Comparing the performance of the proposed method with the base method. 
 

 

 
Figure 12. Optimal service based on QoS is Selected among 50services. 

 
Figure 13. Optimal service based on QoS is Selected among 100services. 

 
Figure 14. Optimal service based on QoS is Selected among 150services. 
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Figure 15. Comparing the proposed method with the method of selection service by fast convex hull. 

two steps of this algorithm. It has near optimal execution 

policies efficiently. In this paper, Reinforce Learning algorithm 

is modified with new policy to selected optimal services. This 

policy optimizes service composition in each cycle-life.  On the 

other hand, some QoSs is differing in best value. For example, 

response time is lower and availability is high in optimal 

services, so convex hull algorithm provides clustering in two 

diamonds which can choose optimal services with different 

values. The experiments show the efficiency of this algorithm 

is optimized in each steps. 

       Dynamic environment is one of the issues this day for 

websites like tourist website because services are always 

changing with improved performance or replaced with new 

services. The Self-optimizing method is a good solution to use 

here; it can optimize itself in large scale and adapt to a dynamic 

environment.   

       The proposed method takes about 2 ms to compute QoS. 

Therefore, it is useful for non-real-time systems like tourist 

systems. But it is not useful for real-time systems where time is 

very critical.  

       The future work is set to study the self-optimizing and self-

reconfiguring method together. Therefore, when the service 

selection and composition fail, there are methods to help the 

system to reconfigure itself automatically. The self-optimizing 

and self-reconfiguring are implemented in many systems 

simultaneously but up to now, they are not implemented in 

service-oriented systems. Using this feature can also improve 

the proposed method. 
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