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Abstract—Autonomous systems, such as self-driving cars, are
an emerging but very complex class of systems designed to
relieve people of many unpleasant tasks. However, in the industry
software architectures and frameworks that have been developed
for non-autonomous systems are often used for such autonomous
systems. These architectures and frameworks are rigid, very close
to the hardware platform and offer little room for extensions. In
this paper, we present a dynamic-adaptive middleware for au-
tonomous systems, which is based on a formal component model
and supports several communication paradigms independent of
the actually used communication technologies. The presented
middleware has already been implemented as a prototype and
tested with an electric model vehicle.
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I. INTRODUCTION

Autonomous driving starting at level 3 of the Society
of Automotive Engineers (SAE level 3) [1] is one of the
biggest technological challenges of our current time. But, to
be able to provide flexible and safe autonomous driving, a
range of challenges have to be tackled. To scale new functions
such as autonomous driving and to reduce the complexity of
integrating new functions, the electrical/electronic architecture
(E/EA) will change to fewer central (domain-specific) com-
puters and increased data preprocessing directly in sensors
and actuators. The development approach will shift from ”new
functions as Electronic Control Unit (ECU)” to ”new functions
as software”.

The typical development process of an embedded system,
or any system strongly dependent on hardware/ software,
starts with the definition of functionalities. In a next step,
these functionalities are divided in hardware and software
requirements, which are used for the development of hardware
and software solutions. Although, the development of the two
domains is strongly interconnected, they often differ with
regard to the time needed for their realization, their innovation
cycles and their specific technological advancements [2] [3].

While developers may use a hardware platform for quite
some time, innovations and new functionalities like au-
tonomous driving are often driven by software improvements
[4]–[6]. Additionally, it is desirable to re-use those new soft-
ware solutions in form of components in a range of different
hardware variants of a product line [7]. The changes in the
vehicle architecture and the realization of new functions like
autonomous fleet management also require to include back-
end-systems and Car2X communication.

Another aspect, which is especially true for autonomous
driving, is that a software system must maintain its function-
ality and safety in every situation [8]. Therefore, the software

urgently needs the ability to adapt to context changes. In
some circumstances, a reduction in quality is acceptable but
the safety of the autonomous vehicle has to be guaranteed.
To do this, safe adaptation during runtime even in uncertain
environments and unforeseen situations must be possible [8],
[9]. The best case is if both, proactive adaptation and reactive
adaptation, are implemented within a safety critical system.
Proactive adaptation is used to prevent failures from happen-
ing, while reactive adaptation is used to recover from changes
or errors in the technical resources or context of the system.

The mentioned challenges have to be tackled to realize
flexible and safe autonomous driving. Our solution is to
change from rigid and inflexible systems to adaptive systems
which adapt to the provisioned hardware and the context of
the system. To build such an adaptive system exist different
solutions which we will discuss in Section II. In our concept,
we decided to construct a programming framework, which
relieves the developer of the work of the adaptive mechanisms
and optimizes various aspects of the system globally such as
performance and communication.

As mentioned before, it will be a crucial part of the new
vehicle architecture to be able to work on various hardware
platforms and even migrate software components during run-
time. Therefore, we are dealing with distributed systems con-
nected by possibly diverse technical communication channels.
Even nowadays exist a huge variety of communication busses,
middlewares and paradigms within a vehicle [4].

In this paper, we will introduce a new middleware for au-
tonomous systems which builds up on our experiences in adap-
tive component models and in software architectures. In Sec-
tion II, we introduce the current state of the art of self-adaptive
systems and communication paradigms and taxonomies. We
describe our own communication taxonomy for distributed
systems in Section III, followed by an introduction in Sec-
tion IV to our dynamic adaptive middleware currently under
development. Motivated by a small example, in Section V,
we show which adaptive mechanisms and communication
paradigms have to be considered for an adaptive middleware
in the autonomous domain. Based on the previous Sections,
we explain in Section VI how we integrated the presented
communication paradigms into our middleware using fitting
concepts. We conclude our paper in Section VII with possible
future work and a conclusion in Section VIII.

II. RELATED WORK

As motivated in the introduction, a middleware suitable for
flexible autonomous driving scenarios has to deal with adaptive
mechanisms and different communication middlewares and
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paradigms. It has to provide the right tools for the developer
for building a robust but flexible system. In this section, we
give an overview of current self-adaptive system approaches
and communication paradigms.

A. Self-Adaptive Systems and Frameworks
A self-adaptive system is capable of monitoring its oper-

ating environment and automatically adapt to changes [10].
It provides self-x properties like self-configuration, self-
optimization, self-healing or self-protection [11]. A compre-
hensive and exhaustive study by Krupitzer et al. has attempted
to structure the field of self-adaptation with the help of their
own taxonomy [8]. Krupitzer et al. ask a total of six questions
related to self-adaptation and map these to five different
properties of a self-adaptive system shown in Table I. In
their study, they shed light on the individual dimensions of
adaptability in detail and evaluate a large number of self-
adaptive approaches.

TABLE I. ADAPTION TAXONOMY [8]

Question Dimension of taxonomy
When to adapt? Time

Why do we have to adapt? Reason
Where do we have to implement change? Level

What kind of change is needed? Technique
Who has to perform the adaptation? N/A because of self-adaptation
How is the adaptation performed? adaptation Control

Self-adaptation can be achieved by many different means
and procedures. Adaptation can be managed internally or
externally, it can be reactive or proactive, centralised or de-
centralised and many other criteria play a role. In the field
of large-scale systems, component-based development is a
solid and state-of-the-art approach [12]–[14]. One example
for component based development are middlewares, which not
only define services and establish an infrastructure, but also
specify a formal component model [15]. In our approach, we
opted for a component model and middleware solution that
frees the application developer from the task of self-adaptation
and is able to hide the underlying specific platform and provide
a unified high-level interface.

One well known component model is the CORBA Com-
ponent Model (CCM) [16] from the Common Object Request
Broker Architecture (CORBA) [17], a component based mid-
dleware. Building up on CORBA, dynamicTAO [18] introduces
a reflective Object Request Broker (ORB) to support dynamic
reconfiguration by maintaining an explicit representation of
the internal structure of the system. Another well-known
framework is the Rainbow framework [19] which divides the
self-adaptive system in an architecture layer and a system layer
with the managed resources. To realize adaptation, an external
manager is used, which exploits the architecture model to
monitor the running system and in case of constraint violations
it performs adaptation accordingly.

In recent years, attempts have also been made in the
automotive domain to introduce adaptability as a development
approach. One example is the Dynamically Self-Configuring
Automotive Systems (DySCAS) project [20], in which a
policy-driven middleware was developed. The introduced poli-
cies describe a desired high-level behavior, which is then
executed by the underlying middleware. This procedure makes

it possible that the policy writer does not have to be a self-
adaptive expert. One of the focal points of DySCAS is the
limited resources of the ECUs and the resulting resource-
optimized performance.

Becker et al. describe a model-based extension of the
AUTomotive Open System ARchitecture (AUTOSAR) that
introduces reconfiguration mechanisms at the architectural
level [21]. They present a toolchain, which allows the de-
veloper to describe configuration alternatives and transitions
between different configurations. These models are translated
into executable code. The system’s reconfiguration capabilities
are limited by the developer’s specifications created at design
time, but can be verified because of the model-based approach.

B. Communication Paradigms
In our middleware, the focus is not only on adaptivity but

also on communication. The application developer should be
provided with exactly the right communication paradigms to
develop a good architecture. For this reason, we will take a
closer look at various well-known communication paradigms
in this section.

For communication in distributed systems exist a variety of
different paradigms, each suited for special cases. Tanenbaum
and van Sten discussed various communication paradigms
in [22]. They structured these in four categories: Remote Pro-
cedure Call (RPC), message-oriented communication, stream-
oriented communication and multicast communication. RPC
was further broken down into synchronous and asynchronous
RPC, whereas message-oriented communication was separated
in transient and persistent communication. Examples for tran-
sient communication are Berkeley Sockets or Message-Passing
Interfaces. Persistent communication is realized through mes-
sage broker architectures or message queues.

According to Tanenbaum and van Sten [22], stream-
oriented communication is mainly used for continuous media.
Important aspects of stream-oriented communication are the
quality of service, and, in case of multiple streams, the time
synchronization.

Multicast communication includes all communication from
one sender to a group of receivers [22]. This could be done by
directly addressing a group and sending the message to all of
them at once or by using gossip-based protocols where each
node receiving a message shares the message with a group of
other nodes until all nodes have received the messages.

Another comprehensive summary of communication
paradigms is found in Schill and Springer [23]. They struc-
ture communication paradigms similar to Tanenbaum and
van Sten in Remote Procedure Calls, message-oriented and
stream-oriented communication but also include data-based
communication. Unlike Tanenbaum and van Sten, they do not
have clear sub-categories but highlight individual aspects of
communication.

In RPC, they particularly emphasize the synchronous bidi-
rectional call [23]. For message-oriented communication, they
focus on unidirectional communication channels such as those
used in Publish/Subscribe systems. In the case of stream-
oriented communication, they mainly consider periodic, syn-
chronous data streams that can be either uni- or bidirectional.

Data-based communication is divided into mobile objects
and shared space or information sharing [23]. Mobile objects
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are known, for example, as a part of Java RMI (Remote
Method Invocation). These refer to data that is packed into
an object and exchanged between sender and receiver instead
of using messages for data exchange. They are used mainly
for communication between a limited number of participants.
Shared space allows a number of components to write and
read structured data in a collective space. Another suitable
term for this kind of communication, which is more common
in embedded systems, is global variables.

III. COMMUNICATION TAXONOMY FOR DISTRIBUTED
SYSTEMS

The taxonomy of Tanenbaum and van Sten [22] lacked the
data-based communication that is often used in the automotive
domain, while the taxonomy of Schiller and Spring [23] did
not go into as much detail as Tanenbaum and van Sten and
lacked the inner structure. That is why, we derived our own
taxonomy based on these two, which is shown in Figure 1. In
our opinion, we have combined the best of both and supported
it with references to well-known software patterns.

Communication

Remote Procedure
Calls

Message-oriented Data-based

Stream-oriented

asynchronous

synchronous

persistent

transient

non-synchronized

synchronized

ownership

public space

Request-Response
Pattern

Pipes and Filters
Pattern

Publish-Subscribe
Pattern

Blackboard
Pattern

Figure 1. Adapted Communication Taxonomy for distributed Systems based
on [22] and [23]

Our taxonomy has four categories: Remote Procedure
Calls, message-oriented, stream-oriented and data-based. RPC
maps to the classic request-response or client-server pat-
tern [24]. We distinguish it like Tanenbaum and van Sten in
asynchronous, non-blocking and synchronous, blocking calls.
RPC is mostly used when data has to be transferred irregularly
on a request-response (bidirectional) basis.

For message-oriented communication we assign the
publish-subscribe [24] pattern. Just like RPC, we follow Tanen-
baum and van Sten in our message-oriented communication
and further classify messages according to how they are
transmitted. In the persistent case, the transmission is carried
out using a broker which is able to store messages temporarily,
for example. For the transient transmission of messages, we
follow the channel pattern [24] that allows the transmission
of messages using topics or special channels. An important
aspect of topics is that the recipients and senders do not know
each other. In both cases, persistent and transient, message-
oriented communication is used for either periodic or sporadic
data. The transmission is always unidirectional.

In stream-oriented communication, we distinguish between
synchronized and non-synchronized communication. By syn-
chronized streams we mean anything where two or more
streams have to be synchronized with each other, e. g. internet
telephony or video conferences. Non-synchronized communi-
cation is used for sensor data streams or continuous media

streams. Overall, stream communication maps to the Pipes and
Filters pattern [24].

Our last category is based on the taxonomy of Springer
and Schill. Data-based communication describes the exchange
of structured data that either belongs to a system participant
(ownership) or that can be read and processed by everyone in
a collective space (public space). Data-based communication
matches the blackboard pattern [24]. This communication
method is useful when structured data has to be shared between
a number of components on a regular basis.

We use the presented taxonomy to divide means of com-
munication. Based on this, we discuss which communication
methods should be supported by a dynamic adaptive middle-
ware. In the next section we present our former middleware for
dynamic, adaptive systems, which only supported synchronous
RPC, followed by the expansion of our middleware to include
asynchronous RPC, transient message-oriented and data-based
ownership communication.

IV. DYNAMIC ADAPTIVE SYSTEM INFRASTRUCTURE -
DAISI

Before we take a closer look at our new concepts for the de-
velopment of a dynamic-adaptive middleware for autonomous
driving, we explain in this section our previous work on a
dynamic-adaptive middleware for information systems called
Dynamic Adaptive System Infrastructure (DAiSI) [25]. DAiSI
is a middleware based on a formal component model.

The model defines each software component in a system
as a dynamic adaptive component (DynamicAdaptiveCompo-
nent), which consists of several component configurations
(ComponentConfiguration). Each configuration describes in
detail which services a component requires (RequiredSer-
viceReferenceSet - RSRS) and which services it provides
(ProvidedService - PS). The PS and RSRS match on service
descriptions in the DomainInterface. All DomainInterfaces are
bundled in the DomainArchitecture, which describes possible
services of a whole domain like autonomous driving.

The provided and required services match via domain
interfaces that specify which synchronous method calls the ser-
vice instances offer. Each component implements the MAPE
loop [11]. Each component observes changes to the system
and its environment or context (Monitoring), analyses them
(Analyze) and plans (Plan) and executes (Execute) necessary
adaptations. How these processes work in detail can be found
in [25]. For our purposes, a short introduction is sufficient.

A fundamental characteristic of DAiSI is that each compo-
nent tries to resolve its dependencies in order to be able to offer
its services. Each element, briefly explained in the following,
implements its own state machine. If a ProvidedService is
required to run, either because it is needed by the environment
(for example GUI or interface to external systems) or because
another component in the system has requested the service,
this PS informs all ComponentConfiguration by which it is
provided. The ComponentConfiguration then changes to the
RESOLVING state. As a result, all RSRSs declared by the
ComponentConfiguration will also switch to RESOLVING
state. This process reflects, that to provide a service, a number
of dependencies on other services have to be resolved.

The RSRS is aware of all services available in the system.
Either via a central instance, such as a broker or a registry,
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or via a service discovery. For resolving its dependencies, the
RSRS inquires the usage of available matching services. When
a PS changes to the RUNNABLE or RUNNING state - mean-
ing its dependencies are resolved - it can be used by an RSRS.
After the successful negotiation and connection between PS
and RSRS, the RSRS change to the RESOLVED state. When
all RSRS of a ComponentConfiguration are resolved, the
ComponentConfiguration itself is considered resolved. The
ProvidedServices either change to the RUNNABLE state, when
they are not needed, or to RUNNING, when they are.

In DAiSI, only one configuration can be active at a time.
Therefore, if several configurations are potentially activateable
(in RESOLVED state), the ”best” one is activated. Each
component strives to resolve its ”best” configuration to provide
the ”best possible” service.

Over the last five years, we introduced various new con-
cepts to our component model. The local optimality of the self-
adaptive system is complemented in [26] by a global system
design that specifies which rules/objectives the overall system
should follow. This limits the system configuration resulting
from the adaptation process. Likewise, in Klus et al. [26]
interface roles were introduced. These extend the concept of
domain interfaces with an additional statement about the role
of a ProvidedService at runtime.

Based on the InterfaceRoles, a quality concept is introduced
in [27]. The ability to compare the quality of two interfaces
allows to make a more differentiated selection of services
for the component. This quality may also include properties
at runtime, such as current load, communication latencies or
the location of services, due to the runtime evaluation of the
InterfaceRole.

Up to this point, the interconnection was based purely
on syntactic compatibility. However, in systems developed by
several developers, such as in the domain of IoT, it is no
longer possible to rely solely on syntactic compatibility. In [28]
an additional aspect of interconnections in dynamic adaptive
systems was considered - semantic compatibility with syntactic
differences.

A semantic description language, on which the developers
agree, is used for this purpose. By this, in addition to the
syntactical description of the interfaces, a semantic description
is given. At runtime, the middleware automatically generates
adapters that create syntactic compatibility between interfaces
which are semantically compatible.

Although different adaptive concepts have been developed,
so far only a few communication paradigms have been con-
sidered apart from the synchronous RPC. In the following
sections, we will describe our work on further communication
paradigms that fit into the DAiSI adaptive component model.
First of all, we use an example to motivate which paradigms
are essential for the autonomous domain.

V. MOTIVATING EXAMPLE

In this section, we introduce a motivating example for our
adaptive middleware which we keep as simple as possible
but still shows the challenges for an adaptive middleware
in the autonomous driving domain. The example involves
an autonomous electric car, which is equipped with diverse
sensors and actuators and some software components as shown

in Figure 2. The architecture shown is a combination of hard-
ware components abbreviated with <<HW-C>> and software
components abbreviated with <<SW-C>>.

1

<<SW-C>>
Image 

Processor

<<SW-C>>
Motor 

Controller

<<SW-C>> 
Camera

Controller

<<SW-C>>
Obstacle
Detector

<<SW-C>>
Distance
Sensor

<<SW-C>>
Distance
Sensor

<<SW-C>>
Path 

Planner

<<HW-C>>
Distance
Sensor

<<HW-C>>
Distance
Sensor

<<HW-C>>
Camera

<<HW-C>>
Motor

<<HW-C>>
Steering

Servo

<<SW-C>>
Servo

Controller

Figure 2. Example Architecture

The task for the car is to follow a lane on the ground and to
halt in case of obstacles. A video camera is attached at the front
of the car to record a video of the field of vision. The Camera
Controller component fetches the individual images of the
video made available by the camera and the Image Processor
handles the images to identify the lane. The coordinates of the
lane are used by the Path Planner to plan the trajectory. The
velocity of the motor and the steering angle are controlled by
the components Motor Controller and Servo Controller. These
two software components accept the values calculated by the
Path Planner and control both the motor and the steering servo.

The second simple task for the car is to stop if an obstacle
is in front of it. In order to detect obstacles, two distance
sensors are attached to the left and right side of the camera.
The two software components Distance Sensor are responsible
for fetching the distance from each sensor. The component
Obstacle Detector uses these two values to decide whether an
obstacle is in front of the car. This in turn is used as an input
for the Path Planner to determine if the car must halt.

In the next section, we will use this small example to
discuss the new communication paradigms in DAiSI.

VI. EXTENDING DAISI FOR AUTONOMOUS DRIVING

As we have already indicated in Section III, there are
several communication paradigms used in distributed systems.
The previous concepts in DAiSI only supported synchronous
RPC. It is clear that a modern automotive middleware should
offer the application developer more communication meth-
ods. Using our taxonomy, we identified three communication
paradigms which we included in our component model to ac-
count for the needs of the automotive domain. Namely they are
asynchronous RPC, ownership data-based communication and
persistent message-oriented communication realized through
topics. Therefore, we demonstrate how the former component
model of DAiSI (see Section IV) can be extended by these
three new communication modes. The complete extended
model can be seen in Figure 3.

At this point, we will use the example of the autonomous
electric car presented in Section V to illustrate our component
model.

The elements DynamicAdaptiveComponent and Compo-
nentConfiguration remain unchanged and still form the basis of
the model. The only enhancement at this point is that we have
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Figure 3. Extended Daisi component model

granted the possibility that several component configurations
can be active at the same time. This should make it easier for
developers to combine different configurations.

Each software component shown in the example in Figure 4
corresponds to a DynamicAdaptiveComponent annotated with
the abbreviation <<DAC>>. However, the communication
between the components is now specified by the paradigms
RPC, ownership and topics. During runtime, the components
can be started and stopped. Thanks to the adaptive concept
of the middleware they will connect to the system as shown
above. Of course, for every component different Component-
Configurations might exist. The scope of this paper, however,
is on the communication paradigms and therefore these aspects
are not further examined here.

In the example shown, the Path Planner component uses
two different RPCs to control the vehicle based on given sensor
information. The component uses on the one hand the interface
IMotor of the component Motor Controller to control the speed
of the car and on the other hand the interface IServo of the
component Servo Controller to adjust the steering angle. Both
values are set using a call when necessary.

RPCs have always been part of DAiSI. The RequiredSer-
viceReferenceSet and ProvidedService with the corresponding
DomainInterface therefore remain identical. The DomainInter-
face is structured in DomainMethod and DomainDataVariable.
DomainMethod are (asynchronous) callable methods within
the interface. DomainDataVariable is introduced for the own-
ership paradigm.

To determine the speed and steering angle, Path Planner
uses data from the Image Processor and Obstacle Detector
components using the ownership paradigm. The Image Proces-
sor provides the Path Planner with the Lane object of its ILane
interface. The Path Planner also uses the object Obstacle of
the IObstacle interface, which is implemented by the Obstacle
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<<DAC>>
Motor 

Controller

<<DAC>>
Camera

Controller

<<DAC>>
Obstacle
Detector

<<DAC>>
Distance
Sensor

<<DAC>>
Distance
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<<interface>> IObstacle

<<ownership>> Obstacle

<<DAC>>
Servo

Controller

<<interface>> IServo

<<RPC>> setSteerAngle(int y)

Figure 4. Example Architecture with communication paradigms

Detector. Using the ownership paradigm, the Path Planner can
subscribe to changes of the object, while it still knows exactly
to which service the object belongs to.

The ownership communication paradigm is illustrated in
the component model in Figure 3 at the bottom left. An
ownership object is part of a domain interface, using the
DomainDataVariable with a data type given by the Domain-
DataType. A domain interface can contain any number of
ownership objects and methods.

Transient message-oriented communication is realized us-
ing hierarchic topics. In the example, a topic hierarchy is
shown in the lower part of the component model. The left
distance sensor of the car publishes its data on the topic
DistanceLeftFront and the right distance sensor correspond-
ingly on the topic DistanceRightFront. The naming of the
topics generates a certain semantic meaning, in this case
a localization of the installation of the sensors. The topic
DistanceFront merges the data of topics DistanceLeftFront and
DistanceRightFront to describe the distance to objects in front
but without further direction. This topic is used by the Obstacle
Detector component to evaluate whether there is an object in
front of the car. In our example, the topics could be used by
more than one distance sensor and it would make no difference
for the Obstacle Detector, as long as the semantic meaning
of DistanceFront is preserved. In other words, the Obstacle
Detector does not need to know the exact data sources.

In open and commercial middlewares, it is a common
practice for the publisher to define the topic name and data type
for the middleware to create a topic based on these definitions.
This means that a consumer needs to know which topics are
created by the publishers. Although it is often practiced, it is
not a good choice in terms of the overall system architecture.
Publishers can publish whatever and however they want, and
consumers must adapt accordingly.

We propose to decouple the creation of topics from the
publishers and to give these rights to the architect on the basis
of a formalized description of the topics. For this purpose, we
present the concepts TopicSubscriberEndpoints and TopicPub-
lisherEndPoints in combination with Topics. Topics are named
and typed transport channels for data sent by a publisher. In our
concept the middleware itself is responsible for the creation of
these topics via a predefined specification by the architect.
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The data types that can be published on a topic are de-
termined by the DomainDatatatype. Further freedom is given
to the architects through the self-aggregation of Topic. This
relationship allows to design topic hierarchies, that is, one can
create topics with names and permitted data types that are
inherited from each other, as seen in the example.

In the following sections, we explain the realization of the
three used paradigms in details and give a brief introduction
to our implementation using code snippets.

A. Remote Procedure Call Paradigm
An RPC can be used in the extended DAiSI, in contrast to

its predecessor, both in the synchronous and the asynchronous
version.
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Planner

<<interface>> IMotor

<<RPC>> setVelocity(int x)
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<<DAC>>
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Planner
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Obstacle
Detector

<<DAC>>
Distance
Sensor

<<DAC>>
Distance
Sensor

<<Topic>> 
DistanceLeftFront : Distance

<<Topic>> 
DistanceRightFront : Distance

<<Topic>> 
DistanceFront : Distance

Figure 5. Example RPC

In our example of the electric car, several Remote Pro-
cedure Calls have been modeled. At this point, we explain
the RPC between the component Motor Controller and Path
Planner, which is shown in Figure 5, in detail. In this case, the
component Motor Controller is the provider of the interface
IMotor with the method setVelocity(int x) contained in it. It
sets the motor speed using the parameter x.

public class MotorController extends
DynamicAdaptiveComponent{

public MotorController() {
ProvidedService motorSpeed =
new ProvidedMotor();

ComponentConfiguration config =
new ComponentConfiguration() {
@Override
protected void

notifyStateChanged(ConfigurationState
state) {

// react to different states
}

};
config.addProvides(motorSpeed);
this.addConfiguration(config);

}

class ProvidedMotor extends ProvidedService
implements IMotor {

@Override
public void setVelocity(int x) {
// control motor

}
}

}

Listing 1. Example RPC Callee as Code

In the following, both the Motor Controller and Path Plan-
ner components are shown as simplified Java code. The Motor
Controller in Listing 1 initially inherits from the Dynami-
cAdaptiveComponent of our component model. This allows the
application developer to make use of the adaptive mechanism
in the middleware. In all of the following examples, the
components always inherit from DynamicAdaptiveComponent.

To be able to offer a service to other components, a
component must first create its own ProvidedService. A Pro-
videdService, like ProvidedMotor in our example, is created by
extending the abstract class ProvidedService and implement-
ing a DomainInterface, like IMotor, with the corresponding
methods. In a final step, the service needs to be added to the
component configuration to be usable by other components.

A component configuration is created in our middleware
using the class ComponentConfiguration. The method notifyS-
tateChanged(ConfigurationState state) has to be implemented,
which informs the component about state changes, e.g. when
all dependencies are resolved.

Once the configuration has been created, both provided
and required services can be added to it. In the example
of Motor Controller, the service ProvidedMotor is added to
the configuration config using the method addProvidedSer-
vice(ProvidedService ps). To add a configuration to a compo-
nent, the method addConfiguration(ComponentConfiguration
cc) is used. In the example, config is added to the component.

The Path Planner component (see Listing 2) wants to use
the service IMotor and must therefore create a RequiredSer-
viceReferenceSet typed with the desired interface. In addition,
a RSRS must be given the minimum and maximum number
of service instances needed. In the example, both values
are set to 1, meaning exactly one service is needed. The
RSRS is added to the created configuration using the method
addRequires(RSRS rsrs). The process for generating a required
service is therefore very similar to the process for creating
a provided service. Additionally, the processes for creating
a component configurations and adding ProvidedServices and
RequiredServiceReferenceSets to these is the same for each
communication paradigm and is therefore not shown again in
the following sections on ownership and topics.

public class PathPlanner extends
DynamicAdaptiveComponent{

public PathPlanner() {
RequiredServiceReferenceSet<IMotor> m=
new RequiredServiceReferenceSet(
IMotor.class, 1, 1);

ComponentConfiguration config =
new ComponentConfiguration() {
@Override
protected void

notifyStateChanged(ConfigurationState
state) {

// react to different states
}

};

config.addRequires(m);
this.addConfiguration(config);
// calculate x
m.getService().setVelocity(x);

}
}

Listing 2. Example RPC Caller as Code

Once the dependency has been resolved, the service can be
used. The RSRS has a getService() method, which returns a
bound service instance of the given interface IMotor. As usual
in Java, the methods such as setvelocity(int x) can be called
here either synchronously or asynchronously using Futures.
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B. Data-based Communication Paradigm - Ownership
The biggest disadvantage of the classic, asynchronous or

synchronous RPC is the periodic access to data. Each time a
component requires a value from another component, an RPC
must be sent, a return value calculated and the value returned
to the sender. Since the periodic access to data is common
in embedded and automotive systems, we have extended our
middleware by the communication paradigm ownership.

In our concept, components can create their own data
objects and make them available to other components via their
DomainInterfaces. By making the data available via interfaces,
it is clear to the consumer of the data from which component
he receives the data. This is extremely important in many cases,
as it makes a big difference whether a component receives data
from a specific and known sensor or from an arbitrary sensor.

A consumer can subscribe to an ownership object and is
thus informed of changes to it. The producer decides when
a consumer is informed about data changes. Technically, the
consumer is informed about the changes to the object via
callback methods of the middleware.

public class PathPlanner extends
DynamicAdaptiveComponent{

public PathPlanner() {
private RequiredServiceReferenceSet<ILane> l;
l = new RequiredServiceReferenceSet(ILane.class,

1, 1);

// add required service to config as in Listing 2

ProvidedService s = l.getService();
DataObject d = s.getDataObject();
d.addCallback(new LaneCallback());

}

class LaneCallback implements Callback<Lane> {
@Override
public void update(Lane lane) {
// react to new input

}
}

}

Listing 3. Example Ownership Consumer as Code

We give the producer further freedom in designing the
ownership object by allowing to choose between two different
types of ownership objects: ConsumerImmutable and Con-
sumerMutable. If the producer chooses a ConsumerImmutable,
he determines that consumers are only allowed to read the data
of the ownership object but not to change it. This is especially
useful if, for example sensor data is made available to con-
sumers. At this point, it would not be useful or even dangerous
if the consumer could change the data. A changed sensor
value could lead to fatal consequences for other consumers.
By selecting a ConsumerMutable, the producer determines
that he also allows consumers to change data. Such a setting
could be used for example for configuration parameters that
are optimized at runtime by different parties.

In relation to our running example Figure 6 shows the
components Image Processor and Path Planner, which ex-
change their data via ownership communication. As already
mentioned, the Image Processor offers an object of type Lane
which stores the exact location. The component updates this
object each time it receives a new image from the Camera
Controller. The component Path Planner uses the interface

ILane to get the ownership object Lane from the Image
Processor and subscribes to it.

<<DAC>>
Motor 

Controller

<<DAC>>
Path 

Planner

<<interface>> IMotor

<<RPC>> setVelocity(int x)

<<DAC>>
Image 

Processor

<<DAC>>
Path 

Planner
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<<DAC>>
Distance
Sensor
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Distance
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<<Topic>> 
DistanceRightFront : Distance

<<Topic>> 
DistanceFront : Distance

Figure 6. Example Ownership

Based on the simple, small example of the Path Planner
and the Image Processor, the two components are shown in
Listing 3 and Listing 4 as simplified Java code. In order
for the Image Processor to be able to offer its Lane ob-
ject to other components, as shown in Listing 4, it must
first define such an object and have it inherited by either
ConsumerImmutable or ConsumerMutable. In the example
shown, the lane may not be changed by the consumer and
therefore it inherits from ConsumerImmutable. In the class
Image Processor, the lane is added within the provided service
ProvidedLane which implements the DomainInterface ILane.
The object can be retrieved using the method getDataObject().
A consumer is not informed about changes until the producer
calls the publish() method within the object. This allows
the developer to publish updates only for specific events.

public class ImageProcessor extends
DynamicAdaptiveComponent{

public ImageProcessor() {
ProvidedService laneLocalisation = new

ProvidedLane();
// add provided service to config

}

class ProvidedLane extends ProvidedService
implements ILane {

private final Lane lane;

public ProvidedLane() {
lane = new Lane();

}

@Override
public Lane getDataObject() {
return lane;

}
}

}

public class Lane extends ConsumerImmutable {
// define lane

}

Listing 4. Example Ownership Producer as Code

To be able to use the Lane object offered by the Im-
age Processor, the Path Planner, shown in Listing 3, must
first create a RequiredServiceReferenceSet, which requires the
ILane interface. Based on this, the Path Planner gets the
possibility to access the services of the interface and the
method getDataObject(), which returns the Lane object. A
callback is added to this object which is called as soon as
the Lane is updated by the Image Processor.

C. Message-oriented Communication Paradigm - Topics
Topics are the core paradigm for many-to-many communi-

cation in DAiSI. We combine already existing concepts for
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Figure 7. Example Topic Hierarchy

topics with new ideas to a solid and well-structured topic
hierarchy. First we use the concept of named and strongly
typed topics, which is also already used in middlewares like
the Robot Operating System (ROS) [29]. In the case of strongly
typed topics, a publisher has to publish data with the correct
data type defined by the topic; otherwise the topic refuses
transmission. The topics are also defined by a name, so that
there can be several topics of the same data type for different
purposes.

As already mentioned, we want to further expand the
structure of topics so that it is possible to design topics
in advance like any other communication and component in
the system. We achieve this with a concept that we call
Topic Hierarchy. The Topic Hierarchy exploits the inheritance
relationship of object-oriented programming in such a way that
it is possible to combine several smaller topics into larger ones.

Before we delve into the example, we formally define what
we mean by the term Topic Hierarchy. First, we define DT as
a set of all possible data types which can be used in topics.

A topic hierarchy is a tuple TH = (CT, PT, IE, src, trg)
which is defined as a directed acyclic, but not necessarily
connected, graph with

• CT (called child topic) is a set of nodes and every
node has a label n, a set of own data types ODT ⊆
DT and an arbitrary number of incoming edges

• PT (called parent topic) is a set of nodes and every
node has a label n, a set of own data types ODT ⊆
DT , a set of inherited data types IDT ⊆ DT and an
arbitrary number of incoming and outgoing edges

• IE (called inheritance edge) is a set of directed edges
• src : IE → PT is a function which maps the source

of an inheritance edge to a parent topic
• trg : IE → PT ∪ CT is a function which maps the

target of an inheritance edge to a parent topic or a
child topic

Furthermore, label n is the name of a topic, ODT ⊆ DT is
a set of data types that can be published and subscribed and
IDT ⊆ DT is a set of inherited data types that can only
be subscribed but not published. This restriction was made
because parent nodes should aggregate the data of their child
topics but can also introduce additional data types. The own
data type could also be identical to the inherited data types.

The topics T1 and T2 represented in Figure 7 are both child
topics which support data type AType, but have different names
and therefore different semantic meanings. Any publisher
wishing to publish the data type AType may choose to publish

on both topics. In contrast, T5 is a parent topic inheriting the
data types from T1 and T2 by an inheritance edge - AType -
and introducing EType and FType as own data types. On the
other hand T6 introduces only one additional data type GType
and inherits the data type AType from T2 and BType from
T3. The last topic T4 is not connected to other topics of the
hierarchy, which is also allowed.

In our example of the electric car in Figure 8, the Topic
Hierarchy is used to provide data from distance sensors. The
Topic Hierarchy is initially described by two child topics
DistanceLeftFront and DistanceRightFront. These are used by
both distance sensors individually. In addition, both topics only
allow the transmission of data of type Distance, i. e. no data
of other types can be published on these topics. In order to
determine if there are objects directly in front of the vehicle,
no matter whether they are to the left or right of it, another
channel called DistanceFront is used. DistanceFront is a parent
topic, which subscribes to its two child topics and thus receives
all the data sent to them.

As already mentioned, the distance sensors gain access
to the two child topics (black arrow in white box) via their
TopicPublisherEndpoints. The Obstacle Detector component
subscribes to the parent topic DistanceFront using a Topic-
SubscriberEndpoint (white arrow in white box).

public class DistanceSensor extends
DynamicAdaptiveComponent {

@TopicPublisher(type="topic",
instance = {"name", "DistanceLeftFront",

"ownType", "Distance"})
public TopicPublisherEndpoint publishEndpoint;

public DistanceSensor() {
Distance d = new Distance();
publishEndpoint.addObjectToPublish(d);
// change d

}
}

public class Distance extends
ConsumerImmutableDataObject {

// define distance
}

Listing 5. ExampleTopic Publisher as Code

In Listing 5, the architecture described above for the
distance sensor was implemented with the help of our mid-
dleware. To gain access to the child topic DistanceFrontLeft,
the component declares a TopicPublisherEndpoint. To specify
which topic it has to connect to, it is annotated with @Top-
icPublisher. This annotation defines two attributes: type and
instance. First of all, the type describes which medium the
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Figure 8. Example Topics

TopicPublisherEndPoint should connect to, which in this case
is a topic.

The instance attribute specifies to which concrete instance
of the specified type the TopicPublisherEndpoint is supposed
to be connected. An instance is described by key-value pairs.
In this example, a topic named DistanceLeftFront which offers
the type Distance is searched.

public class ObstacleDetector {
@TopicSubscriber(type="topic",
instance = {"name", "DistanceFront",
"ownType", "Distance"})
public TopicSubscriberEndpoint subscriberEndpoint;

public ObstacleDetector() {
subscriberEndpoint.addCallback(
Distance.class,
new DistanceCallback())

}

class DistanceCallback implements
Callback<Distance> {

@Override
public void update(Distance d) {
// react to new input

}
}

}

Listing 6. Example Topic Subscriber as Code

After defining the TopicPublisherEndpoint, the distance
object created can be added to the topic using the method
addObjectToPublish(). The TopicPublisherEndpoint subscribes
to this object like a consumer in the Ownership paradigm in
the previous section and is informed about updates of this
object. The TopicPublisherEndpoint automatically sends these
updates to the connected topic DistanceLeftFront.

To obtain the data provided by the distance sensors,
the Obstacle Detector component must declare a TopicSub-
scriberEndpoint (see Listing 6). The TopicSubscriber annota-
tion is attached to it and uses the same attributes type and
instance as seen in the TopicPublisher example. However, the
Obstacle Detector defines that it wants to be connected to the
parent topic DistanceFront.

Notification of new data on the subscribed topic is handled
in the same way as in the ownership paradigm. A callback
handler can be added to a TopicSubscriberEndpoint, which is
called whenever an updated object has been received via the
defined topic.

This concludes the presentation of our new component
model and middleware. In the next section, we show possible
future work within our dynamic adaptive middleware.

VII. FUTURE WORK

During interviews with experts in the domain of automotive
engineering it quickly became clear that a single communica-
tion middleware, such as ROS, would not be sufficient to meet
all the requirements of a modern vehicle. Nowadays, most
vehicles are equipped with diverse communication middle-
wares for different purposes and therefore they exchange data
with each other by means of adapters. With our middleware
DAiSI we would like to offer the possibility that dynamic
adaptive components, which run on different DAiSI instances
with different communication middleware, can communicate
with each other. In order to achieve this goal, a first concept
has already been conceived, which will be integrated in a next
iteration of DAiSI.

In our interviews, we have also noticed that we need some
kind of control mechanism for our adaptation concept, because
in safety-critical parts of the system we dont want components
to interconnect with each other without a global goal in mind.
In this system parts it is often better to give the middleware
some kind of blue print on how some of its components have
to be connected to guarantee a more deterministic behavior. In
this case, we will extend the concept of templates [26] in our
new middleware version of DAiSI to have better control over
the structure of those critical system parts.

In this paper we have already presented three different
types of communication in details: RPC, ownership and topics.
However, we noticed that we lacked two crucial communica-
tion paradigms for autonomous driving, namely streams and
blackboard. We included them in our taxonomy but did not yet
implemented them in our DAiSI concept. Streams are used
for the transmission of continuous sensor data, e. g. for the
transmission of the camera image, since the communication
methods described above are not suitable for this type of
communication.

Another feature we would like to add to our middleware is a
filtering mechanism for the communication methods ownership
and topics. In the presented version of these two methods, a
consumer of data is informed each time updates were made to
the ownership object or new data is published using a topic.
We are therefore planning to introduce a filter mechanism that
will allow consumers to specify after which kind of changes
they would like to be informed. We are still working on a
good concept where filtering should take place, whether on
the consumer or producer side. Both options have their own
advantages and disadvantages in terms of performance.

We are currently persisting the structure of the Topic Hier-
archy with an XML document (Extensible Markup Language).
We intend to further expand this approach by supplementing

32Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications



semantic information with the help of ontologies. Also, we
want to extend the semantic concepts done in [28] to our
middleware. With this new feature, we will evaluate whether
it is possible to use ontologies effectively and usefully in an
autonomous driving scenario. We expect that in very large
systems it can make sense to distribute the information about
a Topic Hierarchy or general data relation under a common
upper ontology. These would be merged at runtime if new
components or DAiSI instances are installed in the system and
additional topic or data information would be available. We
estimate that a semantic reasoner should be able to build the
entire Topic Hierarchy.

VIII. CONCLUSION

In this paper, we have introduced a new kind of dynamic-
adaptive middleware for autonomous systems that breaks with
many paradigms of classical embedded systems. Components
in our middleware are clearly separated from the actual
communication technology. The components connect to exe-
cutable systems on the basis of specified configurations and
can be added to or removed from the system at runtime.
We have presented three different types of communication:
RPC, ownership and topics, which are needed for different
requirements of autonomous systems. In addition, we have
expanded the classical understanding of topics to structure
them into hierarchies.

We are firmly convinced that in a world where autonomous
systems such as vehicles, robots, drones or machines are
becoming increasingly common, new software architectures
and models are also needed. These architectures and mod-
els must allow autonomous systems to receive updates and
new functions at runtime without having to be installed in
workshops by the manufacturer. In this paper we showed a
possible way to lay the foundation for dynamic, self-adaptive
and autonomous systems with the help of our middleware.
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[7] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of software in distributed
embedded automotive systems,” in Proceedings of the fourth ACM
international conference on Embedded software - EMSOFT ’04, 2004,
p. 203.

[8] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, no. PB, 2015, pp. 184–206.

[9] M. Bernard et al., Mehr Software (im) Wagen : Informations- und
Kommunikationstechnik (IKT) als Motor der Elektromobilität der
Zukunft English Translation: More software in the car: information
and communication technology as the motor of electromobility for the
future. ForTISS GmbH, 2011.

[10] P. Oreizy et al., “An architecture-based approach to self-adaptive
software,” IEEE Intelligent Systems and Their Applications, vol. 14,
no. 3, 1999, pp. 54–62.

[11] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, 2003, pp. 41–50.

[12] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming (2nd Edition), 2nd ed. Addison-Wesley Professional, 2002.

[13] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “The Impact of Com-
ponent Modularity on Design Evolution: Evidence from the Software
Industry,” Harvard Business School Technology & Operations Mgt. Unit
Research Paper, 2007.

[14] B. Councill and G. T. Heineman, “Definition of a software component
and its elements,” Component-based software engineering: putting the
pieces together, 2001, pp. 5–19.

[15] P. A. Bernstein, “Middleware: a model for distributed system services,”
Communications of the ACM, vol. 39, no. 2, 1996, pp. 86–98.

[16] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the
CORBA Component Model: Component-based Software Engineering,”
in Component-based software engineering, G. T. Heineman and W. T.
Councill, Eds. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc, 2001, pp. 557–571.

[17] Object Management Group - OMG, “CORBA Component Model
Specification,” 2006.

[18] F. Kon et al., “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB,” IFIP/ACM International Conference
on Distributed systems platforms, 2000, pp. 121–143.

[19] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture- Based Self-Adaptation with Reusable Infras-
tructure,” in Proceedings of International Conference on Autonomic
Computing, 2004, pp. 46–54.

[20] R. Anthony and C. Ekelin, “Policy-driven self-management for an auto-
motive middleware,” in Proceedings of the 1st International Workshop
on Policy-Based Autonomic Computing (PBAC 2007), 2007, p. 7.

[21] B. Becker, H. Giese, S. Neumann, M. Schenck, and A. Treffer, “Model-
based extension of AUTOSAR for architectural online reconfiguration,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6002
LNCS, 2010, pp. 83–97.

[22] A. S. Tanenbaum and M. van Steen, Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[23] A. Schill and T. Springer, Verteilte Systeme Grundlagen und Basistech-
nologien. Berlin; Heidelberg: Springer Vieweg, 2012.

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, A System of Patterns: Volume
1 (Wiley Software Patterns Series). Wiley, 2013.

[25] H. Klus and A. Rausch, “DAiSI A Component Model and Decen-
tralized Configuration Mechanism for Dynamic Adaptive Systems,”
International Journal On Advances in Intelligent Systems, vol. 7, no. 3
and 4, 2014, pp. 27–36.

[26] H. Klus, D. Herrling, and A. Rausch, “Interface Roles for Dynamic
Adaptive Systems,” in Proceedings of the Seventh International Con-
ference on Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE), 2015, pp. 80–84.

[27] D. Herrling, A. Rausch, and K. Rehfeldt, “Extending Interface Roles
to Account for Quality of Service Aspects in the DAiSI,” International
Journal on Advances in Software, vol. 9, no. 1 & 2, 2016, pp. 37–49.

[28] Y. Wang, D. Herrling, P. Stroganov, and A. Rausch, “Ontology-based
automatic adaptation component interface in DAiSi,” in Proceedings
of the Eighth International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2016), 2016, pp. 51–58.

[29] M. Quigley et al., “ROS: an open-source Robot Operating System,” in
ICRA Workshop on Open Source Software, vol. 3, 2009, p. 5.

33Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications


