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Abstract— One of the expected benefits of Industry 4.0 is the 
ability of production systems to effectively produce 
personalized products for a relatively small lot size in the same 
assembly line without trade-offs for cost, delivery time and 
quality. In this case, individual product will be unique and 
require a production system that is optimized for single lot size 
(lot-size-of-one). Reconfigurable Manufacturing System (RMS) 
is an attractive choice for this. However, reconfiguration 
processes are not automated and not real-time, which 
sometimes requiring days, thereby making it economically and 
functionally unfit for personalized mass customisation. To 
achieve this, Self-Reconfigurable Manufacturing System (S-
RMS) is proposed in this paper and implemented in-silico 
using nature inspired models and algorithms. In our 
implementation, resource re-configuration is both automatic 
and immediate. The system is evaluated by measuring total 
production output, system stability and average lead-time per 
order during production and during unexpected changes like 
resource breakdown. This approach is expected to proffer 
solution to the batch-size-of-one problem in manufacturing 
and engender personalized mass customisation. 

Keywords- Self-Recofigurable Manufacturing System; 
Reconfigurable Manufacturing System; Personalised Mass 
Customisation. 

I.  INTRODUCTION 
Personalized mass customisation is the mass production 

of individually customised goods in the same production line 
[1]. This paradigm requires manufacturing systems capable 
of producing a relatively high volume of unique product 
options in the same assembly line without trade-offs in cost, 
delivery time and quality for both manufacturers and 
consumers [2]. The major challenge in developing a 
manufacturing system with such capability is the level of 
structural, control and software flexibility that is required [3]. 
Present days manufacturing systems cannot be modified to 
offer the level of structural, control and software flexibility 
that is required in such system and therefore requiring a new 
paradigm approach. 

There are proposed manufacturing systems expected to 
give rise to personalized mass customisation, such as 
Reconfigurable manufacturing system (RMS), but these 
systems suffer from structural and control inflexibility and 
therefore functionally unfit for personalized mass 
customisation [3]. However, Evolvable assembly system 
(EAS) is an exception to this; it is demonstrated to achieve 
personalized mass customisation and address the batch-size-
of-one problem, but the system achieves this by producing a 
single unit at a time [4]. In practice, personalized mass 
customisation scenarios are more complex. They require 
multiple products on the shop floor with different designs, 

styles, shapes and colors going through production process at 
the same time. EAS at present fails to demonstrate such 
practical complexity, which should be obtainable in a typical 
manufacturing system capable of personalized mass 
customisation. 

This research proposes and demonstrates in silico Self-
Reconfigurable Manufacturing System (S-RMS), a 
manufacturing system capable of addressing the batch-size-
of-one problem in personalized mass customisation. This is 
achieved by borrowing natural self-organising rules from 
natural systems, extending and adapting them to 
reconfiguration in S-RMS to incorporate adaptive properties, 
such as self-reconfiguration for multiple product mix and 
self-recovery during machine (resource) failure.  

The system is evaluated by measuring average 
production output, stability and average lead-time per unit 
during production and during unexpected changes like 
resource breakdown. The expected benefit of this approach is 
that, it will proffer solution to the batch-size-of-one problem 
in the manufacturing systems and engender personalized 
mass customisation. 

The remaining of this paper is organised as follows. 
Section II reviews related work in reconfiguration and mass-
customisation in manufacturing systems. Section III contains 
details of the approach used, which include models and 
algorithms, while Section IV contains the simulation and 
experimental evaluation of the S-RMS. The final section 
contains the discussion and conclusion. 

II. RELATED WORK 
Advancements in manufacturing systems have been 

mainly to increase efficiency and reduce production cost and 
lead-time. Two approaches have been dominant in achieving 
these, which are 1) Resource flexibility and 2) Resource 
layout. 

Resource flexibility is the technological improvement on 
production machines for faster part production, wastage 
reduction and ability to produce more than one part variety. 
Resource layout is the spatial arrangement of  resources on 
the factory floor in such a way as to optimize production 
process [5].  

The proposed S-RMS is based on how personalized mass 
customization can be achieved through reconfiguration of 
resource layout in real-time, which is one of the major 
challenges in manufacturing systems. Therefore, reviewed 
work will be focused on resource layout and reconfiguration 
approaches. 

Resources in manufacturing system can be arranged 
based on function or process requirement, which are referred 
to as functional and cellular layout respectively. Functional 
layout is a resource layout paradigm that is based on resource 
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function. This implies having resources of the same type 
placed in the same location [6]. This provides economy of 
scales and simplicity in workloads allocation, but highly 
inefficient when there are constant or unpredictable changes 
in product mix and routings, a common scenario in 
personalized mass customisation. 

Cellular layout is a layout configuration in which the 
factory is partitioned into cells, and each cell is dedicated to 
a product or part family with similar processing requirements 
[6]. This type of configuration simplifies workflow and is 
generally optimized for producing specific product set with 
stable demand and long product life cycle. However, 
reconfiguration process is usually expensive and time 
consuming, making such layout unattractive for personalized 
mass customisation [6].  

As a result of the inefficiencies in both functional and 
cellular layouts for dynamic production environment, other 
layouts have been proposed for a more efficient production 
output in dynamic production environment [5].  Some 
examples of the proposed layouts are: Spine layout, Hybrid 
layout, Multichannel layout, Distributed layout and Modular 
layout (see Table 1). 

TABLE I.  LAYOUT TYPES AND DESCRIPTION [5] 

Layout types Description 
 
Spine layout 

 
Usually used by Original Equipment Manufacturers 
(OEMs). In this type of layout, products move 
along a main artery through the plant. Mini-
assembly lines owned by independent suppliers are 
linked to the spine where additional modules are 
attached to the product as needed by these suppliers 
as it moves through the spine. This allows for 
change of suppliers without changes to the factory 
layout. 

 
Hybrid layout 

 
This is a combination of different production 
modules based on multiple production process. For 
example, a hybrid facility may contain flow-line 
component for manufacturing common parts and a 
job-shop component for customizing final products.  

 
Multichannel 
layout 

 
This involves having duplicate production lines that 
are shared across products. Products are allowed to 
move in and out of neighbouring production lines, 
thereby creating multiple lines and channels, and 
minimizing queue and congestion.  

 
Distributed 
layouts 

 
In a distributed layout, not all equipment of the 
same type is placed in adjoining location. Instead, 
equipment of the same type is placed individually 
throughout the factory, which can be quickly 
combined to form temporary cells dedicated to 
specific product line or job order. 

 
Modular 
layout 

 
This conceptualises layout as a network of basic 
modules. These basic modules may be based on 
different production process or layouts. For 
example, a modular layout may contain a network 
of flow-line, job-shop, cellular layout and 
functional layout basic modules. 
 

 

However, these resource layout types are not optimized 
for production environment with requirement for single-lot-
size production [4]. To address this limitation, a system with 
highly flexible layout is required, where reconfiguration can 
be done with a minimal amount of time and at no additional 
cost to both the manufacturer and the consumer. To achieve 
this level of manufacturing flexibility, smart, flexible and 
adaptive manufacturing system is proposed. 

Manufacturing companies (such as GE, Airbus, Siemens) 
are observed to be investigating smart, flexible and adaptive 
manufacturing systems that are capable of autonomous self-
healing, self-adaptation and self-reconfiguration, typified by 
the “batch-size-of-one” (BSo1) problem [3]. Examples of 
such system include: Reconfigurable Manufacturing System 
(RMS), Holonic Manufacturing System (HMS), and 
Evolvable Assembly System (EAS).  

Reconfigurable Manufacturing System is a 
manufacturing system designed to enable rapid change in 
hardware and software component for quick response to 
sudden market changes by adjusting its functionality and 
production capacity [7]. RMS is engineered for mass 
production and therefore not effective for managing large 
product varieties and rapid changes in market. This makes 
RMS unsuitable for personalized mass customization. 

Holonic Manufacturing System, which is inspired by 
Arthur Koestler’s holons concept [8]. Holons are 
autonomous self-reliant units with degree of independence, 
such that contingencies can be handled without being 
instructed by higher authority, and simultaneously subjected 
to control from single or multiple higher authorities [9]. This 
implies that Holons can exist in complex systems like 
manufacturing systems as both a whole and a part 
simultaneously.  

The “whole” property ensures stability of forms in the 
system, while the “part” property signifies intermediate 
forms and ensure stability for higher form. Holons concept 
comparatively provides more flexibility for manufacturing 
systems, but immediate reconfiguration is still lacking, 
therefore making it not suitable for personalized mass 
customisation [9]. 

Evolvable assembly system is a production system 
whose components are designed to adapt to changing 
conditions of operations and also assist in the evolution of 
the component in time, such that processes utilizing the 
components will become self-evolvable, self-reconfigurable, 
self-tuning and self-diagnosing [10]. Examples of EAS 
implementation are plug and produce system, and Smart 
Manufacturing and Reconfigurable Technologies (SMART). 

Plug and produce system is an implementation of 
Instantly Deployable Evolvable Assembly System (IDEAS), 
which is aimed at developing an industrially suitable EAS 
[10]. The plug and produce system was implemented on a 
mini scale called MiniProd [11]. It is based on multi-agent 
control paradigm and capable of real-time self- 
reconfiguration on the shop floor without higher-level 
instruction. This shows that real-time self-reconfiguration is 
possible at machine level using distributed control paradigm. 

On the other hand, SMART is a demonstration of the 
application of adaptive agent control in the transformation of 
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legacy manufacturing system into a RMS. SMART is 
demonstrated to be capable of addressing the “batch-size-of-
one” problem [4]. 

Both IDEAS and SMART are implemented using 
distributed control and they both addressed the batch-size-of-
one problem, but only based on single unit production. This 
means the system can only produce one unit at a time. In 
practice, personalized mass customisation scenarios are more 
complex. They require multiple products on the shop floor 
with different designs, styles, shapes and colours going 
through production process at the same time. IDEAS and 
SMART failed to demonstrate this type of complexity, which 
should be obtainable in a typical manufacturing system with 
capability for personalized mass customisation.  

III. SELF- RECONFIGURABLE MANUFACTURING SYSTEM 
(S-RMS) 

Manufacturing systems with capability for personalized 
mass customisation are characterized by the potential for 
single-lot-size production [10]. This implies that individual 
product will require distinct production plan, schedule and 
process. Concurrent execution of these plans and processes 
during production suggests that different products will 
require different resources and routes at same or different 
time slot, depending on the production stage of the product.  

The complexity expressed by this process necessitates the 
use of distributed coordination mechanism for dynamic and 
autonomous route selection; resource discovery, selection 
and negotiation; and scheduling. Therefore, applying the 
present manufacturing system’s design approach that is 
characterized by stationary machines and rigid conveyor belt 
with pre-defined route for products will be unfit for this 
purpose. This is because multiple products will be 
manufactured concurrently, which are unique with distinct 
and distributed production plan, schedule, process, resource 
and route requirement. Therefore, S-RMS is proposed to fill 
this gap by proffering solution to the batch-size-of-one 
problem. 

S-RMS is a manufacturing concept whereby machines 
can autonomously move around during production, instead 
of remaining stationary. In this system, there is no conveyor 
belts, but instead parts and products are transported using 
mobile robot referred to as products. The underlying 
complexity of the proposed production system, which is a 
characteristic of the distributed and distinct nature of the 
products and physical mobility of machines, suggest the use 
of nature inspired approach in the design and implementation 
of the system. 

Nature inspired approach is used in this case because the 
properties of the problems-space, which is the spatial 
arrangement of products and resources in the production 
system change constantly with time. This is as a result of the 
ability of both the product and resource to move freely 
without any constraints during production. Also, the process 
of arriving at optimal production strategy for individual 
product changes concurrently with the problem-space. This 
is because the process required by a product to discover the 
closest resource changes constantly as a result of constant 
changes in the spatial arrangements of these resources. 

Therefore, the coordination process has to constantly adapt 
to the problem dynamics. This suggests that a pure 
computational approach will be expensive if feasible 
compare to a heuristic approach proffer by taking inspiration 
from nature. 

Ant colony and flock of birds exhibit one of the closest 
behaviors to the proposed S-RMS in term of underlying 
complexity and physical mobility of machines and products. 
Therefore, inspiration is taken from ants and birds.  

In biological systems, such as ant colony and flock of 
birds, these systems are based on entities that exhibit simple 
behavior, made up of small set of simple rules, with reduced 
cognitive abilities, and global system of behavior emerges 
from a multiplicity and reinforcement of non-linear 
interactions [12]. In such complex natural systems, 
coordination emerges without a predicted plan or template, 
not driven by a central entity or global rules, and only 
become observable at a macro level when the resultant 
behavior of the whole are greater and more complex than the 
sum of the behavior of its part [14]. This makes the 
application of coordination, self-organization and emergence 
behavior in biological system to S-RMS for personalized 
mass customisation a very viable alternative solution to 
purely computational approach [15]. 

In some species of ants (social ants), pheromones are 
used as a coordination mechanism by means of indirect or 
environmental mediated coordination [13]. Information 
about food location are embedded in pheromones and when 
perceived by others, it is interpreted and the result of such 
interpretation informed the next action to be taking by the 
perceiving entity. With very limited intelligence, ants are 
able to effectively coordinate activities regarding foraging 
and construction. When viewed at a higher level, a well-
organized and intelligent social system is perceived. This is 
purely as a result of indirect or environmental-mediated 
coordination through the use of pheromones. 

On the other hand, some species of birds have to migrate 
from one region to another in search of food. This instinctive 
behavior can be viewed as a profit oriented strategy. The 
birds consumed energy in search or migrating to get food. 
Therefore, to guarantee survival while searching for food, 
they must use less energy than they will get from the food. 
To achieve this, birds have to migrate and stay close to food 
sources, which lower the cost of foraging in the long term. 
They also store the locations where foods are available 
including the time of the year in memory. As food 
availability changes due to weather conditions, this 
information is also updated. 

S-RMS is modeled as interaction between two distinct 
entities on the shop floor, which are products and resources 
(both products and resources are mobile). Products seek 
resources to execute production task in their production plans 
just like ants seek for food in their environment. While 
resources at the same time seek to be close to products just 
like birds migrate in order to stay close to food source. 
Resources achieve this by minimizing the average distance 
between them and corresponding products on the shop floor 
during production. Applying this model, a natural 
equilibrium is expected over a period. Natural equilibrium 
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implies a situation where a resource is able to establish a 
location on the shop floor that is optimal for task execution 
and the product for plan execution. 

A. S-RMS Multi-Agent System (MAS) Interaction 
The concept of Multi-Agent System (MAS) is used in the 

design of S-RMS, where products and resources are both 
agents operating and interacting on the shop floor. These two 
agents make different observation about the production 
environment and therefore have different knowledge and 
belief about the production environment. The product-agents 
have knowledge of what to produce, processes required to 
produce them and type of resources required to carry out 
such processes. However, individual product-agent has no 
knowledge of the spatial location of these resources. Instead, 
product-agents discover resources through interactions with 
other product-agents and location of resources are 
communicated using pheromones. This is referred to as 
indirect or environmental mediated coordination [13].  

Resource-agents possess knowledge of what production 
processes they can execute but have no knowledge of where 
such production processes are located. Instead, the resource-
agents rely on foraging strategy, by following the Circulant 
Traversal Rule (CTR), which will be explained in later 
section.  

During agent interaction, when a product-agent discovers 
a resource, it drops pheromones (signals) in the production 
environment. Other product-agents close-by perceive (sense) 
these pheromones and if the pheromones lead to a required 
resource, the perceiving product-agent compute the shortest 
path to the resource and advance in that direction. If the 
product-agent is able to execute its plan successfully, it drops 
more pheromones to intensify the signals as demonstrated in 
Figure 1(a). The resource-agents on the other hand 
simultaneously and independently seek to stay close to 
corresponding product-agents using the CTR.

             
 
   (a): No configuration at the beginning    (b): Optimal configuration achieved over a period 
 

 

 (c): Machine failure during production     (d): Reconfiguration after machine failure 
 

Figure 1: High level observation of S-RMS convergence and reconfiguration after a resource failure 
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Over a period of interactions, coordination begins to 

emerge, the system gradually evolve from state of disorder as 
seen in Figure 1(a), to a state where order is observed as seen 
in Figure 1(b). Without a physically layout path (conveyor-
belt), The system self-organizes itself and form an optimal 
path for production process using pheromones in the form of 
virtual marks (virtual conveyor belt) on the shop floor as 
seen in Figure 1(b). The system is however far from 
equilibrium as the configuration constantly changes in real 
time depending on the product mix, resource availability and 
so on. For example, if a resource suddenly becomes faulty, 
the system re-configures itself for optimal production from 4 
resources as shown in Figure 1(c) to 3 resources as shown in 
Figure 1(d) without halting production process. 

B. Pheromones For Product Agents in S-RMS 
Applying the concept of pheromone in computational 

system requires formalization and abstraction of the natural 
concept into computational concept. To achieve this, we 
formalize our own concept of pheromones. The following 
two conditions are necessary for the pheromone properties 
and behavior in the S-RMS: 

 

C1: Pheromone 

 

  (I) 
 
For a particular pheromone fr in all pheromones F in the 
system leading to a particular Resource R with the capability 
of executing production plan , there exist a production plan 

 belonging to a product P that is executable by the 
Resource R, such that fr will always lead to Resource R. This 
implies that all pheromones in the system lead to at least one 
resource, and such resource is capable of executing at least 
one production plan. 
 

C2: Pheromone decay rate 

 

  (II) 
For a particular pheromone fr in all pheromones F in the 
system leading to a particular Resource R, there exist a 
pheromone decay rate  , such that as  increases, 
the intensity of fr decreases. This implies that all 
pheromones in the system have a decay rate, which is 
inversely proportional to the intensity of the pheromone. 
 

The product-agents use pheromone for resource 
discovery, that is, to locate resources on the shop floor that is 
capable of executing their production plan(s) during 
production. This is achieved by using the pheromone 
resource discovery algorithm as shown in Figure 2. 

 
 

 
------------------------------------------------------------------------------  
PHEROMONE RESOURCE DISCOVERY ALGORITHM (PODUCT-AGENT) 
---------------------------------------------------------------------- 
Input: product_info, max_x, max_y 

Variables: P:Production_Plans; ϕ:shop-floor; 
Pa:Product_agent; Pa(x,y):Product_agent_location; 

Ra:Resource_agent; Ra(x,y):Required_Resource_agent_loc; 
RR:Required_resource; Loc:New_location; 
Plan[i]:Production_plans; 
Program: 

Plans[i] ← create_plans(product_info) 

While Pa(x,y) < max (ϕx,y) && i < max Do 
  If Pa(x,y) == Ra(x,y); 
    Break; 
  Else 

    Pa → Sense_pheromone (ϕx,y); 
    If pheromone → within_range && Leads_to(RR) 

       Loc ← shortest_path(Ra(x,y)); 
       Move_to (Loc); 
       Break; 
    End if 
       Search_for(RR); 
      If found(Ra(x,y)) == True && Pa(x,y) == Ra(x,y); 
        Break; 
     Else  
 Continue_search(RR); 
     End if 
  End if 
End While  
Execute_plan; 

Plan[i] ← Plan[i++];// move to the next plan 
End. 

 
Figure 2: Algorithm for resource discovery using pheromones  
 

Product-agent Pa generates an array of production plans and 
corresponding required resources to execute generated plans. It 
searches for required resources on the shop floor (ϕx,y) and if 
found, it executes production plan and seek resources for the next 
production plan and leaves pheromones leading to the resource in 
the environment. 

If instead, a pheromone is sensed within the shop floor (ϕx,y) 
while searching for resources and it leads to the location of 
required resource agent Ra(x,y), then Pa computes the shortest path 
to Ra(x,y) and set its destination (Loc) to the location of the resource 
agent Ra(x,y). If the required resource is met at Loc, then Pa 
executes production plan, seek resources for the next production 
plan and leaves pheromones leading to the resource in the 
environment. Else, Pa continues searching for required resource 
agent. However, if the executed production plan is the last plan to 
be executed, then Pa ends production and exits system. 

C. Foraging For Resource Agents in S-RMS 
Foraging birds are abstracted as resource-agents. These 

are resources in the S-RMS for part production. These 
resource-agents are mobile and use the foraging strategy 
referred to as CTR for navigation as shown in Figure 3. The 
CTR provides a heuristic means by which resource-agents 
are attracted toward areas in the shop floor where there is a 
higher chance of executing production task. This is achieved 
computationally by rotating the task execution matrix one 
element to the right. 

The CTR is used for two purposes, first to update spatial 
location where mobile resource-agents execute production 
task and secondly, as a tracking mechanism to track locations 
on the shop floor where chances of order executions are 
comparatively higher. This rule ensures each resource-agent 
is positioned close to product-agents with production plans 
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that it can execute. This process is achieved purely by 
heuristic using the Circulant Traversal Algorithm (CTA) as 
shown in Figure 4.  

 

 

 
Traversal Rule: If a location L is found between Ln and Ln-1, 
then set new location as NLn-1 and pop Ln-1 out of memory 

 
Figure 3: Foraging Strategy: Circulant Traversal Rule 

 
------------------------------------------------------------------  
 CIRCULANT TRAVERSAL ALGORITHM (RESOURCE AGENT) 
------------------------------------------------------------------ 
Input: product_info, max_x, max_y 

Variables: P:Production_Plans; ϕ:shop-floor; 
Pa:Product_agent; Pa(x,y):Product_agent_location; 

Ra:Resource_agent; Ra(x,y):Resource_agent_location; 

RSx,y:Resource_agent_saved_location; RR:Required_resource; 

Loc:Location; RSx,y[]:Array_of_Previous_locations; 

Program: 

While Ra(x,y)< max (ϕx,y) Do 
 For (i=0, i<= length(RSx,y[]), i++) 

  If RSx,y[i]!= NULL && EoF =! True; 

    Set Ra(x,y) ← RSx,y[i]; 

    Move_to_(RSx,y); 

    If Pa(x,y) == Ra(x,y) 
      Execute_plan; 

      Set RSx,y[i] ← RSx,y; 

      Set i ← 0 
      Repeat; 
     Else 
     Repeat; 
    End if; 
  End if; 
 End For 
Random(i); 
Random(j); 

Set Ra(x,y) ← Rx+i,y+j 
 If Execute_plan == True; 

  Set RSx,y[i] ← Rx+i,y+j; 
 End if 
End While; 
End. 

 
Figure 4: Algorithm for product discovery using foraging 
strategy  
 

Resource agent Ra visits locations stored in memory RSx,y[] if 
it is not empty. These locations are previous places where 
production plans were previously executed. If they do not exist, it 
creates these locations by first moving randomly and if by chance a 
plan is executed for a product agent Pa, then such location is stored 
in the memory RSx,y[i] until the End of File is reached. 

 If while attempting to visit these stored locations, it reaches 
end of file and no production plan is executed, then it generates a 
random number i, j that is added to the present x and y 
coordinates of Ra respectively. It sets its next location to Rx+i,y+j 
and advances towards this location. This process is repeated until a 
plan is executed. If a plan is executed this way, the oldest location 
in memory is replaced with the new location. The resource agent Ra 
defaults back to visiting stored location until End of file is reached 
before attempting another random movement. 

IV. EXPERIMENTAL EVALUATION 
  The S-RMS is implemented using agent based simulation 

software (Netlogo) [16]. Simulation experiment is designed 
to investigate how changes in product mix, volume and 
resource unavailability (machine failure) during production 
process impact the system and its adaptive-behavior. 

  To evaluate the above, six settings were used. In each 
setting, maximum numbers of orders that can undergo 
production process concurrently are kept constant at 50, 
100, 150, 200, 250 and 300 respectively. Total number of 
available product mix is kept constant at 24, and the 
probability p of a product mix being selected for production 
is also kept constant for all product mix, p = . 30 
simulation runs were performed for each of the six settings 
for 50,000 simulation steps each. At 20,000 simulation 
steps, a resource failure was introduced and brought back on 
at 30,000 simulation steps, totaling a period of 10,000 
simulation steps. The simulation is allowed to run for an 
extra 20,000 steps after the resource is brought back. This 
gives enough time for the system to re-converge. 

The following parameters were measured in each of the 
six settings to investigate how the system adapts to changes 
in product mix, volume and machine failure during 
production. 

 
I. Average lead-time per unit: This is the average 

time it takes to manufacture a product, i.e., the 
average time a product spent in the production 
system 

II. Production rate: This is the number of product 
produced per 1,000 simulation steps during the 
simulation (a total of 50,000 simulation steps). 

III. Stability: This is a measure of the system’s stability 
with respect to production input and output. The 
average distance moved by all resources is 
measured to quantify stability.  

 
Average lead-time per unit during the simulation is 

observed to be initially high in all the six settings at 
approximately 500 simulation steps (see Figure 5(a)). When 
products and resources start to interact, average lead-time per 
unit decreases gradually, a sign of system’s convergence 
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achieved through the use of pheromone as coordinating 
mechanism. At 20,000 simulation steps, when resource 
failure was introduced, lead-time per unit is observed to 
increase. This is the resultant effect of a machine failure. 
However, the system re-configures in order to adjust its 
processes to compensate for the failed resource, which  is the 
rationale behind the continual production process observed 
in the system, though at a higher lead-time per unit compare 
to when all resources were present. 

  Average lead-time per unit is observed to decrease 
gradually at 30,000 simulation steps when the failed resource 
was re-introduced into the system. This is as a result of the 
system’s ability to self-reconfigure its resources to integrate 
the new resource and immediately load-balanced production 
task. However, the rate of decrease in the lead-time per unit 
after re-introduction of failed resource (at 30,000 simulation 
steps) is slower compare to rate of increase when resource 
failure was initially introduced (at 20,000 simulation steps). 
This is because the coordination of the process for re-
integrating failed resource is achieved through pheromones 
and thus takes time. On the other hand, introduction of 
resource failure immediately renders all information 
embedded in pheromones leading to the failed resource out-
dated. Thus, the negative impact immediately propagates 
through the system, resulting in faster increase in lead-time 
per unit.  

The setting with 50 maximum orders is observed to have 
the highest average lead-time per unit as a result of fewer 

product-agents in the system. Product-agents coordinate 
using pheromones produced by other product-agents. 
Therefore, the more product-agents that are available in the 
production environment, the higher the pheromone 
distribution and intensity, and the more effective the 
coordination mechanism.  

Production rate is observed to increase from zero at 
about 800 simulation steps into the simulation when the 
system is observed to move from state of disorder to order 
(see Figure 5(b)). Production rate decreases between 20,000 
and 30,000 simulation steps as a result of resource failure 
that lead to cascade of changes in the system. Production 
picks up soon after the failed resource was re-introduced at 
30,000 simulation steps. This is because at this point, the 
system starts to self-reconfigure to accommodate the re-
introduced resource and load-balance production task. 

 Stability of the system is quantified by average distance 
moved by all resource-agents. The resource-agents are 
observed to move around more frequently between 20,000 
and 30,000 simulation steps when resource failure was 
introduced. This is to compensate for shortage of resources 
by moving more frequently to serve more products (see 
Figure 5(c)). At 30,000 simulation steps, when the failed 
resource is brought back on, the system is observed to return 
to its optimal state. This is as a result of the ability of the 
system to integrate the new resource and immediately load-
balanced production task. 
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Figure 5: S-RMS experimental output 
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V. DISCUSSION AND CONCLUSION 
Unexpected changes in the production environment, such 

as constant changes in product mix, volume and machine 
failure generate cascades of events that disrupt the system’s 
behavior during production. Such disruptions are recorded in 
the three observations, which are average lead-time per unit, 
production rate and stability. The system is observed to be 
able to keep-up production irrespective of product volume 
and constantly changing product mix. However, introduction 
of machine failure disrupts the system, but does not halt 
production. This shows the adaptive property and self-
reconfigurable capability of the proposed S-RMS. 

The average lead-time per unit is observed to increase 
and decrease during and after disruption; this implies that the 
remaining resources were able to share the task of the failed 
resource (machine) without halting production. The 
production rate also decreased and increased during and after 
disruption instead of production coming to a stop. This 
implies that the system is capable of re-configuring 
immediately to compensate for the shortage of resources in 
the system. The average distance moved by all resource-
agents is observed to increase during disruption. This is as a 
result of three resources executing production task of four 
resources, therefore requiring resource-agents to cover more 
distances on the shop floor.  

Throughout the simulation, there was no observable 
instance where production rate equaled zero or resource-
agents and product-agents lost coordination, even during 
unexpected changes in the production environment - like 
constant changes in product mix and machine failure. This is 
unlike a typical manufacturing system with reconfigurable 
capability, where production has to come to a halt for 
reconfiguration task to be carried out. The result obtained 
from the demonstration of S-RMS in silico shows that 
immediate self-reconfiguration of manufacturing system is 
possible without stopping production process using nature 
inspired approach. This proven concept will engender a new 
thinking in the design and implementation of production 
system with the capability for personalized mass 
customisation. 

A future work for this research will be to compare S-
RMS with other implementation of RMS without mobile 
products and resources, to evaluate efficiency and throughput 
gain due to product mobility, resource mobility, and self-
reconfiguration. Also, the use of nature inspired coordination 
mechanisms are well known for slow convergence which 
may impact system performance, hence the use of machine 
learning algorithm for coordination in S-RMS may be more 
suitable. Therefore, a comparison of these two approaches 
based on efficiency and throughput will be explored in future 
research. 
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