
Automotive Software Systems Evolution:
Planning and Evolving Product Line Architectures

Axel Grewe, Christoph Knieke, Marco Körner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel

TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany

Email: {axel.grewe|christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel}@tu-clausthal.de

Abstract—Automotive software systems are an essential and
innovative part of nowadays connected and automated vehicles.
The automotive industry is currently facing the challenge to
re-invent the automobile. Consequently, automotive software
systems, their software systems architecture, and the way we
engineer those kinds of software systems are confronted with
the challenge of managing complexity of the desired automotive
software systems and the corresponding engineering process. We
will present an approach that helps engineers to manage system
complexity based on architecture design principles, techniques
for architecture quality measurements and processes to iteratively
evolve automotive software systems. Based on a running sample,
we will demonstrate and illustrate the main assets of the proposed
engineering approach.

Keywords–Architecture Evolution; Software Product Lines;
Software Erosion; Architecture Quality Measures; Automotive.

I. INTRODUCTION

Usually many variants of a vehicle exist – different con-
figurations of comfort functions, driver assistance systems,
connected car services, or powertrains can be variably com-
bined, creating an individual and unique product. To keep
the vehicles cost efficient, modular components with a high
reuse rate cross different types of vehicles are required. With
respect to innovative and sophisticated functions, coming with
the connected car and automated resp. autonomous driving
the functional complexity, the technical complexity, and the
networked-caused complexity is continuously and dramatically
increasing. It is, and will be in future, a great challenge to
further manage the resulting complexity.

Here, we propose an approach that helps engineers to
manage functional software systems complexity based on
modular, well-defined, and linked requirements as well as
architectures. The goal is to create solid requirements and
adequate architectures with the help of abstract principles,
patterns, and describing techniques. In addition, we present
a systematic approach for planning of development iterations
and prototyping.

A software system architecture defines the basic organiza-
tion of a system by structuring different architectural elements
and relationships between them. The specification of “good”
software system architecture is crucial for the success of
the system to be developed. By our definition, a “good”
architecture is a modular architecture which is built according
to the following:

1) Design principles for high cohesion
2) Design principles for abstraction and information

hiding

3) Design principles for loose coupling
In the evolutionary development of automotive software

systems, the range of functionalities grows steadily. Thus,
the “essential” complexity of the architecture increases con-
tinuously due to the growth of the number of functions.
However, the “accidental” complexity of the architecture of
automotive software systems grows disproportionately to the
essential complexity as illustrated in Figure 1 [1]. The growth
of accidental complexity results from a “bad” architecture with
strong coupling and a low cohesion which have evolved over
the time. “Bad” architectures increase accidental complexity
and costs, hinder reuseability and maintainability, and decrease
performance and understandability. The three design principles
for a good architecture mentioned above focus on the reduction
of accidental complexity and on the changeability of the
architecture.

Further development

Accidental complexity

Essential complexity

Figure 1. “Essential” vs. “Accidental” complexity

As an approach to manage software systems evolution, we
propose three steps:

1) Methods and techniques for a good architecture de-
sign (Section IV-A)

2) Understanding of architecture and measuring of ar-
chitecture quality (Section IV-B)

3) Systematic approach for planning of development
iterations and prototyping (Section IV-C)

To make a statement about complexity, it is necessary
to measure complexity and describe the results numerical.
These numbers allow drawing conclusions from a system.
Furthermore, it is necessary to describe complex relationships
in a system. For this purpose, meaningful and understandable
description techniques are needed. Such techniques allow com-
plexity to be manageable. Finally, a systematic approach for
planning of development iterations and prototyping is required.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

The paper is structured as follows: Section III gives an
overview on the related work. This paper refers to an overall
development cycle for managed evolution of automotive soft-
ware product line architectures that is proposed in Section II.
In addition, Section II gives some formal definitions and in-
troduces a real world example, a longitudinal dynamics torque
coordination software, from automotive software engineering.
Based on this example, we propose our methodology for
planning and evolving automotive product line architectures
in Section IV. Section V concludes.

II. BASICS

A. Overall Development Cycle
Our methodology for managed evolution of automotive

software product line architectures is depicted in Figure 2 (see
[2]). The methodology consists of two development cycles
which are executed concurrently: One cycle constitutes the
development activities for product line development, whereas
the second cycle is required for product specific development.
Each cycle addresses the design of the logical architecture,
the planning of development iterations and product releases,
the implementation of software components, and architecture
conformance checking.

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned software
components, so-called modules. These modules contain vari-
ability so that a project can be used for different vehicles. A
product on the other hand is a fully executable software status
for a certain vehicle based on a project in conjunction with
vehicle related parameter settings.

In the following subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 2. Table I gives a brief overview on the
objectives of each of the 12 activities, including inputs and
outputs:

Software system and software component requirements
from requirements engineering (PL-Requirements) and
artifacts of the developed product from the product cycle in
Figure 2 (P to PL) serve as input to the management cycle
of the product line architecture (PLA). Activities PL-Design
and PL-Plan aim at designing, planning and evolving product

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

Product (P)

P-Design P-Plan

P-Check P-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Figure 2. Overall development cycle

line architectures and are explained in detail in this paper (see
Section IV).

The planned implementation artifacts are implemented
in PL-Implement on product line level whereas in
P-Implement product specific implementation artifacts are
implemented. For the building of a fully executable soft-
ware status for a certain vehicle project, the project plan
is transferred (PL to P) containing module descriptions
and descriptions of the logical product architecture inte-
gration plan with associated module versions. In addition,
special requirements for a specific project are regarded
(P-Requirements). The creation of a new product starts
with a basic planned product architecture commonly derived
from the product line (P-Design). The product planning in
P-Plan defines the iterations to be performed. An iteration
consists of selected product architecture elements and planned
implementations. An iteration is part of a sequence of itera-
tions.

Each planned project refers to a set of implementation
artifacts, called modules. These modules constitute the product
architecture. The aim of PL-Check and P-Check is the
minimization of product architecture erosion by architecture
conformance checking for automotive software product line
development. Furthermore, we apply architecture conformance
checking to check conformance between the planned product
architecture and the PLA in P-Design.

B. General structure and definitions
The relation between PLA, products, and modules is illus-

trated in Figure 3. We indicate the development points t ∈ N
by the timeline at the bottom. Next, we give brief definitions
of the terms PLA, product, and module.

PLA: On the top of Figure 3 the different versions of the
PLA are illustrated. A PLA consists of logical architecture
elements l ∈ LAE (cf. A, B, C in Figure 3) and directed con-
nections c ∈ C between these elements. At each development
point t exactly one version of the PLA exists. A certain PLA
version is denoted by plax ∈ PLA, with x ∈ N to distinguish

p1_1

m1_1

p2_1

p1_2

p2_3

time1 2 3

M
o

d
u

le
s

m3_2

m1_2

m2_1

m1'_1

m1_3

m3_1

P
ro

d
u

ct
s

A

P
ro

d
u

ct
 li

n
e

ar

ch
it

e
ct

u
re

B C

pla1

m2'_1

m2_2

p3_1

A B C

pla3

A B C

pla2

p2_2

m3_3

A B C

A

A B A B A B

A B

A

A

A

B B

B

C C C

A B C

Figure 3. Relation between products, modules and PLA

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I. EXPLANATION OF THE ACTIVITIES IN FIGURE 2.

Activity Input Objective Output
PL-Design Software system / component require-

ments and documentation from product
development.

Further development of PLA with consideration of design prin-
ciples. Application of measuring techniques to assess quality of
PLA.

New PLA (called “PLA vision”).

PL-Plan PLA vision. Planning of a set of iterations of further development toward the
PLA vision taking all affected projects into account.

Development plan including the planned
order of module implementations and
the planned related projects.

PL-Implement Development plan for product line. Implementation including testing as specified by the development
plan for product line development.

Implemented module versions.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Check results.

P-Design Project plan and product specific re-
quirements.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Planned product architecture.

P-Plan Product architecture. Definition of iterations to be performed on product level toward
the planned product architecture.

Development plan for product develop-
ment.

P-Implement Development plan for product develop-
ment.

Product specific implementations including testing as specified by
the development plan for product development.

Implemented module versions.

P-Check Architecture rules and set of imple-
mented modules to be checked.

Architecture conformance checking between PLA and PA. Check results.

PL to P Development plan for product line. Defining a project plan by selecting a project from the the product
line.

Project plan.

P to PL Developed product. Providing product related information of developed product for
integration into product line development.

Product documentation and implemen-
tation artifacts of developed products.

PL-Requirements Requirements. Specification and validation of software system and software
component requirements by requirements engineering.

Software system and software compo-
nent requirements.

P-Requirements Requirements in particular from calibra-
tion engineers.

Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

Vehicle related requirements.

between PLA versions. The sequence of PLA versions is
indicated by the arrows between the PLAs in Figure 3.

Product: A product pi j ∈ P has a product identifier i and
a version index j, with i, j ∈ N. The sequence of versions is
indicated by the flow relation between products in Figure 3. We
assume a distinct mapping of pi j to a certain plax ∈ PLA.
A product pi j contains a product architecture pai j ∈ PA,
where pai j is a subgraph of the corresponding plax. The set of
corresponding modules of a product is indicated by the dashed
arrows in Figure 3.

Module: A module mk l ∈ M has a module identifier
k and a version index l, with k, l ∈ N. The sequence of
versions is indicated by the flow relation between modules in
Figure 3. We assume a distinct mapping of mk l to a certain
l ∈ LAE ∪{⊥}. By ⊥ we allow mk l not to be assigned to a
logical architecture element, called unbound mk l. A logical
architecture element can be assigned to several modules, but
a module can only be assigned to exactly one or no logical
architecture element. A module mk l ∈ M can belong to
several products pi j ∈ P .

As illustrated in Figure 3, we assume a high degree of
reuse: The same module version may be included in different
products. Branches of the development path are depicted by
the diamond symbol. Module m1′ 1 indicates a branch of the
development path concerning module m1 3.

C. Real World Example: Longitudinal Dynamics Torque Co-
ordination

Our approach for designing the logical architecture de-
scribed in the next section is based on our experience in
the automotive environment. In numerous projects with the
focus on software development for engine control units, we
have developed architectural principles and concepts for ar-
chitectural design and tested them on real sample projects.
The following example shows frequent problems that arise

as a result of strongly increasing accidental complexity. The
approaches described in the next section are intended to
help avoid the problems presented here by controlling the
complexity. This paves the way for long-term maintenance and
extensible architectures.

In our example, we consider the control of the braking and
acceleration process, which is controlled by the driver via the
brake and accelerator pedal, respectively. The implementation
of these controls was originally carried out on completely sep-
arate developments. In the course of time, however, additional
functions have been added: Not only the driver can act here
by actuating the throttle or brake pedal. There are a number
of additional functions, such as the ESP or ACC, which can
act as accelerator and decelerator. In the case of longitudinal
dynamics torque coordination (see Figure 4), both acceleration
and braking processes must be coordinated with one another
since there are interdependent interdependencies.

As a solution to the coordination problems, point-to-point
connections between the software components were intro-
duced, which however led to a strong increase in the accidental
complexity: The realization of the reciprocal coordination

ABSESP

Driv. BehaviorTSK

Mutual coordination

Figure 4. Automotive powertrain example: Mutual coordination

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

of the requesters was implemented in the example by the
addition of a new explicit communication for the solution of
coordination problems (see Figure 4, “mutual coordination”).
In addition, existing functions had to be replicated in another
context for the realization of the explicit communication.
As a result, redundancies were created from the heads to
the models. In addition, accidental complexity has increased
disproportionately because of the wide interfaces and strong
coupling within the architecture of the system.

III. RELATED WORK

Next, we give an overview on the related work con-
cerning software product line architecture design, evolution,
and measurement of architecture quality. Mostly, we focus
on approaches that are related to automotive and embedded
software systems.

A. Software Product Line Architecture Design
In [3], reference architectures are assumed to be the basis

for the instantiation of product line architectures (so-called
family architectures). The purpose of the reference architecture
is to provide guidance for future developments. In addition,
the reference architecture incorporates the vision and strategy
for the future. The work in [3] examines current reference
architectures and the driving forces behind development of
them to come to a collective conclusion on what a reference
architecture should truly be. Nakagawa et. al. define a reference
model of reference architectures [4], and propose a method-
ology to design product line architectures based on reference
architectures [5].

As discussed in [6] an overall automotive product line
architecture is often missing due to software sharing. Thus ar-
chitecture recovery and discovery has to be applied by concepts
of software product line extraction [6]. In [7], a methodical and
structured approach of architecture restoration in the specific
case of the brake servo unit (BSU) is applied. Software product
lines from existing BSU variants are extracted by explicit
projection of the architecture variability and decomposition of
the original architecture.

The work in [8] proposes a method that brings together
two aspects of software architecture: the design of software
architecture and software product lines.

Thiel and Hein [9] propose product lines as an approach to
automotive system development because product lines facili-
tate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Patterns and styles are an important means for software
systems architecture specification and are widely covered in
literature, see, e.g., [10][11]. However, architecture patterns
are not explicitly applied for the development of automotive
software systems yet. For automotive industry, we propose the
use of architecture patterns as a crucial means to overcome the
complexity.

B. Software Product Line Architecture Evolution
In order to enable the evolution of software product line

architectures, architecture erosion has to be avoided. In [12], de

Silva and Balasubramaniam provide a survey of technologies
and techniques either to prevent architecture erosion or to de-
tect and restore architectures that have been eroded. However,
each approach discussed in [12] refers to architecture erosion
for a single product architecture, whereas architecture erosion
in software product lines is out of the scope of the paper.

Holdschick [13] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution
of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems.

The work in [14] proposes a systematic approach for
managed and continuous evolution of dependable automotive
software systems. They have identified three main challenges
to strengthen automotive software systems engineering for
the upcoming evolution: Complexity of automotive software
systems and engineering processes has still to be manageable,
flexibility has still to be provided, and dependability has still
to be guaranteed. The work in [14] describes how complexity
of automotive software systems can be managed by creating
modular and stable architectures based on well-defined require-
ments.

To counteract erosion it is necessary to keep software com-
ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of soft-
ware components in the development of automotive products
[15][16]. In [15], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [16]. However,
in both approaches a long-term minimization of erosion as well
as a long-term evolution is not considered.

A previous version of our approach is described in [6]
focusing on the key ideas of the management cycle for
product line architecture evolution. Furthermore, an approach
for repairing an eroded software consisting of a set of product
architectures by applying strategies for recovery and discovery
of the product line architecture is proposed in [6].

C. Measurement of Software Product Line Architecture Qual-
ity

To successfully plan and develop PLAs, it is necessary
to measure key figures. These key figures are the basis for
further developments. In [17], the SystEM-PLA framework is
presented, which uses 98 metrics to assess the quality of a
PLA. The analysis uses UML metrics to calculate key figures.
A procedure is presented in [18] to measure NFA on PLAs. It
is important to identify problems with regard to certain quality
features as early as possible. The method uses different metrics
to measure 3 NFAs: Maintainability, binary, and performance.
The procedure results in possibilities to restrict products.

The work in [19] shows how traceability supports the
evolution of SPL on feature level. For this purpose, a method
is used to merge feature models, build files and source code
with each other and to implement a change impact analysis by
using metrics. As a result, erosion and problems are recognized
at an early stage, and counter-measures can be taken.

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

In [20], PL are measured with the metric maintainability
index (MI). The “Feature Oriented Programming” is used to
map an SPL to a graph. The values are transformed into several
matrixes. Next, singular value decomposition is applied to the
matrixes. The metric maintainability index is then applied at
different levels (product, feature, product line). The results
show that by using the metric, features could be identified
that had to be revised. The number of possible refactorings
could be restricted.

In [21], several metrics are presented which are specifically
used for measuring PLAs. The metrics are applied to “vADL”
to determine the similarity, reusability, variability, and com-
plexity of a PLA. The measured values can be used as a basis
for further evolutionary steps.

IV. PLANNING AND EVOLVING AUTOMOTIVE PRODUCT
LINE ARCHITECTURES

A. Concepts for Designing Automotive Product Line Architec-
tures

For the specification of software architectures design pat-
terns, architectural patterns or styles are an important and
suitable means, also in other engineering disciplines [10]. We
subsume these under the term of architecture concepts. An
architecture concept is defined as: “a characterization and de-
scription of a common, abstract and realized implementation-
, design-, or architecture solution within a given context
represented by a set of examples and/or rules.”

At the architectural level, these are often associated with
terms as a client-server system, a pipes and filters design,
or a layered architecture. An architectural style defines a
vocabulary of components, connector types, and a set of
constrains on how they can be combined [10]. To get a better
understanding of the wide spectrum of architecture concepts
typical samples of concepts are listed in the following:

• Conventions: naming, package/folder structure, vo-
cabulary, domain model...

• Design Patterns: observer, factory, ...
• Architectural Patterns: client-server system, layered

architecture, ...
• Communication: service-oriented, message based,

bus, ...
• Structures: tiers, pipes, filters, ...
• Security: encryption, SSO, ...
• ...

Architectural concepts can be described in the form of
classical patterns, by describing a particular recurring design
problem that arises in specific design contexts and presents
a well-proven generic scheme for its solution. The solution
scheme specifies all constituent components, their responsi-
bilities and relationships, and the way in which they will
collaborate [11].

In the same way, we will illustrate some examples that we
worked out in our automotive domain projects. Generally, the
central issue is the increasing complexity of software systems
with their technical and functional dependencies. A mapping
of these dependencies to point-to-point connections will result
in a huge, complex and difficult to maintain communication
network. This leads to a likewise huge effort in the field

of maintenance and further development for these software
systems - small changes result in high costs.

This problem of a not manageable number of connections
emerged in many industrial projects we explore for our field
study. In the following we will present architectural concepts,
which are addressing this problem in particular. Figures 5
and 6 show different components, whereby the components
Coordinator and Support are atomic components and the
components labeled as Filter are not atomic components,
i.e., they can be decomposable.

1) Architecture Design Principle “Coordinator - PipesAnd-
Filters - Support”: The complexity of a component increases
artificially with every new product, without integrating new
functions. The reason for this phenomenon is due to the
fact that each component had to calculate the system state
for itself and this for each existing environment and product
the component will be used in. In general, components are
analyzing system data like sensor values for example and
process them to realize their functionality. Thereby, it happens
very often that a processing function is implemented several
times. Besides data from other components are used, but this
export data can change over time, so it can result in error
states.

The design principle introduces a classification of data. If
it is possible to classify the data, than it is possible to establish
the typing of channels, as shown in Figure 5.

<<Coordinator>>

<<Support>>

<<Filter,

External>>

<<Filter>>

<<Filter,

External>>

<<Filter>>

States/Modes

Functional Data

Functional Data and States/Modes

Atomic Element

Hierarchical Element

Figure 5. Architecture design principle: External elements

Each component has to declare a port for states and modes
to uncouple the calculation of the system state from the com-
ponent. A Coordinator component determines the global
state for a set of components and uses the new defined port
to coordinate the other components. The coordinator provides
only states/modes and no functional data. A component in
Figure 5 named as Filter, referring to the classical Pipes-
and-Filters architecture pattern, can react to a state change
automatically. Parameters are manipulated directly with the
states/modes without an additional calculation. Components
can be directly activated or stopped. The scheduling of the
coordinator is independent from the scheduling of the other
components, as each Filter checks the state/mode first.
The functionality of the system is realized by the Filter
components. For them it is allowed to exchange functional

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

data as well as state and modes. Values which are required for
the calculation within different components are provided by a
so called Support component.

2) Architecture Design Principle “External Elements”:
Today it is customary that not all components are developed in-
house, some functions are implemented by external suppliers.
But OEM components have requirements resulting in changes
of interfaces, behavior or functionalities of theses external
developed functions and components. It is not that easy to
identify these external components on architectural level, but
this information is essential for an economic development
process because changes of external components are very effort
and cost intensive.

Figure 5 shows a simple solution to handle external ele-
ments: Filter components which are developed external are
annotated with Filter, External, so it is effortless to
identify which component is external and which connections
are affected.

3) Architecture Design Principle “Hierarchical Commu-
nication”: Over the time more and more components and
functionality are added to a product. Different developers with
different programming styles are working on the same product.
Components without any reference to each other are organized
in the same package or other organizational and structural
units. Due to this accidental complexity it is not possible for a
developer, system integrator or architect to get a well-founded
knowledge of the whole system.

As presented in Figure 6, a Filter component can be
decomposable, a so called non-atomic component contains
a structure which follows the design principle visualized
in Figure 5. It includes a Coordinator and Support
component and an arbitrary number of Filter components.
Whereby the inner Filter components have explicit defined
responsibilities.

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

Figure 6. Architecture design principle: Hierarchical communication

By this design principle a repetitive structure on each
abstraction level is established, which enables an easy and
technical independent orientation in the whole system.

4) Architecture Design Principle “Component Model”:
Components require knowledge about the behavior or the
state/mode of the connected components. This results in a high
coupling of components and the processing time increases, too.

As presented in Figure 7, a component consists of two
parts with different responsibilities - Execution control
and Function algorithms. Each part has a defined set
of interfaces, types of communication channels, and exchange
data.

Function
algorithms

Execution
control

Function
algorithms

Execution
control

Function
algorithms

Execution
control

ES

FM

Ack

VS

TV

SV

ES

FM

Ack

VS

TV

SV

ES: Execution status VS: Value to set
FM: Functional mode TV: Target value
Ack: Acknowledgment SV: Set value

Figure 7. Communication scheme

The communication scheme is divided into two areas: the
execution control and the functional algorithms. The execution
control includes, on the one hand, the activation of the compo-
nent, which is represented by the execution status. In addition,
in the execution control, the functional mode (components
internal mode) of the component is determined. The execution
control sends an acknowledgment to the predecessor compo-
nent when this component is active. The execution control
communicates only by states/modes.

The function algorithms are processed when the execution
status is set. Component specific values are calculated in the
function algorithms. As output, they supply a manipulated
variable and a target value. The manipulated variable is the
value to set by the actuator. The target value is the value
which is to be achieved in the future. The set value of the
function algorithms is the value that is set by the controller.
The functional algorithms only have functional data as input.

5) Architecture Design Principle “Feedback Channel”:
The complexity of component-based control systems is in-
creasing continuously, since there are more and more func-
tional dependencies between the individual components. A
mapping of these dependencies on point-to-point connections
between the components results in a complex, hard-to-maintain
communication network.

In component-based control engineering systems, control
cascades are generated by connecting several components
consecutively. The main data flow in this system is called
the effect chain. In more complex systems, there are several
effect chains that can partly overlap. In an effect chain, there
are functional dependencies between components that are not
directly connected one behind the other. To resolve these
dependencies, additional point-to-point connections are added,
which are technical dependencies between the components.
The additional direct point-to-point connections between the
components increase the coupling between the components
and lead to a deterioration in the fulfillment of non-functional
requirements, such as maintainability, understandability and
extensibility. For example, the technical dependencies have to
be taken into account in a further development. The worst case
is a complete graph with cross-links between all components.

As a solution to this problem we introduce feedback chan-
nels (patent pending): The introduction of feedback channels
enables the dissolution of functional dependencies without
the introduction of technical point-to-point connections (see
Figure 8). The feedback channel is parallel to the effect

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

chain. Thereby, the necessary functional information is passed
through the components of the effect chain. The feedback
is directed against the effect direction. Components of an
effect chain must provide feedback. This creates a technical
communication network with which the functional information
can be exchanged. Thus, there are only technical depen-
dencies to neighboring components in the effect chain. The
maintainability is improved as only technical dependencies
on neighboring components in the effect chain have to be
considered. Figure 8 shows the architecture design principle
feedback channel.

Component 3

Functional Data and States/Modes

Component 4Component 1

Component 2

OutputInput

Input

Feedback InputFeedback Output

Feedback Output

Figure 8. Architecture design principle: Feedback channel

All information / data from the end of the effect chain
to the beginning of the effect chain are provided via the
feedback. Thus, a component can adapt itself to the current
situation in the effect chain without the necessity to create
an explicit connection to all components in the effect chain.
Furthermore, only the dependency of a component to the
adjacent components of an effect chain exists. If the processing
order of the components is selected s.t. all inputs are processed
first and then the feedback, all components of the effect chain
have the information on the current system state available in
the next computing cycle. The effect chain to Figure 8 then
looks as follows: The four components process their inputs
in the effect direction. The components are then processed
in the reverse order and the feedback is processed, i.e., from
Component 4 to Component 1. Here, components 1 and
2 can be interchanged in their processing.

In summary, the overall system is more maintainable and
easier to expand by this architecture design principle. The
individual components do not have to be connected to all
components in order to know the system state. Through the
feedback channel there is an information exchange between
all components in the same computing cycle. Controllers can
adapt themselves directly if they do not have access to an
actuator.

Summary

The presented architectural concepts in this section were
developed within different industrial projects in the automotive
domain involving different software architects and project
members. Nevertheless, there are similarities between the pre-
sented concepts, which become explicit by generalization and
the representation by a uniform description language. Thereby,
the projects focused the same as well as varying problem issues
and requirements. With this representation technique it was
possible to reuse the concepts in other projects to increase the
quality in an early phase of development and to economize
effort, because the projects start discussing about architectural
concepts.

The architectural concepts presented in this paper are devel-
oped iteratively and in some cases the development time took
over one year. As a result from our field study we can outline
that there are similarities between the architectural evolution
of product lines and the abstract and generic development
process of concepts which is not surprising. The evolution
of an architectural concept looks like the same - reuse and
adaptation in other projects, which sometimes results in a
new concept. Besides we can observe that the different levels
of abstraction we have for architecture descriptions, we can
find for concepts, as well. For example, the architecture de-
sign principle IV-A4 (Component Model, Figure 7), describes
coordinating functionality, status and mode information and
functional data connections. All these aspects we can find in
the design principle IV-A2 (Coordinator, PipesAndFilters, Sup-
port, Figure 5), too. With the difference that the Component
Model concept is for low level control functions, whereas the
other concept deals with components on another abstraction
level - to clarify the Component Model principle can be
applied for a Filter, for example.

Architecture concepts like the ones presented before and
all other aspects mentioned in the introduction of this section,
especially the specification of wording and naming conven-
tions help to build a collective experience of skilled software
engineers. They capture existing, well-proven experience in
software development and help to promote good design prac-
tice [11].

The result of making these concepts explicit on this ab-
straction level leads to discussions about architectural problems
and generic solution schemes. In particular at the product
line architecture level the focus is shifted from the more
technical driven problems upon the more abstract and software
architecture oriented issues. Over time this leads to new ar-
chitectural concepts, which are documented, evaluated, maybe
extracted from existing products, but making them explicit and
integrating them at the right places in the further development
process.

Another very important aspect dealing with architectural
concepts is the monitoring of the concrete realizations of them.
In our approach the Check activity takes care of it. All the
presented concepts can be represented by a logical rule set, as
described in [22]. Related to the fact that all elements of the
software are subjects to the evolution process, architectural
concepts can change or had to be adapted over time. This
means that the violation of an architectural rule indicates not
always a bad or defective implementation, it can additionally
give the impulse to review the associated concept and the
context. In our approach the assessment of the rule violation
is included in the Check activity and if there is an indication
for a rule adaptation this will be analyzed and worked out
in detail in the next Design activity. Overall it leads to a
managed evolution.

B. Understanding of Architecture and Measuring of Architec-
ture Quality

Software development is an evolutionary and not a linear
process. The costs caused by errors in software in the last
years, especially in the automotive industry, are very high
(15-20% form earnings before interest and taxes). Thus, it
is necessary to understand and evaluate the architecture to
support further development. In a vehicle, software will occupy

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

a larger and larger part and the costs caused by errors will
be rising. Therefore, it is important to control the quality of
the software continuously. Problems/Errors can be detected
early so that the quality of the software increases. The quality
of the software depends in particular on the quality of the
corresponding software architecture. In our approach, we use
PLAs for automotive software product line development. PLAs
are special types of software architectures. They do not only
describe one system, but many products which can be derived
from this architecture. Variability of the architecture, reuse of
products, and the complexity are important values to assess
the quality of this architecture.

Today, metrics mainly focus on code level. The most
common metrics are Lines of Code, Halstead, and McCabe. In
object-oriented programming (OOP), MOOD metrics and CK
metrics are used. However, these metrics are not suitable for
measuring PLAs. For assessing a PLA, the most important
value is variability, as the degree of variability increases
complexity in PLAs. Further important values are complexity
and maintainability of the possible products and the PLA. As
products shall be reused for other products, a high reuse-rate
of products is an important objective of the PLA. A high
reuse-rate also implies a high focus on maintainability of the
products.

In our approach, we assess the modification effort, reuse
rate and cohesion of a PLA, since we can thus evaluate
the properties discussed above. In the following, we give
formulas for the calculation of modification effort, reuse rate
and cohesion. Here, we refer to the definitions of Section II-B,
and the system structure depicted in Figure 3.

1) Modification effort: The modification effort measures
the effort caused by the planned changes in the PLA: How
many logical architecture elements (LAE), and products are
affected by the change? The calculated result value is between
0 (no elements have to be changed) and 1 (all elements have
to be changed). Simple changes can have a high impact to
products and modules. The value supports the architect to
improve understanding the architecture. Maybe there is a better
solution to design the new PLA with less modification effort.

The modification effort E to develop a new PLA version
plax+1 for a given PLA plax is calculated as follows on the
level of PLA and products:

EPLA =
number of concerned LAE

number of all LAE
(1)

EP =
number of concerned products

number of all products
(2)

where concerned LAE/products denote the logical ar-
chitecture elements/products that have to be modified or
added/deleted when introducing the new PLA version. In
Table II we apply E on the example in Figure 3.

TABLE II. MODIFICATION EFFORT FOR THE EXAMPLE OF FIGURE 3.

E pla1 → pla2 pla2 → pla3

EPLA |{A,C}|
|{A,B,C}| = 2

3
|{B,C}|

|{A,B,C}| = 2
3

EP |{p1,p2}|
|{p1,p2}| = 2

2 = 1
|{p1,p2,p3}|
|{p1,p2,p3}| = 3

3 = 1

Consider, e.g., step pla1 → pla2 in Table II: Note that each
module is assigned to only one LAE in this example. Hence,
modules are not considered in this example. In practice an LAE
can be assigned to several modules to realize functionality. In
this step the architect adds a connection between the LAE A
and LAE C on the PLA. The modification effort for the PLA
is 2

3 , because two of three LAE are affected by this change. On
product level the modification effort EP is 1: p1 1 and p2 1

contain LAE A and are thus affected. Note that for EP we do
not specify the version index in the calculation in Table II.

In this example, all products are affected by the modifica-
tion in both development steps. There is no other way to reduce
the modification effort. However, new product versions are not
released at each point in time even if the product is concerned
by the PLA modification (see product p1 at time = 2 in
Figure 3).

2) Reuse rate: To keep the vehicles cost efficient, modular
products with a high reuse rate cross different types of vehicles
are desired. The aim is to reuse modules in different products.
The reuse rate Rm of a module m in a certain PLA version
plax is calculated as follows:

Rm =
number of usage of m in all products of plax

number of all products of plax
(3)

Average reuse rate RM :

RM =

∑
Rm

number of all modules
(4)

In Table III we apply R on the example in Figure 3.

TABLE III. REUSE RATE FOR THE EXAMPLE OF FIGURE 3.

R pla1 pla2 pla3

Rm1 2
2

1
1

2
3

Rm2 2
2

1
1

2
3

Rm3 1
2

0
1

1
3

Rm′
1 – – 1

3

Rm′
2 – – 1

3

RM 5
2/3 ≈ 0.84 2

1/3 ≈ 0.67 7
3/5 ≈ 0.47

Consider, e.g., pla1 and Rm1 in Table III: Modules m1 1

and m2 1 are both used in products p1 1 and p2 1. Thus, the
reuse rate is 2

2 = 1 (100%). In the example the average reuse
rate for pla1 is 0.84 (84%). This value constitutes a high degree
of reuse. For pla3 and Rm1 the reuse rate has to take the new
product p3 1 into account. As m1 3 is used in two products
and the number of products is three, Rm1 = 2

3 (≈ 67%).
In the example the average reuse rate in pla3 is 0.47. The

comparison between pla1 and pla3 shows that the reuse rate
has deteriorated. This is to be expected since new products
and modules are added. In the next planning phase of a new
PLA these new modules should be used in more products to
increase the reuse rate.

3) Cohesion: A high cohesion is preferable. The value for
cohesion denotes the rate, how many export values of the
modules are used inside a product. The higher the value, the
better the cohesion of the product. We call export and import
values of modules exports and imports in the following.

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

The cohesion Ap of a product p is calculated as follows:

Ap =
number of all exports of all modules used in p

number of all exports of all modules in p
(5)

The average cohesion AP of products of a PLA version is
calculated as follows:

AP =

∑
Ap

number of all products
(6)

The cohesion of the PLA APLA is calculated as follows:

APLA =

number of all exports of modules used in all products

number of all exports of all modules of all products
(7)

In the following Table IV, we set randomly chosen values
for exports and imports at time = 1 for the modules. We
assume that the architect has access to the whole information
of LAE, all products, and all modules at this time.

TABLE IV. EXPORTS AND IMPORTS AT TIME=1 IN FIGURE 3.

Module Number of export values Number of import values
m1 1 3 1
m2 1 4 3
m3 1 2 3

TABLE V. COHESION FOR THE EXAMPLE OF FIGURE 3.

A pla1 pla2 pla3

Ap1 1+1+0
3+4+2 ≈ 0.22 – 2+0+0

3+4+2 ≈ 0.22

Ap2 1+0
3+4 ≈ 0.14 1+0

3+4 ≈ 0.14 1+0
3+4 ≈ 0.14

Ap3 – – 1+0
3+4 ≈ 0.14

AP ≈ 0.18 ≈ 0.14 ≈ 0.17

APLA 1+1+0+1+0
3+4+2+3+4 ≈ 0.19 1+0

3+4 ≈ 0.14 2+0+0+1+0+1+0
3+4+2+3+4+3+4 ≈ 0.17

Consider, e.g., pla1 and Ap1 in Table V: Product p1 1 has
three modules (m1 1, m2 1, m3 1). In product p1 1 LAE A
has a connection (export) to B and B has a connection (export)
to C. In Table IV all export values are listed. The cohesion is
calculated as follows:∑

used exports of m1 1,m2 1,m3 1∑
all exports of m1 1,m2 1,m3 1 = 1+1+0

3+4+2 ≈ 0.22

For a whole PLA all used export values of modules in
all products are aggregated. The result for pla2 shows that
the change operation concerns all products and a part of the
LAE and modules. The expected cohesion in pla3 is worse
compared to pla1. The quality of the PLA has slightly dete-
riorated. Modules realize more than one functionality because
they are used in more than one project. Therefore, cohesion
is competing to the reuse rate. It is planned to evaluate these
metrics and determine the intervals of the values for “good”
and “bad” with the help of experts in one of our industrial
projects.

4) Applying change operations on a PLA: A software
architect changes the PLA to fulfill new requirements. The aim
is to implement the new requirements with the least possible
adaptation on the product/module level.

Figure 9 exemplarily describes the procedure of applying
change operations on a PLA. The procedure starts with the
current PLA and all products and modules at time = 1. To
make change operations, the software architect performs the
following steps:

1) The architect adds a new change operation to the
PLA.

2) The above metrics are performed on the intermediate
PLA b. The results are considered as bad by the
architect and the changes are rejected.

3) The architect adds a new change operation to the
PLA. The above metrics are performed on the in-
termediate PLA. The results are evaluated as good
and the PLA c serves as the basis for the next step.

4) The architect adds a new change operation to the PLA
c.

5) The above metrics are performed on the intermediate
PLA d. The results are considered as bad by the
architect and the changes are rejected.

6) The architect adds a new change operation on the
PLA c resulting in PLA e. Again, the metrics are
applied. The results are rated as good. As all require-
ments have been implemented, PLA e is the new PLA
vision and serves as input for the planning.

a

b

c

d

e

Change operation on PLA

Go back, as measurement is evaluated as bad

PLA with conducted change operations

start PLA vision

1

2

3

4

5

6

Figure 9. Example: Applying change operations on a PLA

C. Planning of Development Iterations and Prototyping
In our case the planning of the further development in-

volves several activities, e.g., performing planning of each
modification of PLA and PA. The problem arises when
PL-Requirements or P-Requirements needs to be
realized within certain development time and within certain
development costs. Planning solves the problem by defining
timed activities considering the effort limitations.

Planning consists of a sequence of iterations. Iterations
are defined as a number of architecture elements that must
be realized in a time period bounded by tstart and tend
with tstart, tend ∈ N, tstart < tend. Within each time period
the activities Design, Plan, Implement and Check are
ordered. The iteration is completed when all modifications
are realized by Design, Implement, and checked to be
conform to architecture rules by Check. An example of a

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

sequence of three iterations is shown in Figure 3. In Figure 3,
the expected result of modifications on PLA at several time
points is defined, which corresponds to PL-Plan. Moreover,
the expected result of modifications on PA are defined where
products, modules and their mapping for three time points is
shown in Figure 3.

The effort caused to realize the planned number of archi-
tecture elements is estimated by the activities Design and
Implement, to achieve the PLA and PA development within
given effort limitations. In case of a deviation between planned
and actual estimations the initial plan is modified. Therefore,
effort estimations are made by considering the necessary
effort of PLA or PA modifications from Design and from
Implement. In the following, details about effort estimations
according to PLA and PA modifications are presented to
achieve estimation based planning.

The first estimation concept is based on metrics to evaluate
the modification effort. For example, modification effort ac-
cording to connection structure and component structure is es-
timated by rating cohesion of components. Another estimation
concept is to evaluate the effort based on modification realizing
a new pattern in the appropriate PLA or PA. Hence, simple
connection or component related modifications are lightweight,
pattern based structure modifications are heavyweight. Mod-
ifications rated as heavyweight often involve a huge number
of architecture components and products. Therefore, in such a
case our methodology suggests to outsource such heavyweight
modifications into a prototype projects. This special case is
enclosed by the activity PL to P of our methodology.

V. CONCLUSION

We introduced a sophisticated approach for automotive
software systems evolution by concepts for planning and
evolving product line architectures. To manage functional
software systems complexity we proposed an approach based
on modular, well-defined, and linked requirements as well
as architectures. First, we proposed methods and concepts to
create adequate architectures with the help of abstract prin-
ciples, patterns, and describing techniques. Such techniques
allow making complexity manageable. Next, we suggested
techniques for understanding of architecture and measuring
of architecture quality. With the help of numerical results of
these measurements, we can make a statement about com-
plexity, as well as conclusions about a system. Finally, we
described how to plan development iterations and prototyping.
We demonstrated our concepts by examples especially from
the automotive domain.

REFERENCES

[1] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10–19.

[2] C. Knieke et al., “A Holistic Approach for Managed Evolution of
Automotive Software Product Line Architectures,” in Special Track:
Managed Adaptive Automotive Product Line Development (MAAPL)
along with ADAPTIVE 2017, 2016, accepted.

[3] R. Cloutier et al., “The Concept of Reference Architectures,” Systems
Engineering, vol. 13, no. 1, Feb. 2010, pp. 14–27.

[4] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Refer-
ence Model for Reference Architectures,” in Proc. of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. IEEE
Computer Society, 2012, pp. 297–301.

[5] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. ACM, 2013, pp. 157–161.

[6] B. Cool et al., “From Product Architectures to a Managed Automotive
Software Product Line Architecture,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, ser. SAC’16. New York,
NY, USA: ACM, 2016, pp. 1350–1353.

[7] A. Strasser et al., “Mastering Erosion of Software Architecture in
Automotive Software Product Lines,” in SOFSEM 2014: Theory and
Practice of Comp. Sc., ser. LNCS, vol. 8327. Springer, 2014, pp.
491–502.

[8] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[9] S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66–72.

[10] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc., 1996.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

[12] L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132–151.

[13] H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70–73.

[14] A. Rausch et al., “Managed and Continuous Evolution of Dependable
Automotive Software Systems,” in Proceedings of the 10th Symposium
on Automotive Powertrain Control Systems, 2014, pp. 15–51.

[15] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Dis-
tributed Embedded Automotive Systems,” in Proc. of the 4th ACM
intern. conf. on Embedded software. ACM, 2004, pp. 203–210.

[16] M. Steger et al., “Introducing PLA at Bosch Gasoline Systems: Expe-
riences and Practices,” in Software Product Lines. Springer, 2004, pp.
34–50.

[17] A. G. Chiquitto, I. M. S. Gimenes, and E. Oliveira, “Symples-cvl: A
sysml and cvl based approach for product-line development of em-
bedded systems,” in Proceedings of the 2015 IX Brazilian Symposium
on Components, Architectures and Reuse Software, ser. SBCARS ’15.
IEEE Computer Society, 2015, pp. 21–30.

[18] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and
G. Saake, “Measuring non-functional properties in software product line
for product derivation,” in Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference, ser. APSEC ’08. IEEE Computer
Society, 2008, pp. 187–194.

[19] L. Passos et al., “Feature-oriented software evolution,” in Proceedings
of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems, ser. VaMoS ’13. ACM, 2013, pp. 17:1–
17:8.

[20] G. Aldekoa, S. Trujillo, G. S. Mendieta, and O. Dı́az, “Quantifying
Maintainability in Feature Oriented Product Lines,” in Proceedings of
the 12th European Conference on Software Maintenance and Reengi-
neering. IEEE, 2008, pp. 243–247.

[21] T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma, “Some Metrics for
Accessing Quality of Product Line Architecture,” in 2008 International
Conference on Computer Science and Software Engineering, vol. 2,
2008, pp. 500–503.

[22] S. Herold, “Architectural Compliance in Component-Based Systems.
Foundations, Specification, and Checking of Architectural Rules.” Ph.D.
dissertation, Technische Universität Clausthal, 2011.

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

