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Abstract—The notion of elasticity, which enables capabilities
and resources to be dynamically provisioned and released, is an
adaptive mechanism for managing resources in cloud comput-
ing. However, most existing applications for cloud computing
cannot support elastic capabilities and resources. To solve
this problem, this paper proposes an approach for adapting
distributed applications in response to elastic changes in their
resource availability. The approach can divide a component
into more than one components and merge more than one
components whose program codes are common into a compo-
nent by using user defined functions for dividing and merging
the data stored at key-value stores. It was constructed as a
middleware system for general-purpose software components
with the two functions. This paper presents the basic ideas,
design, and implementation of the approach evaluates the
proposed approach.

Keywords: Cloud computing, Elasticity, Software deploy-
ment

I. INTRODUCTION

Cloud computing has recently emerged as a compelling
paradigm for managing and delivering services over the
Internet. The notion of elasticity, which enables capabilities
and resources to be dynamically provisioned and released,
is an adaptive mechanism for managing resources in cloud
computing as a material property with the capability of
returning to its original state after a deformation. For ex-
ample, the NIST definition of cloud computing [10] states
that capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and
inward in accordance with demand. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any
time.
In a cloud computing platform, services are delivered with

transparency not considering the physical implementation
within the platform. However, the conventional design and
development of applications for cloud computing are not
able to adapt themselves to elastically provisioning and
deprovisioning resources in cloud computing. Furthermore,
it is difficult to deprive parts of the computational resources
that such applications have already used. There have been
a few attempts to solve this problem. For example, Mesos
[4] is a platform for sharing commodity clusters between
distributed data processing frameworks such as Hadoop and
Spark. These frameworks themselves are elastic in the sense

that they have the ability to scale their resources up or down,
i.e., they can start using resources as soon as applications
want to acquire the resources or release the resources as
soon as the applications do not need them.
This paper assumes that applications are running on dy-

namic distributed systems, including cloud computing plat-
forms, in the sense that computational resources available
from the applications may be dynamically changed due to
elasticity. We propose a framework for enabling distributed
applications to be adapted to changes in their available
resources on elastic distributed systems as much as possible.
The key ideas behind the framework are the duplication and
migration of running software components and the integra-
tion of multiple same components into single components
by using the notion of the MapReduce processing [2]. To
adapt distributed applications, which consist of software
components, to elasticity in cloud computing, the frame-
work divides applications into some of the components and
deploys the components at servers, which are provisioned,
and merges the components running at servers, which are
deprovisioned, into other components running at other avail-
able servers. We construct a middleware system for adapting
general-purpose software components to changes at elastic
resources in cloud computing.
This paper consists of the following sections. In Section

II, we surveys related work. Section III present the basic
ideas of the approach presented in this paper. Section IV
describes the design and implementation of the system. We
show the systems’ evaluation in Section V and give some
concluding remarks Section VI.

II. RELATED WORK

Before presenting our framework, we discuss existing
dynamic resource managements in cloud computing, includ-
ing elastic resource allocation. Cloud computing platforms
allow for novel ways of efficient execution and management
of complex distributed systems, such as elastic resource
provisioning and global distribution of application compo-
nents. Resource allocation management has been studied for
several decades in various contexts in distributed systems,
including cloud computing. We focus here on only the most
relevant work in the context of large-scale server clusters
and cloud computing in distributed systems. Several recent
studies have analyzed cluster traces from Yahoo!, Google,
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and Facebook and illustrate the challenges of scale and
heterogeneity inherent in these modern data centers and
workloads. Mesos [4] splits the resource management and
placement functions between a central resource manager and
multiple data processing frameworks such as Hadoop and
Spark by using an offer-based mechanism. Resource allo-
cation is performed in a central kernel and master-slave ar-
chitecture with a two-level scheduling system. With Mesos,
reclaim of resources is handled for unallocated capacity that
is given to a framework. The Google Borg system [11] is
an example of a monolithic scheduler that supports both
batch jobs and long-running services. It provides a single
RPC interface to support both types of workload. Each Borg
cluster consists of multiple cells, and it scales by distributing
the master functions among multiple processes and using
multi-threading. YARN [13] is a Hadoop-centric cluster
manager. Each application has a manager that negotiates for
the resources it needs with a central resource manager. These
systems assume the execution of particular applications,
e.g., Hadoop and Spark, or can assign resources to their
applications before the applications start. In contrast, our
framework enables running applications to adapt themselves
to changes in their available resources.
Several academic and commercial projects have explored

attempts to create auto-scaling applications. Most of them
have used static mechanisms in the sense that they are
based on models to be defined and tuned at design time.
The variety of available resources with different character-
istics and costs, variability and unpredictability of workload
conditions, and different effects of various configurations of
resource allocations make the problem extremely hard if not
impossible to solve algorithmically at design time.
Reconfiguration of software systems at runtime to achieve

specific goals has been studied by several researchers. For
example, Jaeger et al. [6] introduced the notion of self-
organization to an object request broker and a publish /
subscribe system. Lymberopoulos et al. [9] proposed a spec-
ification for adaptations based on their policy specification,
Ponder [1], but it was aimed at specifying management and
security policies rather than application-specific processing
and did not support the mobility of components. Lupu and
Sloman [8] described typical conflicts between multiple
adaptations based on the Ponder language. Garlan et al.
[3] presented a framework called Rainbow that provided
a language for specifying self-adaptation. The framework
supported adaptive connections between operators of com-
ponents that might be running on different computers. They
intended to adapt coordinations between existing software
components to changes in distributed systems, instead of
increasing or decreasing the number of components.
Most existing attempts have been aimed at provisioning of

resources, e.g., the work of Sharman at al. [12]. Therefore,
there have been a few attempts to adapt applications to
deprovisioned resources. Nevertheless, they explicitly or

implicitly assume that their target applications are initially
constructed on the basis of master-slave and redundant
architectures. Several academic and commercial systems
tried introducing live-migration of virtual machines (VMs)
into their systems, but they could not merge between ap-
plications, because they were running on different VMs.
Jung et al.[7] have focused on controllers that take into
account the costs of system adaptation actions considering
both the applications (e.g., the horizontal scaling) and the in-
frastructure (e.g., the live migration of virtual machines and
virtual machine CPU allocation) concerns. Thus, they differ
from most cloud providers, which maintain a separation of
concerns, hiding infrastructure-level control decisions from
cloud clients.

III. BASIC APPROACH

To use elastic resources provided in cloud computing
platforms, applications need to adapt themselves to changes
in their available resources due to elasticity. To solve this
problem, we will propose a framework to adapt applications
to the provisioning and deprovisioning of servers, which may
be running on physical or virtual machines, and software
containers, such as Docker, by providing an additional
layer of abstraction and automation of virtualization. Our
framework assumes that each application consists of one or
more software components that may be running on different
computers. It has four requirements.

• Supports elasticity: Elasticity allows applications to
use more resources when needed and fall back after-
wards. Therefore, applications need to be adapted to
dynamically increasing and decreasing their available
resources.

• Self-adaptation: Distributed systems essentially lack
a global view due to communication latency between
computers. Software components, which may be run-
ning on different computers, need to coordinate them-
selves to support their applications with partial knowl-
edge about other computers.

• Non-centralized management: There is no central en-
tity to control and coordinate computers. Our adaptation
should be managed without any centralized manage-
ment so that we can avoid any single points of failures
and performance bottlenecks to ensure reliability and
scalability.

• Separation of concerns: All software components
should be defined independently of our adaptation
mechanism as much as possible. This will enable devel-
opers to concentrate on their own application-specific
processing.

There are various applications running on a variety of
distributed systems. Therefore, the framework should be
implemented as a practical middleware system to support
general-purpose applications. We also assume that, before
the existence of deprovisioning servers, the target cloud
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computing platform can notify servers about the deprovi-
sioning after a certain time. Existing commercial or non-
commercial cloud computing platform can be classified into
three types: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). The
framework is intended to be used in the second and third,
but as much as possible it does not distinguish between the
two.
To adapt applications to changes in their available re-

sources due to elasticity, the framework adapts the ap-
plications to dynamically provisioning and de-provisioning
resources (Fig. 1).

• Dynamically provisioning resources When provision-
ing servers, if a particular component is busy and the
servers can satisfy the requirement of that component,
the framework divides the component into two compo-
nents and deploys one of them at the servers, where the
divided components have the same programs but their
internal data can be replicated or divided in accordance
with application-specific data divisions.

• Dynamically deprovisioning resources When depro-
visioning servers, components running on the servers
are relocated to other servers that can satisfy the
requirements of the components. If other components
whose programs are the same as the former components
co-exist on the latter servers, the framework instructs
the deployed components to be merged to the original
components.

The first and second adaptations need to deploy components
at different computers. Our framework introduces mobile
agent technology. When migrating and duplicating compo-
nents, their internal states stored in their heap areas are
transmitted to their destinations and are replicated at their
clones.
The framework provides another data store for dividing

and merging components. To do this, it introduces two
notions: key-value store (KVS) and reduce functions of the
MapReduce processing. The KVS offers a range of simple
functions for manipulation of unstructured data objects,
called values, each of which is identified by a unique key.
Such a KVS is implemented as an array of key and value
pairs. Our framework provides KVSs for components so that
each component can maintain its internal state in its KVS.
Our KVSs are used to pass the internal data of components
to other components and to merge the internal data of
components into their unified data. The framework also
provides a mechanism to divide and merge components with
their internal states stored at KVSs by using MapReduce
processing. MapReduce is a most typical modern computing
models for processing large data sets in distributed systems.
It was originally studied by Google [2] and inspired by the
map and reduce functions commonly used in parallel list
processing (LISP) and functional programming paradigms.

• Component division Each duplicated component can
inherit partial or all data stored in its original com-
ponent in accordance with user-defined partitioning
functions, where each function map of each item of
data in its original component’s KVS is stored in
either the original component’s KVS or the duplicated
component’s KVS without any redundancy.

• Component fusion When unifying two components
that generated from the same programs into a single
component, the data stored in the KVSs of the two
components are merged by using user-defined reduce
functions. These functions are similar to the reduce
functions of MapReduce processing. Each of our reduce
functions processes two values of the same keys and
then maps the results to the entries of the keys. Figure
1 shows two examples of reduce functions. The first
concatenates values in the same keys of the KVSs of
the two components, and the second sums the values
in the same keys of their KVSs.

IV. DESIGN AND IMPLEMENTATION

This section presents the design and implementation of
our framework. It consists of two parts: component runtime
system and components. The former is responsible for
executing, duplicating, and migrating components. The later
is autonomous programmable entities like software agents.
The current implementation is built on our original mobile
agent platform as existing mobile agent platforms are not
optimized for data processing.

A. Adaptation for elastic resources

When provisioning servers, the framework can divide a
component into two components whose data can be divided
before deploying one of them at the servers. When deprovi-
sioning servers, the framework can merge components that
are running on the servers into other components.
1) Dividing component: When dividing a component into

two, the framework has two approaches for sharing between
the states of the original and clone components.

• Sharing data in heap space Each runtime system
makes one or more copies of components. The runtime
system can store the states of each agent in heap space
in addition to the codes of the agent in a bit-stream
formed in Java’s JAR file format, which can support
digital signatures for authentication. The current system
basically uses the Java object serialization package for
marshalling agents. The package does not support the
capturing of stack frames of threads. Instead, when an
agent is duplicated, the runtime system issues events to
it to invoke their specified methods, which should be
executed before it is duplicated, and it then suspends
their active threads.

• Sharing data in KVS When dividing a component
into two components, the KVS inside the former is
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Figure 1. Adaptation to (de)provisioning servers

divided into two KVSs in accordance with user-defined
partitioning functions in addition to built-in functions,
and the divided KVSs are maintained inside the latter.
Partitioning functions are responsible for dividing the
intermediate key space and assigning intermediate key-
value pairs to the original and duplicated components.
In other words, the partition functions specify the com-
ponents to which an intermediate key-value pair must
be copied. KVSs are constructed as in-memory storage
to exchange data between components. It provides tree-
structured KVSs inside components. In the current
implementation, each KVS in each data processing
agent is implemented as a hash table whose keys, given
as pairs of arbitrary string values, and values are byte
array data, and it is carried with its agent between
nodes,

where a default partitioning function is provided that uses
hashing. This tends to result in fairly well-balanced parti-
tions. The simplest partitioning functions involve computing
the hash value of the key and then taking the mod of
that value using the number of the original and duplicated
components.
2) Merging components: The framework provides a

mechanism to merge the data stored in the KVSs of different
components instead of the data stored inside their heap
spaces. Like the reduce of MapReduce processing, the
framework enables us to define a reduce function that merges
all intermediate values associated with the same intermediate
key. When merging two components, the framework can
discard the states of their heap spaces or keep the state of
the heap space of one of them. Instead, the data stored in

the KVSs of different components can be shared. A reduce
function is applied to all values associated with the same
intermediate key to generate output key-value pairs. The
framework can merge more than two components at the same
computers because components can migrate to the computers
that execute co-components that the former wants to merge
to.

V. EVALUATION

Although the current implementation was not constructed
for performance, we evaluated the performance of our cur-
rent implementation. We evaluated the performance of our
framework with CoreOS, which is a lightweight operating
system based on Linux with JDK version 1.8 with Docker,
which is software-based environment that automates the
deployment of applications inside software containers by
providing an additional layer of abstraction and automation
of operating-system-level virtualization on Linux, on Ama-
zon EC2. For each dimension of the adaptation process with
respect to a specific resource type, elasticity captures the
following core aspects of the adaptation:

• Adaptation latency at provisioning servers The re-
sponse time of scaling up is defined as the time it
takes to switch from provisioning of servers by the
underlying system, e.g., cloud computing platform.

• Adaptation latency at deprovisioning servers The re-
sponse time of scaling down is defined as the time it
takes to switch from deprovisioning of servers by the
underlying system, e.g., cloud computing platform.

The latency at scaling up or down does not correspond
directly to the technical resource provisioning or deprovi-
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sioning time. Table I shows the basic performance. The
component was simple and consisted of basic callback
methods. The cost included that of invoking two callback
methods. The cost of component migration included that of
opening TCP transmission, marshaling the agents, migrating
the agents from their source computers to their destination
computers, unmarshalling the components, and verifying
security.

Table I
BASIC OPERATION PERFORMANCE

Latency (ms)
Duplicating component 10
Merging component 8
Migrating component between two servers 32

Figure 2 shows the latency of the number of divided
and merged components at provisioning and deprovisioning
servers. The experiment provided only one server to run
our target component, which was a simple HTTP server
(its size was about 100 KB). It added one server every ten
seconds until there were eight servers and then removed
one server every ten seconds after 80 seconds had passed.
The number of components was measured as the average
of the numbers in ten experiments. Although elasticity is
always considered with respect to one or more resource
types, the experiment presented in this paper focuses on
cloud computing platforms for executing components, e.g.,
servers. There are two metrics in an adaptation to elastic
resources, scalability and efficiency, where scalability is the
ability of the system to sustain increasing workloads by
making use of additional resources, and efficiency expresses
the amount of resources consumed for processing a given
amount of work.

• A is the average time to switch from an underpro-
visioned state to an optimal or overprovisioned state
and corresponds to the average latency of scaling up or
scaling down.

• U is the average amount of underprovisioned resources
during an underprovisioned period.

∑
U is the ac-

cumulated amount of underprovisioned resources and
corresponds to the blue areas in Fig. 2.

• D is the average amount of overprovisioned resources
during an overprovisioned period.

∑
D is the accu-

mulated amount of underprovisioned resources and
corresponds to the red areas in Fig. 2.

The precision of scaling up or down is defined as the abso-
lute deviation of the current amount of allocated resources
from the actual resource provisioning or deprovisioning. We
define the average precision of scaling up Pu and that of
scaling down Pd. The efficiency of scaling up or down is
defined as the absolute deviation of the accumulated amount
of underprovisioned or overprovisioned resources from the
accumulated amount of provisioned or deprovisioned re-

sources, specified as EU or ED .

Pu =
∑

U

Tu
Pd =

∑
D

Td
Eu =

∑
U

Ru
Ed =

∑
D

Rd

where Tu and Td are the total durations of the evaluation
periods and Ru and Rd are the accumulated amounts of
provisioned resources when scaling up and scaling down
phases, respectively. Table II shows the precision and effi-
ciency of our framework.

Table II
BASIC OPERATION EFFICIENCY

Rate
Pu (Precision of scaling up) 99.2 %
Pd (Precision of scaling down) 99.1 %
Eu (Efficiency of scaling up) 99.6 %
Ed (Efficiency of scaling down) 99.4 %

In the experiment the target component is a simple HTTP
server, since web applications have very dynamic workloads
generated by variable numbers of users, and they face
sudden peaks in the case of unexpected events. Therefore,
dynamic resource allocation is necessary not only to avoid
application performance degradation but also to avoid under-
utilized resources. The experimental results showed that
our framework could follow the elastically provisioning and
deprovisioning of resources quickly, and the number of the
components followed the number of elastic provisioning and
deprovisioning of resources exactly. The framework was
scalable because its adaptation latency was independent of
the number of servers.

VI. CONCLUSION

This paper presented a mechanism for adapting
application-level software to changes in available resources
in cloud computing platforms. The mechanism was con-
structed as a framework that enabled distributed applications
to adapt themselves to changes in their available resources
in distributed systems, in particular cloud computing plat-
forms. It was useful for adapting applications to elasticity
in cloud computing. The key ideas behind the framework
are dynamic deployment of components and dividing and
merging components. The former enabled components to
relocate themselves at new servers when provisioning the
servers and at remaining servers when de-provisioning the
servers, and the latter enables the states of components to be
divided, and passed to other components, and merged with
other components in accordance with user-defined functions.
We believe that our framework is useful because it enables
applications to be operated with elastic capabilities and
resources in cloud computing.
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