ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

How Adaptation and Transformation Complement Each Other to Potentially Overcome

Signature Mismatches on Object Data Types on the Basis of Test-Cases

Dominic Seiffert

Software Engineering Group
University of Mannheim
Mannheim, Germany

Oliver Hummel

Karlsruhe Institute of Technology
Karlsruhe, Germany
Email: hummel@kit.edu

Email: seiffert@Rinformatik.uni—-mannheim.de

Abstract—The challenge of providing fully automated adaptation
is tackled by many approaches in literature. Thereby, the class of
signature mismatches presents the challenge of matching object
data types that provide the same semantics but are syntactically
incompatible. We explain in this paper how adaptation, comple-
mented by transformation, can potentially solve the problem on
the basis of test cases in the object-oriented world.

Keywords—automated adaptation; signature mismatches; object
data types; test cases.

I. INTRODUCTION

Software building blocks such as objects need to connect
their interfaces in order to create new functionality. Unfortu-
nately, this connection is not always possible because of signa-
ture mismatches. A simple example for a signature mismatch
occurs, when the interfaces to connect have different names.
A more challenging task is a signature mismatch for deviating
parameter or return object data types. For object data types a
subclass instance can be delivered when a super class instance
is expected, according to Liskov Substitution Principle [2].
This is not possible, however, when the subclass relationship
does not exist, even for a semantically equal instance of a
different type.

Signature mismatches are tackled by many approaches
in literature, towards the goal of providing fully automated
adaptation. Thereby, an adapter gets interposed which handles
the message wiring between the involved software building
blocks. However, current approaches from the object-oriented
communities lack the ability to overcome signature mismatches
on object data types that are syntactically incompatible but
provide the same semantics. We believe that it is a need to
challenge this task in order to further improve fully automated
adaptation.

In the remainder of this paper, we propose adaptation
complemented by transformation, on the basis of test cases,
as the possible solution on overcoming signature mismatches
for object data types in object-oriented programming. The
necessary background information on adaptation and a more
detailed description of the problem is illustrated in Section 2.
In Section 3 the solution is proposed. Section 4 refers to related
work. Section 5 states the conclusion.

II. BACKGROUND

Signature mismatches can potentially be solved by an
adapter that gets interposed between the software building

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

blocks [3]. The Gang of Four Object Adapter pattern [4]
provides a well-known solution in the world of object-oriented
programming. The following adaptation example in Figure
1 explains the pattern in more detail: Let A and B be two
simple object data types that are not connected by hierarchy,
and simply provide each the methods set(int) and get():int,
to set and retrieve an integer value. Let further be StackA
and StackB two simple stack implementations, which are
also not connected by type hierarchy. An instance of StackA
allows an instance of A to be pushed on and popped off,
whereas StackB allows the same for an instance of B. The
Client depends on the StackA interface but wishes to use the
methods push(B) and pop():B from the adaptee StackB. The
StackA interface provides the methods push(A) and pop():A
that use the parameter and return type A. Therefore, a signature
mismatch on object data types occurs for A and B.

In an idealized scenario, the Adapter implements the
StackA interface and wraps the adaptee. The adaptee receives
forwarded messages from the Client via the Adapter. More
exactly, the Client invokes the set(A) method and the Adapter
forwards the messages to the set(B) method of the adaptee
StackB. The same happens vice versa for the pop methods
and their return values.

In order to support a fully automated process, Hummel
and Atkinson [7] proposed the idea of specifying the expected
adapter’s functionality in a test case that is used then during the
adaptation process for checking the semantics of the adaptee.
Figure 2 provides a sample test case for the previous example,
where the client expects an adapter StackAB to be created that
adapts StackA on StackB. This is specified in line no. 1 by
the import statement. The expected functionality is simple: The
object data type A gets instantiated and the value 5 is set to it
in line no. 8. This instance is pushed on the adapter StackAB in
line no. 9. In line no. 10 the pop() method gets invoked, which
is expected to deliver an instance of A again. An invocation
of get() on this instance is expected to deliver the value 5.
This is required in order to pass the test as specified by the
assertEquals statement in line no. 11.

Such a unit test case and a candidate to adapt serves as
an input for the adapter generation tool [8] developed by
Seiffert and Hummel [9]. The tool generates adapters that
are based on the Managed Adapter Pattern [S5], which is
based on Fowler’s identity pattern [6, p. 195]. The Managed
Adapter Pattern solves the problem of the Gang of Four Object

98

1
2
3

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

<< i >>
interface StackB
. StackA
Client 5B
= + .h B
+ push(A) N 11:2; ()('B)
+ pop():A)
I
|
StackAB

- adaptee: StackB

+push(A)

+ pop():A
+ getAdaptee():StackB

Figure 1. Adapter StackAB where StackB is the adaptee.

import adapter.StackAB;
public class TestCase extends junit.framework.TestCase {

public void test {
StackAB adapter =
A a = new A();
a.set(5);
adapter.push(a);
A a = adapter.pop();
assertEquals (5, adapter.get());

new StackAB () ;

Figure 2. Test case where StackA adapts StackB.

Adapter Pattern when the adaptee expects its own type as
a parameter argument or delivers it as a return type. The
tool further overcomes signature mismatches on primitive data
types, parameter permutations and a subset of object data
types, namely arrays and collections [10] that share common
semantics.

In the following example the situation has changed, as
illustrated by UML diagram in Figure 3: Let the Client depend
on StackOwnerA and let StackOwnerB play the role of the
adaptee. The Client wants to adapt StackOwnerA to Stack-
OwnerB, which requires that the set(StackA) method must
be matched on the set(StackB) method, and the get():StackA
method must be matched on the get():StackB method. There-
fore, a signature mismatch on object data types occurs for
StackA and StackB. A potential solution on this problem is
proposed in the following section.

III. ADAPTATION AND TRANSFORMATION ON THE BASIS
OF TEST CASES

When the client delivers the StackA instance to the adapter
StackOwnerAB, by invoking the set(StackA) method, the first
idea is to simply reuse the adapter AdapterBA from the
previous example, as illustrated by Figure 4. Reusing an
adapter requires the existence of an adapter repository, which
has already been proposed by Gschwind [11].

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

1

2
3
4
5
6

14
15
16
17
18

19
20

<< interface >>
StackOwnerA StackOwnerB
Client .
-a:StackA -b:StackB
+
e | L,
+ get():StackA get():
=
1
StackOwnerAB
- a: stackA

- adaptee: StackOwnerB

+set(StackA)
+get():StackA

Figure 3. Adapter StackOwnerAB where StackOwnerB is the Adaptee.

StackOwnerAB {
set(StackA stackA) {
StackOwnerB adaptee = new StackOwnerB () ;
StackBA reusedAdapter = null;
If (repository.entryExists (adaptee, stackA.getClass ())){
reusedAdapter = repository.getEntry (adaptee, stackA.
getClass ()));
Yelse{
reusedAdapter = generateAdapter (adaptee ,
getClass ());
repository .setMapping (stackA ,

stackA .
reusedAdapter);

reusedAdapter.setAdaptee (stackA);
adaptee . set(reusedAdapter); //forwarded.

}

Repository {

public Object generateAdapter(Class from, Class to){
// here the adaptation happens

¥

}

Figure 4. Reusing an existing adapter.

More precisely, in line no. 5 the repository is checked
whether an adapter StackBA already exists for the arriving
instance stackA. If the repository cannot find an adapter
StackBA, a new adapter StackBA must get generated, as
indicated by line no. 17, and set to the repository. Nasehi
and Maurer [12] propose that test cases should be equipped
with a standard API, which we believe would support our
adapter generation tool, because it takes takes test cases as
an input. However, if test cases are not provided, the idea is to
generate them automatically, which is not a futuristic scenario.
For example, Galler and Aichernig [13] provide an overview
on current test case generation tools, where some tools seem
to be practical.

In line no. 11, the arriving StackA instance needs to be set
as the adaptee for the adapter StackOwnerAB. This is different
to a “regular” adapter that usually creates its adaptee instance
itself.

The adapter StackBA is assumingly not a subclass of
StackB. Therefore, StackBA and StackB are mismatching
object data types, and no instance of StackBA can be delivered

99

1
2
3

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

import adapter.StackOwnerAB;

public class TestCase extends junit.framework.TestCase {

public void test {
StackOwnerAB adapter = new StackOwnerAB();
A a = new A();
a.set(5);
StackA stackA = new StackA();
stackA .push(a);
adapter.set(stackA); //forward.
}

Figure 5. Test case snippet where StackOwnerA adapts StackOwnerB.

when an instance of StackB is expected, as intended by line
no. 12. To realize this, some cases must be considered, before
the following background:

e A class declared as final can not be sub-classed.

e When the expected type is an interface type any
instance of a class, which implements this interface,
may be provided.

Therefore, the following cases are possible:

1) If StackB is a class type declared as final, then the
adapter StackBA is not able to subclass it. Therefore,
it cannot be forwarded, which is a severe limitation
of this approach and calls for a more generally usable
solution.

If StackB is a class type not declared as final, the
adapter can subclass StackB. Therefore, it can be
forwarded.

2)

For the first case that StackBA cannot subclass StackB or
StackB is not declared as an interface type, the following
two potential solutions exist: First, if we would know the
methods and their parameter values which were invoked on the
arriving instance of StackA, i.e. the protocol, we could reuse
the adapter StackAB. This is realized by reusing the protocol
of instance stackA, in order to invoke the same methods
with the same values on the adapter StackAB. The adapter
StackAB provides the getAdaptee():StackB method as indi-
cated by Figure 1. Therefore, by calling stackAB.getAdaptee(),
the adapter StackAB returns an instance of StackB, which
can be forwarded to the set(StackB) method of StackOwnerB.
This idea requires that instances are monitored and that this
information could be retrieved accordingly by a protocol. The
idea of encapsulating such protocol information is proposed
by Pintando [14] by using “gluons”. These are special objects
embedding interaction protocols between components. We
believe that this protocol information could also be provided
by a test case. For example, the test case snippet in figure 5,
where StackOwnerA wants to adapt StackOwnerB, provides
from line no. 7 to line no. 10 the protocol information that an
instance of A is set a value of 5 and that this information is
pushed on a StackA instance. Therefore, the idea is, to extract
the protocol information from the test case.

The second solution to this problem is, in our believe,
to provide a transformation mechanism. Transformation trans-
forms “state”. This means transformation extracts state from
one instance and sets it to another instance. Thereby, the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

1 StackOwnerAB {

2 set(StackA stackA){

3 StackB stack = transform (stackA);
4 StackOwnerB adaptee = new StackOwnerB () ;
5 adaptee.set(stack);

6 }

7}

Figure 6. Adapter StackOwnerAB uses transformation.

1 Transformer. transform (StackA stackA):StackB {
2 StackB stackB = new StackB();

3 stackB . push (stackA .pop());

4 return stackB;
5

}

Figure 7. A simple transformation example.

instances are not necessarily of a different type. The instances
can mismatch by their state only. For example, an instance
of StackA with the values 1,2,3 pushed on it, is different to
another instance of StackA keeping the values 3,2,1. Compared
to adaptation transformation requires different matchings for
the methods, parameters and return types. Figure 6 and Figure
7 show how the adapter StackOwnerAB would implement
a transformation mechanism, to transform the state of an
instance of StackA to an instance of StackB. The transform
method is assumingly provided by a class Transformer.

The challenge for this transformation is that the output
parameter of the pop method, from StackA, is matched on
the input parameter of the push method, from StackB, which
is already challenged by the web service community ([15]
[16]). But transformation, in the context of adaptation, does
not mean that output parameters of methods are matched on
input parameters of other methods only. Examples can be
more challenging, as an adapter potentially needs to involve
functionality from other classes, which are not necessarily
provided as potential adaptees, in order to provide the expected
functionality. For illustration purpose, let the Client expect
the standard deviation to be calculated for the values he puts
on the stack. This functionality needs to be assembled by
the adapter. The adapter thereby works more like a facade
[4]. Again, the client specifies the expected functionality by
a test case in the first step. Thereby, he adds a specific
comment to it, as shown by Figure 8 in line no. 10. This
comment states that he expects the standard deviation to be
calculated. The idea is, that this comment gets extracted out
of the test case. Data mining tools could be used then, to
determine that the standard deviation should be calculated.
The standard deviation requires the calculation of the mean
and variance. This knowledge could be retrieved from an
ontology for instance. The information gets provided to the
adapter. Figure 9 shows the potential transformation function
that takes an array specified as functionality as an input. This
array is filled with the content mean, variance and deviation,
representing the information retrieved from the comment and
ontology. Therefore, the adapter has to involve other "helper”-
classes, such as Mean, Variance and StandardDeviation, which
it retrieves from the repository. Instances of these classes can
either be already existing adapters or generated adapters. The
latter are generated on the basis of equipped test cases or

100

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

l import adapter.StackAB;
2
3 public class TestCase extends junit.framework.TestCase {

4
5 public void test {

6 Adapter adapter = new Adapter();

7 adapter.push(10);

8 adapter.push(5);

9 adapter.push(9);

10 //1 want the standard deviation to be calculated.
11 assertEquals (2.16f, adapter.pop());

Figure 8. Test case enriched by comment.

1 Transformer.transform (StackA stackA, String]|]
functionality) {

2 Adapter mean = repository.getClass(functionality [0));

3 Adapter variance = repository.getClass(functionality
[11);

4 Adapter standardDev = repository.getClass(
functionality [2]);

5 StackB StackB = new StackB ();

6 // calculate Mean

7 int mean = mean. calculate (values);

8 // calculate Variance

9 int variance = variance.calculate (mean);
10 // calculate StandardDeviation
11 int result = standardDev.calculate (variance);

12 StackB .push(result);
13 return StackB;
14}

Figure 9. Transformation from StackA to StackB.

generated test cases.

IV. RELATED WORK

The Morabit approach presented by Brenner et al. [17]
is based on a prototype component framework that uses
built-in tests. However, it does not consider the possibility
of automated test case generation. The Java Object Instru-
mentation Environment, named JOIE, is one of the early
adaptation approaches proposed by Cohen et al. [18]. JOIE
allows the transformation of Java classes through byte code
modification. For example, it allows the insertion of new code
into the class to be modified and the change of data types
or method names. Another approach proposed by Reiss [19]
modifies the adaptees on the source code level to meet the
expected requirements made by the Client. For such an invasive
modification license problems can be problematic [20]. But we
believe that it becomes necessary for adaptation on a deeper
nested level. For example, let us assume that the content
of the stackB instance, arriving at the set(StackB) method
of StackOwnerB, should be displayed by a class Display
which offers the methods show(OtherStack). The invocation of
these methods should be inserted into the set(StackB) method
provided by StackOwnerB either by source-code or byte-code
modification. This requires that also the adapter generation
of the adapter that adapts StackB to OtherStack gets inserted
invasively. Kell [21] provides a rule-based approach named
Cake which allows the transformation of object data types,
but it requires the user writing mapping rules. We believe
that the possible mappings should be detected and verified
automatically during the adaptation process. The problem of

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

service adaptation is already challenged by the web-service
community by orchestration. For example, Eslmamichalandar
et al. [22] provide an overview on web-service adaptation
approaches. But approaches in the web-service community rely
on xml-schema matching or ontology based reasoning. This is
appropriate for syntactic matching, but it does not solve the
problem in the object-oriented world when two syntactically
incompatible but semantically equal type instances need to be
adapted and potentially transformed. Gschwind [11] proposes
the idea of an adapter repository where adapters can be
retrieved by some meta information. Non existing adapters
need to be provided by the client. The idea of creating them
automatically is not considered.

V. CONCLUSION AND FUTURE WORK

In this paper, we have provided potential solutions on
overcoming signature mismatches on object data types on the
basis of test cases. The potential solutions are adaptation and
transformation. Transformation complements adaptation but
works differently, as it extracts the state of an instance and sets
it to another, and thereby uses different method matchings than
adaptation. Future work should implement the proposed ideas
in this paper around our adapter generation tool to provide a
working application. The overcoming of signature mismatches
is a big challenge, therefore, more research is needed in this
area to further push fully automated adaptation.

REFERENCES

[1] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and
M. Tivoli, “Towards an engineering approach to component adaptation,”
in Architecting Systems with Trustworthy Components, vol. 3938, 2009,
pp. 193-215, ISSN: 0302-9743.

[2] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyp-
ing,” in ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 6, 1994, pp. 1811-1841.

[3] D. Yellin and R. Strom, “Protocol specifications and component adap-
tors,” in ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 19, no. 2, 1997, pp. 292-333.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1994, ISBN: 9780321700698.

[5] O. Hummel and C. Atkinson, “The managed adapter pattern: Facilitat-
ing glue code generation for component reuse,” in Formal Foundations
of Reuse and Domain Engineering, S. Edwards and G. Kulczycki, Eds.
Springer Berlin Heidelberg, 2009, pp. 211-224.

[6] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003, ISBN: 978-0321127426.

[7] O. Hummel and C. Atkinson, “Automated creation and assessment of
component adapters with test cases,” in Component-Based Software

Engineering, L. Grunske, R. Reussner, and F. Plasil, Eds. Springer
Berlin Heidelberg, 2010, pp. 166—181.
[8] “The Adapter Generation Tool,” 2015, URL:

http://oliverhummel.com/adaptation/tool.zip [accessed: 2015-01-02].

[9] D. Seiffert and O. Hummel, “Improving the runtime-processing
for component adaptation,” in Lecture Notes in Computer Science,
Springer, J. Favaro and M. Morisio, Eds. Springer Berlin Heidelberg,
2013, pp. 81-96.

[10] D. Seiffert and O. Hummel, “Adapting arrays and collections: Another
step towards the automated adaptation of object ensembles,” in Lecture
Notes in Computer Science, Springer, I. Schaefer and I. Stamelos, Eds.,
vol. 8919. Springer International Publishing Switzerland, 2015, pp. 348
- 363.

[11] T. Gschwind, Type Based Adaptation: An Adaptation Approach for
Dynamic Distributed Systems, A. Coen-Porisini and A. van der Hoek,
Eds. Springer Berlin Heidelberg, 2003.

101

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

S. Nasehi and F. Maurer, “Unit tests as api usage examples,” in
International Conference on Software Maintenance (ICSM). IEEE,
2010, pp. 1-10, ISSN: 1063-6773.

S. Galler and B. Aichernig, “Survey on test data generation tools,”
in International Journal on Software Tools for Technology Transfer,
vol. 16, no. 6, pp. 727-751, 2013, ISSN: 1433-2787.

X. Pintando and B. Junod, “Gluons: Support for software component
cooperation,” in Object Frameworks, D. Tsichritzis, Ed. Universite De
Geneve, Switzerland, 1992.

L. Cavallaro, E. Di Nitto, P. Pelliccione, M. Pradella, and M. Tivoli,
“Synthesizing adapters for conversational web-services from their wsdl
interface,” in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2010, pp. 104—
113.

H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati, “Semi-automated adaptation of service interactions,” in Pro-
ceedings of the 16th international conference on World Wide Web,
2007, pp. 993-1002.

D. Brenner, C. Atkinson, B. Paech, R. Malaka, M. Merdes, and
D. Suliman, “Redicing verification effort in component-based software
engineering through built-in testing,” in Information Systems Frontiers,
vol. 9, no. 2-3, 2007, pp. 151-162.

G. A. Cohen, J. S. Chase, and D. L. Kaminsky, “Automatic program
transformation with joie,” in Proceedings of the USINEX 1998 Annual
Technical Conference, 1998, pp. 167 — 178.

S. P. Reiss, “Semantics-based code search,” in Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009). IEEE
Computer Society, 2009, pp. 243 — 253, ISBN: 978-1-4244-3453-4.

U. Hoelzle, “Integrating independently-developed components in
object-oriented languages,” in ECOOP 930Object-Oriented Program-
ming, 1993, pp. 36-56.

S. Kell, “Component adaptation and assembly using interface relations,”
in OOPSLA ’10 Proceedings of the ACM international conference
on Object oriented programming systems languages and application,
vol. 45, no. 10, 2010, pp. 322-340.

M. Eslamichalandar, K. Barkaoui, H. Reza, and H. Motahari-Nezhad,
“Service composition adaptation: an overview,” in Second International
Workshop on Advanced Information Systems for Enterprises IWAISE),
2012, pp. 20-27.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

102

