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Abstract—Service robots in the near future are supposed to live
together with humans in their private homes for a longer time
period. In this situation, experience and attitudes of the users
change and thus, the robot has to develop its behavior, too,
and it has to adapt to the user’s way of interaction and the
user’s needs. The contribution of this paper is a probabilistic
decision planner implementing the idea of online learning dialog
strategies for a mobile service robot in long-term interaction. The
planning system is part of a modular multi-modal dialog system
and allows for an autonomous personalization of the robot’s
actual interaction behaviors. A model of observed transitions and
user’s rewards using mixtures of discrete samples is proposed
for efficient inference in a factor graph model. The practicability
of the dialog system and the rewarding mechanism have been
evaluated in a ten day realworld experiment with 16 users.
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I. INTRODUCTION

The work presented has been conducted in the scope of
the research group SERvice RObotics for health (Gesundheits)
Assistance (SERROGA) [1], which intends to develop demon-
strators for robotic applications in the context of prevention
and assistance for elderly people living alone in their home
environment. As a vision, we see a robot, that is living together
with the human in a long-term interaction situation. Further-
more, we expect the development of an emotional binding of
the user to his or her personal robot over the time, which is
reinforced by the ability of the system to adapt to the user’s
needs and preferences. The intended platform to be used in the
SERROGA project is a Scitos-G3 (see Fig. 1), that has been
developed in the EU funded project CompanionAble [2][3].
An intuitional communication is realized by a multi-modal user
interface consisting of a touchscreen, touch sensitive cover, and
a touch sensitive patch of fur used for petting the robot. Actual
work in progress intends for inclusion of speech recognition
as an additional input channel. For output, the robot can use
synthesized voice, the screen, as well as an artificial face
consisting of two eye displays.

A laser range finder and a Kinect sensor, together with a
differential drive enable autonomous localization and naviga-
tion skills. A fish-eye camera is used for person detection and
tracking, which is a key functionality for successful interaction.
Additionally, for giving explicit feedback by a user, special
positive and negative reward buttons are placed on top of the
screen.

The aim of this work is to enable and understand a long-
time development and adaptation of a multi-modal human-
robot dialog. In that context, we identified three phases in

the interaction. At the beginning, in the first phase, the user
needs to get to know the robot. The system has to give
advice how to use it and has to introduce its capabilities. The
dialog initiative is primary at the side of the robot. Later,
in a second phase, when the user knows better about the
capabilities of the robot, the initiative will be in the user’s
hand, and the robot should learn the user’s preferences and
needs. That means, the robot is supposed to learn which
services are used in which situation and what are the user’s
attitudes towards the various options the robot has in its dialog
behavior. Also, preferred selections are learned by the robot
in order to apply that knowledge in the third phase. When
that third, stable phase is reached, the robot can make use of
the observations in interaction with that specific user. So it
is able to act proactively depending on the current situation.
Then, a mixed initiative dialog should emerge even with the
limited domain of the robot’s services. Nevertheless, the ability
to learn and change interaction behavior should not be limited
to the initial phases. Changes of user’s attitudes have to be
tracked continuously and life-long.
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Figure 1. Scitos-G3 robot “Max” used for the evaluation.

The remaining part of this paper is structured as follows:
First, a brief discussion of approaches from literature for
learning dialog behavior is given, followed by the presentation
of our own contribution. Thereto, in Section III, first, the
dialog system is described at a glance, and afterwords, the
adaptive parts, the probabilistic planner and the models used,
are explained. In Section IV, our experience with the described
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system in user test is presented, and results are discussed.

II. RELATED WORK AND DISCUSSION

In literature, several approaches for dialog modeling can
be found mainly in the field of speech-based dialog systems,
which also have capabilities of adaptation. A common ap-
proach is using Reinforcement Learning techniques for op-
timization of a dialog flow, even when inputs are uncertain.
The Partially Observable Markov Decision Process (POMDP)
is used here, but this comes along with high computational
effort, which is intended to be overcome by several approaches
for simplification [4][5]. These approaches try to find a policy
in order to maximize the discounted future reward, that mainly
is generated by a system internal reward function. Therefore,
the system designer has to define in advance what the long-
term goals during upcoming dialogs will be.

Pineau et al. [6] applied a POMDP model for learning
an optimal dialog behavior for a service robot called Pearl.
Although they applied a hierarchical decomposition of the
assistance task, the complexity of the realizable functionality
is very limited. That approach also relies on a hand crafted
reward function and the policy is computed offline before
application. Thus, the robot can not consider individual user’s
characteristics discovered at runtime.

One disadvantage of many similar Reinforcement
Learning-based approaches in the domain of dialog learning
is the batch update, where in a training phase interaction data
is acquired, and afterwards the optimization run is applied
offline in order to generate the productive dialog system.

A model for learning a behaviour online from direct user
rewards is called “Training an Agent Manually via Evaluative
Reinforcement” (TAMER) [7][8]. This approach explicitely
models, which feedback a user gives for a certain state-action
pair, and then acts greedily in order to get the maximum reward
for the next action. The argumentation for this λ0 strategy is
the idea, that the human supervisor estimates the utility value
of a state-action pair and already represents this in the reward
signal. This might be correct to a certain degree, but has a clear
disadvantage. The system can only act in order to achieve user
goals, but is not able to incorporate internal goals or wishful
target states. One interesting aspect of the TAMER model is
the reward model. This allows to predict the user rewards and
apply them internally - even if the user is not giving feedback
for each action. Thus, this model allows that the user has to
get active by giving feedback only if s/he wants to modify the
behavior, not if s/he is pleased with it.

An alternative dialog system applying probabilistic infer-
ence is presented in [9] and later in [10]. Inference techniques
have been applied to a statistical model of the dialog in order
to reason the goals the user might have in mind and, therefore,
decide which information needs to be asked or given in the
next steps of dialog. Unfortunately, this idea is not directly
transferable to our scenario, where the goal of the dialog is
not only determined by the user but also by the system itself
(e.g., the robot should engage the user in communication or
physical activities). Additionally, the required direct reward to
be given by the user, which is used to modify the way things
are communicated, is hard to introduce in that approach.

In our approach, we need to combine system internal goals,
which mainly are i) fast task completion and ii) less correction
steps by the user with explicit and implicit rewards given
directly by the user during the interaction. As explicit reward,
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Figure 2. Architecture of our dialog system - The dialog manager holds a
stack of subdialogs each defined by as set of state variables a decission tree
of possible actions.

we consider positive or negative feedback by means of pushing
the respective like or dislike buttons on the screen, while
implicit rewards are unconscious signals like the rate of petting
the robot, or simply ignoring the robot’s attempts to interact
with the user.

To get capability of online learning/adaptation, we would
like to get rid of the complicated optimization problem of
finding a complete policy each time we get new observations,
although we are only interested in the optimal action for
the current situation. This is possible by means of an online
planning mechanism and also allows for changing optimization
goals as well as discovering new states of the dialog at runtime,
which would be difficult or even impossible for implicit
planning methods.

Dialog modeling techniques existing today are mostly
related to a very complex application development process.
Our aim is to provide a framework for rapid application de-
velopment, which is realized by combining simple frame-based
multi-modal dialog with the capabilities of optional adaptation
without introducing additional configuration effort. A key to
a manageable design effort is the possibility for problem
decomposition. According to hierarchical abstract machines
[11], that are also used in the Reinforcement Learning domain
for restriction of the action space, in our approach, individual
subdialogs are defined as independent modules, each restricting
the policy to a reasonable subset and having the ability of
calling other subdialogs on demand. How this modularization
is realized in our system is explained in the next section.

III. ADAPTIVE MODULAR DIALOG SYSTEMS

The implementation of the dialog system is based on the
robot middle-ware MIRA [12][13] and implements the control
layer in our software architecture [2]. Therefore, it integrates
well with the other robot software components for navigation,
perception skills, and graphical user front-end and realizes an
interface to the robot infrastructure for the individual services.
The software architecture supports a modular design, where
each subdialog (greeting, weather info, news, entertainment,
etc.) is an independent module defining a service. Thus, it is
easy to add new functionality and refer to, or combine existing
dialog capabilities in new dialogs, such that the borders of
the modules get blurry for the user, who is perceiving the
robot as one personality. The software modules implement a
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content specific back-end functionality as well as define the
subdialogs needed. The configuration for a subdialog is mainly
a definition of the state space S (variables holding user inputs
and context information) and a set of output actions available
A = {a1, . . . , aK} (see Fig. 2 upper part). For instance,
actions are expressing a greeting multimodally or asking which
website the user likes to see. In order to reduce the necessity
for exploration in an unordered set of actions and in order
to prevent from selection of irrational sequences frustrating
the user, it is necessary to limit the set of selectable actions in
each state S. In our system this is done by a manually designed
decision tree over the state variables S. Each node in the tree
decides between two alternative branches, each consisting of
sets of possible actions or further subtrees. These sets allow to
define options from which the dialog manager has to choose
later on by means of the probabilistic planner. By defining
trees with only one action in the branches, it is possible to
realize deterministic dialog strategies as well. In that case,
the system behaves like a Finite State Machine. For realizing
action sequences, it is necessary to consider the history of
executions of the actions in the dialog state. Therefore, each
possible action ak has a counter Hk, holding the number of
executions of ak since the latest activation of the subdialog.

The dialog state of an independent subdialog, besides
the counters for the actions, comprises a set of variables
{V1, . . . , VN} representing user inputs, but also system in-
ternal data and events that are of relevance for the decision
on the next action of the robot. For example, the number
of appointments to be reminded or the answer (yes/no) to
the question if appointments should be listed are such state
variables in a “reminder” subdialog. The variables have a
specific range that can either be discrete or real-valued, which
has to be considered later in the respective similarity functions.
The range is defined by the type of a variable that also
defines which inputs can be filled in it by the input interpreter.
Additionally, all variables are labeled with a certainty value
{C1, . . . , CN} that expresses to what degree the respective
information is known, unconfident, or unknown. This, for
example, allows to model the ambiguity of speech recognition
inputs or other probabilistic observations.

Therefore, the state representation for one subdialog is a
discrete vector:

S = (V1, . . . , VN , C1, . . . , CN , H1, . . . ,HK) (1)

A. Control Flow in the Dialog System

Having defined the structure of a subdialog, now the
coordination of user inputs, multiple active subdialogs, and
the system output generation are explained.

In general, a turn-based control flow is realized where
user input turns and system turns alternate. Once a system
output action is executed, the system waits until expected user
inputs are recognized or until a timeout triggers a new system
turn. All multi-modal user inputs are processed in parallel
by the input interpreter and will update the dialog state of
the respective subdialog. Inputs or internal events are filled
in variables of all subdialogs that match the respective type.
Special variables may activate a subdialog if they get filled by
an input or event.

The dialog manager holds a stack of active subdialogs (see
Fig. 2), where the top most is that one evaluated each time a
system action is necessary (start of a system turn). The dialog

manager evaluates the decision tree of the top most subdialog
in the stack using its current state S = s0 in order to get the
possible action set for the current situation. If only one action
is available, it is executed by the output renderer directly.
The interesting part, where adaptation takes place, is given
when multiple actions are allowed by the decision tree, and the
probabilistic planning process, as described in section III-C, is
triggered. This planning yields a probability distribution on the
actions Pplan(A), that maximizes the probability of reaching a
system internal goal state while maximizing the user’s rewards
on the way.

Since the system does not know neither the user’s rewards
and the possible transitions in the dialog states nor the goal
states that are defined by the actions in these states, there is
a need for exploration additionally to the aim for exploitation
of the knowledge allready acquired (exploration-exploitation
dilemma). Furthermore, the progress in the phase model of
the long-time interaction, introduced in the intro part of this
paper, also has to be considered during action selection. Thus,
two additional probability distributions are used for action
selection. The first represents the number of executions of
each available action Pcount(A) to enforce that all possible
actions are tried out equally during exploration. The second
distribution Pprio(A) allows for consideration of a priority that
is depending on the progress in the long-time interaction. In
this way, in the beginning phase, more explanatory actions are
selected, and in the stable phase only straight actions without
additional help messages and proactive actions like offering
services in a certain situation are recommended. Consequently,
the three influence factors Pplan(A), Pcount(A), and Pprio(A)
are combined, and the action to be eventually executed is
selected by drawing from that resulting distribution.

When the action is executed, mainly screen and speech
outputs are generated, that may refer to values of the vari-
ables in the subdialogs, and communicate content suitable for
the current situation (asking questions, confirming inputs or
giving answers). Also special actions, like activation of other
subdialogs or canceling an active subdialog, are possible. If a
new subdialog is activated, the former top most in the stack
gets suspended and can execute one more action in order to
react to that special situation. If the interrupting subdialog is
finished, the suspended one returns to the top of the stack and
gets resumed. This resuming is a special action that may be
used to bring the user back into the context of the former
conversation.

B. Modelling of Interactions

For the planning and adaptation, the system needs to
represent knowledge on the history of interactions with the
user. This is done by means of several probabilistic models
which are described in the following. The dialog manager first
builds up a persistent probabilistic transition model at runtime
that is representing the probability of reaching a certain state
S′ given a predecessor state S and the executed action A.
Here, user specific decisions and reactions are learned as well
as the internal restrictions on the state sequences, such that
the planning system does not need to be configured with that
knowledge in before. The representation of that model is a
weighted sum of samples sj = (S′, S,A)j each of them
equipped with a weight wj . These samples have a very high
dimensionality (keep in mind the elements of the state vector
S) and, therefore, it is very unlikely that exactly the same states
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Figure 3. Dynamic factor graph for planning of next action A, given the current state S, a goal state distribution G and a reward proposal distribution R.

appear very often. To generalize consequences among similar
states, a similarity function δS′,S,A(sa, sb) 7→ [0, 1] defines a
neighborhood among samples sa and sb. The subscript S′, S,A
determines the dimensions considered in that similarity. Later,
when operating with marginal distribution,we need to compare
samples on certain dimensions only. The probability of a
particular transition t = (S′

t, St, At), by means of that set
of all samples sj and similarity function is defined as follows
with a normalization factor η:

P (S′
t, St, At) = η

∑
j

wjδS′,S,A(t, sj) (2)

For realizing a goal directed planning of action sequences,
additionally a model of goal states P (G,S) and a model of
rewards P (R,S) gained in a certain state, are defined similarly
also as weighted set of discrete samples. Here, G can be 1 for
a success state, e.g. the dialog was successfully completed,
or it can be 0 for a fail state that has to be avoided in future
interactions. This is for example the case, if a dialog turn times
out without any user reaction.

The rewards are only recorded if positive or negative
reward events took place. By ignoring zero rewards, the policy
remains stable, even if the user is pleased with it and does not
reward every action individually.

The goal and reward models can be used to evaluate a
probability for a state S to be a goal state, as well as the
probability to get a high reward in that state. The models return
0.5 if there are no similar observations in the sample set.

Initially, these user-specific models for each subdialog are
empty and have to be filled during the interactions by observ-
ing and counting the real transitions, rewards, and occurrence
of goal labels.

C. Probabilistic Action Planning

This section describes the planning mechanism used to
deduce a probability distribution Pplan(A) for the available
actions, that maximizes the probability of reaching a goal
labeled state while gaining as much reward as possible on the
way to a goal state. For that kind of problems, the probabilistic
model of our dialog is represented as a dynamic factor graph
(see Fig. 3) for which a message passing algorithm called
max product algorithm [14][15][16] exists. The max product
algorithm can find the marginal distributions for all unobserved
variables in the factor graph that maximize the probability
given the set of fixed or observed variables.

The idea of that algorithm is to perform local operations
in the nodes of the factor graph and propagate the results in

form of messages µsender→receiver(domain) along the tree
structure of the graph in order to get the result in the node
of interest, which is the A node of the first time step in our
case. Unfortunately, in our dynamic factor graph, the number
of time steps to reach a goal state is not known in before, but,
since we are only interested in the next action, the inference
can be executed in a loop, with one iteration for each time
step to be looked in the future. This is shown by the message
µS→S′(S

′) in the figure. This is only possible in an acyclic
factor graph, which is the reason for the complex state S and
the respective factor models we have chosen in the model.
A further factorization would possibly simplify the factor
potentials, but the complete factor graph would not longer
be acyclic afterwards. This would make the time step loop
trick impossible since belief propagation needs to iterate on
the complete structure of a loopy factor graph.

A central decision for the factor graph algorithm is the
form of representing the probability distributions in the nodes
of the factor graphs and in the messages sent between them.
Normally, Gaussians or discrete distributions are used for that,
but in our case the dimensionality of the distributions’ domains
is too large for that. Hence, we propose a representation as
mixture of discrete samples as already introduced for building
up our transition model P (S′, S,A). In the following, we
briefly show, how the operations required by the max product
algorithm have been implemented for that kind of distribution
representation.

The initialization of the planning loop requires setting
the distribution of the state S′ to the desired distribution of
goal states we expect. For that, the model of goal probabilities
P (G|S′) for each observed state provides the fraction of oc-
curred goal labels in the actions leading to that state. Asuming,
that the target probability for reaching a goal is distributed like
the little diagram shown in Fig. 3 bottom right, the P (G|S′)
table is used to weight the states S′ of the transition model,
thus a set of weighted S′ samples results. This is our initial
state distribution P (S′) of the last time step in the planning
horizon (blue message µP (G|S′)→S′(S

′)).
Then the planning loop starts with the step 1: According

to the max product algorithm, the distribution P (S′) has to be
multiplied by the message µP (R|S′)→S′(S

′) from the reward
model. This reward model P (R|S′) is also a set of state
samples si, that maps to the average reward ri gained in
that state. We use the proposition, which is maximizing the
reward along the sequence of states, and define the distribution
of the expected reward as a sigmoid function (shown in the
little diagram besides the R node in Fig. 3). Knowing this,
for each sample sj in the S′ distribution, we can compute an
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updated weight w(S′)
j by comparing the states of these samples

to states of the samples si in the reward model and applying the
sigmoidal proposition distribution indicating the desirability of
the respective reward. Adding an ε ensures that weights will
be vaild, even if no samples of the reward model do match in
the similarity function.

w
(S′)
j = wj

0.5ε+
∑
i

1
1+e−ri

δS′(sj , si)

ε+
∑
i δS′(sj , si)

(3)

To reduce the complexity for the next computations, samples
with low weights are omitted, and samples with high similarity
δS′(sj , si) are merged until a maximum number of samples
remains. We used 20 samples at maximum in all message
distributions.

In step 2, this sample set P (S′) is sent to the transition
model as message µS′→P (S′|S,A)(S

′) to get multiplied to the
conditional probability distribution P (S′|S,A).

Since we only have counters w(S′,S,A)
j for the occurrences

of the various state transitions, we need to divide P (S′, S,A)
by P (S,A) to get the conditional, which is done by calculating
new weights w(S′|S,A)

j for the samples sj according:

w
(S′|S,A)
j =

w
(S′,S,A)
j∑

i w
(S′,S,A)
i δS,A(sj , si)

(4)

This can be done before planning starts and has only to be
updated when a new transition has been observed.

In the P (S′|S,A) node, the product of the factor potential
and all incoming messages has to be calculated. Therefore,
each sample of the transition model gets a new weight
ŵ

(S′|S,A)
j (5), which incorporates the similarities of samples

si in the incoming message µS′→P (S′|S,A)(S
′). The message

µA→P (S′|S,A)(A) is assumed to be uniform and is not con-
sidered in the weight computation. It would be possible to
incorporate priors on actions here to realize a dependency of
the actions on the progress in the long-term interaction phase.

ŵ
(S′|S,A)
j = w

(S′|S,A)
j

∑
i∈µS′→P (S′|S,A)(S

′)

δS′(sj , si)w
(S′)
i (5)

The max product algorithm now needs to find the maximum
probability for each value of the variable for the outgoing
message. In our case, that is the µP (S′|S,A)→S(S), and thus
the goal variable is S. For each sample, all other samples
are compared using δS(si, sj), and only the one with the
maximum weight will be used. As result, we get a message
µP (S′|S,A)→S(S), that can be processed further in the variable
node S.

Here, in step 3 we have to test, if the current state s0 of our
subdialog matches the inferred predecessor state distribution
P (S) for the planned sequence to the goal state of a length
of the current iteration. In case of sufficient probability, the
action A can be deduced, that maximizes probability of going
one step towards the goal state starting from s0. This is done
by sending the message µS→P (S′|S,A)(S), which is simply our
current state s0 with weight w0 = 1 to the factor node (red
message in Fig. 3).

There, again the product and maximization has to take
place, which is realized by re-weighting the samples of the

transition model again. Here, the intermediate weights already
containing the message from S′ can be reused.

w̃
(S′|S,A)
j = ŵ

(S′|S,A)
j δS(sj , s0)w0 (6)

With these new weights, the maximization along the S and S′

dimensions can be done in oder to get a probability for each
action to reach a goal within the current time horizon. This is
done by grouping the samples of the transition model sj by the
discrete action dimension A and checking for the maximum
weight w̃j in each group.

Before going to the next planning time step by sending the
µS→P (S′|S,A)(S) message renamed as µS→S(S) and starting
over with step 1, for each action in the set of available
actions, the maximum probability over all time steps is stored.
Afterwards, this is used to gain the Pplan(A) distribution used
for action selection as described before.

D. Prediction of User Preferences

In many situations in a repeatedly conducted dialog be-
tween the robot and the user, the annoying questions for
options (e.g., which website should be shown) can be omitted,
when using the former choices in a similar situative context.
The transition model we built from the dialog history, exactly
contains these information.

Thus, instead of asking the user for the information, the
robot can try to infere the desired value, which is changing the
state S of the subdialog similarily without any further inputs
from the user. Depending on the outcome of that, the dialog
can continue either with a confirmation of that fact or with a
question for specification of the information, if the inference
did not yield a significant probability for either option.

By means of that, also the proactive situation dependent
offer of services can be realized easily, where the correctness
of the suggestions strongly depends on the context variables
considered in the subdialogs state vector.

IV. EXPERIMENTAL EVALUATION

The correct function and ability of considering observed
reactions of the user during robot’s action selection first
has been validated by means of a set of simulated dialog
sequences not embedded in a complete robot application. This
functional test showed the learning capabilities as expected, but
it is hardly possible to simulate a more complex application
realistically. Even more, it is not possible to predict the impact
of our dialog system on real users.

Due to these circumstances, the proposed system has
afterwards been evaluated in a separate application before
being applied for realizing the user interface of our health
assistant robot. Caused by restrictions on access to the robot
as well as the number of test users needed in combination with
the intended long-term interaction, an evaluation scenario has
been chosen, that involved 16 members of our lab in parallel.
The robot has acted as an “Office Mate” by visiting each
trial participant once a day and offering its services after the
user confirmed his/her supposed identity and the respective
persistent interaction models have been loaded. The experiment
took ten workdays in order to give time for an observable
change of the robot’s behavior.

The participants had to fill out two questionnaires with a
first focus on the long-term acceptance of a robot with an adap-
tive dialog behavior, and a second focus on the practicability of
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our realization. Questions mainly followed the Almere Model
[17] , while questions regarding the perception of the robots
adaptation skills have been added.

The first questionaire had to be filled in before the exper-
iments to get the baseline and find preferences regarding the
form of being addressed by the robot (formal or informal),
as well as to get hints on the set of websites to be provided
by the robot during the interactions. A second questionnaire
after the experiment asked for the personal experience of the
participants.

The tests have additionally been accompanied by an ob-
server to reveal usability problems, and aforementioned ques-
tionaires have been used for a qualitative evaluation due to the
low number of participants.

A. Office Mate Services

The application for our Office Mate scenario covers a
couple of services. For giving an impression on the capabilities
and the options for adaptivity, these services are described in
the following.

The adaptivity was mainly realized in the main menu
subdialog, which had a set of optional actions that comprise
(M1) offering a normal selection menu, which of the services
to execute next, (M2) proposing an unused service to introduce
it to the user with the question whether to start it or not, (M3)
executing a service proactively depending on the prediction of
a selection. The user in that case only has to confirm or deny,
whether that the service is going to be started. The context state
variables for the prediction of the next service to be selected by
the user include one counter for each service available counting
the number of activations of that service in that session. By
means of these context variables, the system can learn arbitrary
sequences of services used.

However, actions (M4) to (M6) are the same as (M1) to
(M3), except that a written advice on how to interact with the
robot in that situation is given on the touch screen additionally.
These later actions are designed for the first phase in the long-
time interaction, where the user should learn how to use the
robot.

Further variability is implemented in the greeting subdia-
log, which is always started at the beginning of an interaction
session with a participant. Besides a deterministic greeting,
here the optional actions were: (G1) giving a tutorial on how
to use the robot, (G2) asking for wellbeing, and (G3) quitting
the greeting subdialog and continuing with the main menu
subdialog. During the greeting subdialog, a sequence of these
actions is also possible.

The first two services offered are news and entertainment
via websites in a browser. These subdialogs had optional
actions as well, which were (N1) presenting a longer list
of respective websites for selection, or (N2) suggesting a
website based on the predicted selection known from previous
interactions. Since the number of different websites visited is
part of the state variables of that subdialog, it is possible that
the system can learn and predict a sequence of sites preferred
by the user. Also in these services, the available actions could
be executed with an additional advice on how to use the screen
menu.

The third service, a weather forecast, had the only option
to present weather warnings, if available, automatically or to
wait until being asked for. In all cases, the current temperature

and weather conditions as well as a two day forecast are
presented on the screen.

Two more rather simple services are answering questions
for current date and time as well as showing the menu of the
refectory. Since these services do not require further decisions
by the user, there are no optional actions.

A last service offered was a reminder service. The user
was able to edit and show appointments in a list for the current
week or the current day. On the main menu, there was an
indication on the number of reminders for that day. Since
this number is also used in the context variables of the main
menu, the proactive presentation of reminders was possible
if the user teached that behavior by selecting the reminder
presentation manually some times. Unfortunately, the calendar
was not synchronized with the Google Calendar usually used in
our lab. Therefore, that service had not been used consequently
by the participants.

To quit a session with the robot and send it to the next
user, the option for a good bye dialog was available in the
main menu.

B. Results and Discussion

When asked for their expectation to the Office Mate robot,
among a couple of additional features for such a robot (sending
it to others, sending it to get coffee, using it as avatar by a video
conference), few generic aspects regarding adaptation have
been mentioned by the participants beforehand. One aspect
was that the robot is supposed to know when the user can be
disturbed and when not. Unfortunately, that is only possible if
detailed context information on the user and the situation at
all is available to the robot.

Not all participants of the experiment have been available
all the ten days; thus a difference in the experience for different
durations of interaction could be observed. All participants
who had more than four interactions did notice that the robot
learned their preferences and also changed its behavior over
time. That mostly is related to the prediction of user’s choices
(see III-D), leading to a suggestion of following services if the
user’s attitude is stable. Here, the robot developed an individual
sequence of suggestion of services from the main menu as well
as individual sets of websites preferred for each user.

Unfortunately, most of the users mentioned, that they were
a bit confused by the option of rewarding the robot. They
wanted to reward explicitly special aspects of the complex
behavior like diction or level of advice. It was not transparent
to them, what aspects are variable in this situation and to which
aspect the reward refers. This is an indication for using more
implicit and system-internally generated rewards in future, that
the users are not aware of. By means of that, the user does not
need to know the alternatives the robot has in certain situations.
Concluding this, offering explicit good/bad buttons is not a
practical way for getting rewards from the user.

Those users who used the reward buttons could also
influence the dialog flow and the way of presentation of
information. If the tutorial in the greeting subdialog had been
punished, it occured less often during the following days. Also,
the written advice on how to interact in certain situations
appeared less often during the experiment if the user punished
that behavior by means of negative rewards. However, the
user’s perception of the exploration of alternative actions is
critical. It was confusing for many users, that the robot,
although they had already rewarded a behavior, acted again
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in that unwanted way. The reasons for this were the complex
state model on the one hand and the exploration strategy on the
other hand. In many situations, the user might think that s/he
already had passed exactly that sequence, but in the robots
state variables there is a difference in the history or in the
certainty values, causing that the situation is unknown to the
robot, thus an exploarative action is selected that the user
confused. Additionally, even if the robot knows the situation
from past interactions, the need for exploration of longer
sequences of actions yields further executions of unwanted
actions regardless of the history in the reward model.

For a better generalization over states that are different
in only a few dimensions, the planning step in the transition
model needs to be improved in order to recombine parts of
samples. That will help to reduce the number of observations
the system needs to learn a possible path through the state
space. Furthermore, it may be possible to apply a more greedy
action selection strategy as proposed in the TAMER system [8]
to reduce unexpected repetitions of actions that result from
exploration steps. Unfortunately, this conflicts with the ability
to find an action sequence that reaches system internal goals.

An additional possibility for reducing the number of re-
warding events and improving generalization skills is the han-
dling of recurring variations of actions in different situations.
In the Office Mate implementation, there was an alternative
with or without additional output in many situations. It would
be better to introduce a global property “use additional support
outputs” which is followed if possible and switch it on and off
by only one action instead of generating almost similar copies
of arbitrary actions. Therefore, the negative reward for one
output in situation A could influence the form of output in
situation B without having seen situation B in before. Besides
the degree of advice needed, also the volume of voice outputs
or the form of addressing the user (formal or informal) are
candidates for such global properties.

The overall results showed that the planning algorithm does
work very well, but the way of configuring the subdialogs
has to be improved in future real applications considering
the findings discussed above. More effort has to be put in
the deduction of meaningful reward from the user’s reactions
on robot’s behavior. Also the perception skills of the robot
always could be improved to extend the context variables of
the subdialogs. By means of that, proactive behavior of the
robot can be better suited to the actual situation.

V. CONCLUSION

We could show in an experimental setup, that a dialog
manager using an online life-long learning transition model for
online planning of action sequences can be realized. The very
high dimensional state space of a human robot dialog can be
managed by splitting the whole application into independent
subdialogs. This also improves the application development
process by modularization. An efficient way for the probabilis-
tic inference during the planning process could be realized by
a sample-based representation of probability distributions. At
last, independent of the planning algorithm, we could identify
a couple of design issues with our test application, that have
to be improved in future implementation.
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