
An Adaptive Middleware for Near-Time Processing of Bulk Data

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of the
system is designed, prior to implementing the system. This choice
depends on the non-functional requirements of the system. These
requirements are not fixed and can change over time. In this
paper, we introduce the concept of a middleware that is able
to adapt its processing type fluently between batch processing
and single-event processing. By adjusting the data granularity at
runtime, the system is able to minimise the end-to-end latency
for different load scenarios.

Keywords–adaptive middleware; message aggregation; latency;
throughput

I. INTRODUCTION

Enterprise Systems like customer-billing systems or finan-
cial transaction systems are required to process large volumes
of data in a fixed period of time. For example, a billing system
for a large telecommunication provider has to process more
than 1 million bills per day. Those systems are increasingly
required to also provide near-time processing of data to support
new service offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [1]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of telecommunications
provider:

• Customers are billed once per month

• Customers are partitioned in 30 billing groups

• The billing system processes 1 billing group per day,
running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A lower end-to-end latency can be achieved by using
single-event processing, for example by utilizing a message-
oriented middleware for the integration of the services that
form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data

processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. These requirements are not fixed and can change
during the lifespan of a system, either anticipated or not
anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this paper, we propose a solution to this problem:

• We introduce the concept of a middleware that is able
to adapt its processing type fluently between batch
processing and single-event processing. By adjusting
the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load
scenarios. (Section III)

The remainder of this paper is organized as follows. Section
II defines the considered type of system and the terms through-
put and latency. The proposed middleware and the results of
preliminary performance tests are presented in Section III.
Section IV gives an overview of other work related to this
reasearch. Finally, Section V concludes the paper and gives
and outlook to the next steps of this research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of
subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 1a).

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 1. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data beeing distributed among
each line. For simplification, we consider a system with a
single processing line in the remainder of this paper.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 2). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 2. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 3). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [2].

S1 S2 S3

Figure 3. Message-based processing

Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency

comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this paper:

• Maximum Throughput
The number of events the system is able to process in
a fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an
event and its processing. End-to-end latency refers
to the total latency of a complete business process
implemented by multiple subsystems. The remainder
of this paper focusses on end-to-end latency using the
general term latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. AN ADAPTIVE MIDDLEWARE FOR NEAR-TIME
PROCESSING OF BULK DATA

This section introduces the concept of an adaptive middle-
ware which is able to adapt its processing type fluently between
batch processing and single-event processing. It continuously
monitors the load of the system and controls the message
aggregation size. Depending on the current aggregation size,
the middleware automatically chooses the appropriate service
implementation and transport mechanism to further optimize
the processing.

A. Middleware Components

Figure 4 shows the components of the middleware, that
are based on the Enterprise Integration Patterns described by
Hohpe et al. [3].

1) Aggregator: The Aggregator is a stateful filter which
stores correlated messages until a set of messages is complete
and sends this set to the next processing stage in the messaging
route.

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order
in which they are read from the input message queue.
In this case, an optimized processing is not simply
possible.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

S1
Endpoint A

S1
Endpoint BAggregator Router

Queue

Queue

Queue

Messages Message
Aggregate

Figure 4. Components of the Adaptive Middleware. We are using the notation defined by [3]

• Technical correlation: Messages are aggregated by
their technical properties, for example by message size
or message format.

• Business correlation: Messages are aggregated by
business rules, for example by customer segments or
product segments.

2) Feedback Loop: To control the level of message aggre-
gation at runtime, the middleware uses a closed feedback loop
with the following properties (see Figure 5):

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between
sampling intervals

• Set point (r): The change of queue size should be
zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike the average end-to-end latency.

Controller System
y = Net change of queue sizer = 0 e = r-y u = Aggregation size

Figure 5. Feedback loop to control the aggregation size

The concrete architecture and tuning of the feedback loop
and the controller is subject to our ongoing research.

3) Router: Depending on the size of the aggregated mes-
sage, the Router routes the message to the appropriate service
endpoint, which is either optimized for batch or single event
processing.

When processing data in batches, especially when a batch
contains correlated data, there are multiple ways to speed up
the processing:

• To reduce I/O, data can be pre-loaded at the beginning
of the batch job and held in memory.

• Storing calculated results for re-use in memory

• Use bulk database operations for reading and writing
data

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message

bus using Java Message Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

B. Prototype Implementation

To evaluate the proposed concepts of the adaptive middle-
ware, we have implemented a prototype of a billing system
using Apache Camel [4] as the messaging middleware.

Figure 6 shows the architecture of the prototype system.

Camel

Billing Route
ActiveMQ

Event
Generator

Tomcat

Costed Events

Master Data

Rating
Service

Tomcat

Mediation
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed
Event

MySQL

MySQL

Qeue
Aggregator Router

Figure 6. Architecture of the prototype system

Using this prototype, we have done some preliminary
performance tests to examine the impact of message aggre-
gation on latency and throughput. For each test, the input
message queue has been pre-filled with 100.000 events. We
have measured the total processing time and the processing
time of each message with different static message aggregation
sizes.

Figure 7 shows the impact of different aggregation sizes
on the throughput of the messaging prototype. The throughput
increases constantly for 1 < aggregation_size <= 50 with a
maximum of 673 events per second with aggregation_size =
50. Higher aggregation sizes than 50 do not further increase
the throughput, it stays around 390 events per second.

The increased throughput achieved by increasing the ag-
gregation size comes with the cost of a higher latency. Figure
8 shows the impact of different aggregation sizes on the 95th
percentile latency of the messaging prototype.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 7. Impact of different aggregation sizes on throughput

Figure 8. Impact of different aggregation sizes on latency

An aggregation size of 50, resulting in the maximum
throughput of 673 events per seconds, shows a 95th percentile
latency of about 68 seconds.

The results indicate that there is an optimal range for
the aggregation size to control the throughput and latency of
the system. Setting the aggregation size higher than a certain
threshold leads to a throughput drop and latency gain. In case
of our prototype, this threshold is between an aggregation size
of 85 and 90. This threshold needs to be considered by the
control strategy. We are currently investigating the detailed
causes of this finding.

IV. RELATED WORK

Research on messaging middleware currently focusses on
Enterprise Services Bus (ESB) infrastructure. An ESB is an
integration plattform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

Several research has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [6], routing [7] [8] [9] and load
balancing [10].

Work to manage and improve the Quality of Service
(QoS) of ESB and service-based systems in general is mainly
focussed on dynamic service composition and service selection
based on monitored QoS metrics such as throughput, availabil-
ity and response time [11]. Gonzaléz et al. [12] propose an
adaptive ESB infrastructure to adress QoS issues in service-
based systems which provides adaption strategies for response
time degradation and service saturation, such as invoking
an equivalent service, using previously stored information,
distributing requests to equivalent services, load balancing and
deferring service requests.

The adaption strategy of our middleware is to change the
message aggregation size based on the current load of the
system. Aggregating or batching of messages is a common
approach to increase the throughput of a messaging system, for
example to increase the throughput of total ordering protocols
[13] [14] [15] [16].

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [17] or Google App Engine [18]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Of course, our solution can be combined with
these auto-scaling approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a middleware that is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a messsage, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

To evaluate the proposed middleware concepts, we have
implemented a prototype system and performed preliminary
performance tests. The tests show that throughput and latency
of a messaging system depend on the level of data granularity
and that the throughput can be increased by increasing the
granularity of the processed messages.

Next steps of our research are the implementation of the
proposed middleware including the evaluation and tuning of
different controller architectures, performance evaluation of the
proposed middleware using the prototype and developing a
conceptional framework containing guidelines and rules for
the practitioner how to implement an enterprise system based
on the adaptive middleware for near-time processing

REFERENCES

[1] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

[3] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[4] Apache Camel. http://camel.apache.org. [retrieved: March 2014].
[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly

Media, Inc., 2004.
[6] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of

a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[7] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[8] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[9] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[10] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[11] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[12] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[13] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[14] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[15] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[16] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[17] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[18] Auto scaling on the google cloud platform.
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform. [retrieved: March 2014].

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

