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Abstract—This paper provides a framework for organizational 
Complex Adaptive Systems without directly referring to 
biology (evolution theory), physics and mathematics. The 
model can reproduce most of standard management science 
and sheds light on new ideas in corporate strategy. Possibilities 
for numerical simulation are discussed. 
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I.  INTRODUCTION 

The existing literature about organizations seen through a 
Complex Adaptive Systems (CAS) lens (Lewin, 1992 [1]; 
Kauffman, 1993 [2]; Holland, 1995 [3]; Maguire et al., 2006 
[4]) usually borrows for a discussion of system properties 
from biology, mainly from evolutionary dynamics (Holland, 
1975 [5]; Mandelbrot, 1982 [6]; Nicolis and Prigogine, 1989 
[7]; Kauffman, 1993 [2]; Aldrich, 1999 [8]; McKelvey, 
1982 [9]; Nelson and Winter, 1982 [10]) and from physics 
(Prigogine, 1955 [11]; Kaye, 1993 [12]; Cramer, 1993 [13]; 
Gell-Mann, 1994 [14]). Not only does this make this the 
literature extremely hard to read for managerial scientists 
and practitioners, it also obscures that CAS in social science 
have essential differences with biological systems. We show 
here that organizational systems (businesses, but not 
exclusively) can be easily interpreted as a collection of 
agents (Carley, 1992 [15], 1999 [16]; Carley and Hill, 2001 
[17]). While standard CAS literature avoids specifying the 
attributes of the agents and their interactions (schemata), we 
show here that specifying these schemata leads to an easily 
understandable framework that encompasses most of 
standard business science, and gives a clear interpretation of 
most standard CAS literature on organizations. It also 
makes it easier to see what the differences are relative to the 
evolution of biological systems (McKelvey, 1982 [9]; 
1994[18]; Maguire et al, 2006 [4]; McKelvey et al., 2013 
[19]). 

 
 The plan of this work is as follows. In Section II, a brief 

overview of some salient literature is given. In section III, 
schemata between agents are formulated. After that, the rest 
of the paper is devoted to how these schemata, although 

admittedly (too) simple to be predictive of all behavior of 
agents, are sufficient to reproduce most standard CAS 
management literature. So, in Section IV, sudden shifts in 
phase space from punctuated equilibrium are discussed. 
Section V focuses on the Edge of Chaos. Section VI focuses 
on how the agent description reduces to many standard 
management science descriptions when certain interactions 
are small compared with others and therefore can be 
neglected. As these standard management descriptions have 
been usually experimentally verified, this provides the 
necessary link with empirical descriptions in a large number 
of limiting cases. Section VII provides an interpretation of 
the Soft System Methodology in an agent view. Section VIII 
does the same for Action Research. Section IX provides 
some conclusions and an outlook. 

II. LITERATURE REVIEW FOR CAS 

 
Especially when the application of CAS to business was 

developed, authors frequently considered the business 
ecology as analogous to evolutionary biological systems (for 
instance Kauffman, 1993 [2]; Bak, 1996 [20]; Anderson, 
1999 [21], Gell-Mann, 1994 [14]). This has often been very 
fruitful. McKelvey (1982, 1994) [9][18], McKelvey et al. 
(2013) [19], and in an unpublished work McKelvey (2002) 
[22] identified many patterns that are common between the 
dynamics of biological systems under influence of 
evolutionary forces and the dynamics of business systems. 
However, the relationship between biological and social 
CAS remains unclear. In this work, we show: 

- Both may be represented and studied via agent-based 
(computational) models of system dynamics (aggregates of 
agents) 

- In general, models need to be sufficiently detailed so 
that they can reproduce the characteristics of dynamics. On 
the other hand, models should focus on essentials and not be 
cluttered with too many details. Davis and Eisenhardt (2007) 
[23] called this the “sweet spot” of model design. We give 
arguments here that it is possible to develop successful 
models of both biological and business dynamics 
independently. Such independent modeling has already been 
done successfully for biology, and it will be done in a 
heuristic way in this work for the kinds of CAS systems in 
human organizations. Such a model for social organizations 
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can reproduce most of business science, and is, therefore, 
empirically valid. A useful beginning is the model developed 
by Carley and Hill (2001) [17]. 

- There is a large similarity between the two models, and 
this explains similarities in evolutionary dynamics, like the 
patterns found by McKelvey (2002) [22]. 

- There are also essential differences between the two 
models, and this explains where the analogies break down. 
Biology is a metaphor, not an explanation for business 
science (McKelvey et al., 2013 [19]). 

  

III.  THE MODEL 

As postulated by an agent-model of CAS that applies to 
most of management science, agents have the following 
attributes—mostly developed early on by Carley et al. (e.g., 
Carley, 1992 [15], 1999 [16], 2002 [24]; Carley and 
Svoboda, 1996 [25]; Carley and Hill, 2001[17]): 

• Needs for food, energy, shelter, and similar 
(equivalent needs for organizations)  

• Need company and bonding mediated by 
connections (attractive force) 

• Need space (privacy, physical room (repellent 
force) 

• Needs are hierarchical, a lower more essential need 
can overcome a higher need, analogous to Maslow’s 
hierarchy.  

• Intentionality (considered also as a need, for the 
ease of discussion here) 

• Agents can (and actually like) to learn (learning = 
behavior change under influence of stimuli on longer time 
scales). 

• Agents cannot have perfect knowledge about other 
agents. There is always interpretation.  

 
Satisfying needs comes with costs. The number of needs 

is countable, possibly (and probably) infinite. Agents in this 
context can be people but also organizations, and every other 
kind of system that is studied in social science. We will show 
that the above needs are sufficient to define a CAS. The 
system shows many characteristics of CAS as discussed in 
the management literature and provides helpful guidance for 
managers in understanding system effects. 

Agents try to do what they perceive as best for them to 
fulfil their needs and survive while taking into account the 
costs to do so, and therefore, make an assessment of their 
needs and situation and try to improve their situation. CAS 
literature calls this measure of how well needs are satisfied 
(fitness), but it is a perception of ‘fitness’ (if fitness is taken 
as defined in biology by ability for survival). Perceived 
fitness is an assessment how well various needs are satisfied 
and in which direction an agent would like to move in order 
to satisfy better the needs and enhance survival or other 
measures of success. This includes an outlook for the future. 
Perceived utility is the gain that can be made in perceived 
fitness (a small extension of or maybe identification with the 
economic term). Utility is a function of the needs.  

  

A technical assumption is based on transitivity of 
choices: If Choice A is preferred over B and also B is 
preferred over C, then A is preferred over C. In this case, 
perceived fitness can be measured on a one-dimensional 
scale, it is a mathematical non-linear function of all 
variables/needs.  

 
Given these assumptions, agents always have a 

perception of a best course of action. This is sufficient to 
define a fitness landscape and a phase space consisting of 
{needs x perceived fitness}. The dynamics of agents are 
determined by their attempts to increase perceived fitness. 
Their interactions lead to a CAS: the dynamics are 
irreducible (cannot be compartmentalized). Agents form 
systems because of the long-range attraction and short-range 
repulsion, which leads to an optimal size with respect to 
costs. An example provides the work by Bettencourt, 2013 
[26] on the size of cities or the work of Krugman, 1996 [27] 
on spatial economy. The schemata also cause the system to 
operate far from equilibrium (Lewin, 1992 [1]; Cramer, 1993 
[13]). The above needs/schemata are insufficient to explain 
all observed dynamics. For instance, for human agents, 
psychological factors (in principle, part of the schemata) are 
not included in the above model. In modern times, dynamics 
between agents are mostly determined by other agents and 
not by a non-human environment (like forces of nature). The 
interaction between agents is now termed co-evolution 
(Kauffman, 1993 [2]). 

 
In a business science context, agents are heterogeneous; 

they can be and usually are different. These differences are 
expressed in that they react differently to their environment 
and to other agents (because of differences in attributes), and 
that therefore they tend to have different interactions. 
Technically, agents have different schemata (Carley, 1992 
[15], 1999 [15]; Carley and Hill, 2001 [17]; Ilgen and Hulin, 
2000 [28]). 

 

IV.  PUNCTUATED EQUILIBRIUM 

Most agents are close to a local peak, but not to a more 
optimal but (usually) more distant global peak (Carley and 
Svoboda, 1996 [25]). Usually, most changes in an agent’s 
environment can be accommodated by making gradual 
moves. Changes in environment can be limited to changes in 
the relative height of peaks. Sometimes peaks disappear or 
new peaks emerge. Such events can have a dramatic 
influence, because disappearance or growth of one peak can 
lead to a domino effect and influence  peaks in the 
neighborhood of those peaks that in turn influence peaks in 
their neighborhood and so on, leading to a major 
configuration (Barabási, 2005 [29]). This can lead to a huge 
change in the fitness landscape for an agent. This shows that 
often changes for an agent can be accommodated slowly, 
close to a dynamic equilibrium, but sometimes the fitness 
landscape, and with that the dynamics of an agent, changes 
tremendously and no slow (adiabatic) change is possible 
anymore. Equilibrium is punctuated by sudden disruptions 
(Bak and Sneppen, 1993 [30]; Romanelli and Tushman, 
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1994 [31]; Bak, 1996 [20]; Gould and Eldredge, 2000 [32]). 
Disruptive technology is an example of this (Andriani and 
Cohen, 2013 [33]). 

V. THE EDGE OF CHAOS 

  
In every assembly of such agents, intuitively, there are 

three regions: not enough meaningful interaction between 
them to speak of a system, enough interaction so that tacit 
and explicit knowledge is exchanged between nodes, and a 
region in which too many interactions make the system 
uncontrollable and overreacting (Langton, 1990 [34]; 
Kauffman and Johnson, 1991 [35]; Lewin, 1992 [1]; Brown 
and Eisenhardt, 1998 [36]; Pascale, Millemann, and Gioja, 
1999 [37]). The transition between “enough interaction” and 
“too much” is metaphorically called the edge of chaos. 
Although in certain mathematical models in biology the 
uncontrollable region is chaotic in the mathematical sense, 
here the dynamics is not predictable enough to make such 
general mathematical statements as the existence and size of 
Lyapunov coefficients (Montroll and Badger, 1974 [38]). 

  
In organizations, overly connected regions of the CAS 

that have too few links with their environment are called 
silos (LaBonte, 2001 [39]; Diamond, Stein, and Allcorn, 
2002 [40]; Dell, 2005 [41]). They are a sad consequence of 
the heterogeneity of agents, which in good cases makes the 
system more adaptive.  If agents were homogeneous, exactly 
similar, each agent would have the same type of interactions 
with other agents, and the phase diagram would still have 
symmetry breaking, but not on such a large scale. It would 
be homogenous throughout each of the three regions. 
Therefore, in an organization the three-region model is 
simplistic. Regions of more and less connections are 
scattered all over the organization (often department-wise, or 
otherwise as informal groups, see above for arguments how 
such more or less stable subsystems diminish costs). It does 
not help that because of fractality (i.e., self-similarity), these 
subsystems have their own edge of chaos (Schroeder, 1991 
[42]). A silo is an uncontrollable region where link inside 
link density is too high from the point of view of 
controllability by the enveloping organization. Intuitively, it 
is similar to a type of attractor (fixed point, limit cycle, limit 
torus, strange attractor, not necessarily chaotic).   

VI.  LINKS WITH KNOWN MANAGEMENT  

SCIENCE 

The agent model given here reproduces a large number of 
disparate management fields of study. It reproduces most of 
the standard CAS literature. It deviates where the 
assumptions are different, for instance Stacey’s (2011) [43] 
theory of responsive processes stresses very different 
interactions between agents (different schemata). This makes 
the scope of applicability of Stacey’s theories very different. 
In fact, there is increasing evidence that various kinds of 
both static and dynamic aspects of organizations are self-
similar from small to large to environmental scales, Batty 
and Longley (2004) [44], Newman (2005) [45], Andriani and 

McKelvey, (2007 [46], 2009 [47]), McKelvey and Salmador 
(2011) [48], and McKelvey, Lichtenstein and Andriani 
(2013) [49] offer 200+ examples of how the many variables 
characterizing organizations result in fractal (i.e., Pareto long 
tailed rather than normal) distributions.  

 

A. The agent in its environment and misalignment issues: 
static descriptions 

 
Organizational CASs are fractal systems, they exhibit 

self-similarity in their dynamics, and because of this, similar 
social structures arise at various sizes (Stanley et al., 1996 
[50]; Solé, 2001 [51]; Andriani and McKelvey, 2007 [46], 
2009 [47]). Agents are part of many groups of different sizes. 
All these groups have their own perception of fitness. These 
perceptions are in general not aligned. The result is that an 
agent in a group may feel misalignment up to a certain 
degree, between its own perception and the perceptions of 
fitness (mission, goal, purpose) of the group to which it 
belongs. Examples: 

Resistance to change: An agent’s perception of its own 
fitness clashes with the perception of the fitness of a group it 
belongs to. This is usually its employer or boss, but can be a 
religious or political or other organization.  

Principal Agent Problem: Aided by asymmetric 
information, perception of fitness of a C-level director is 
misaligned with the perception of fitness of the owners of the 
firm (who are after maximization of shareholder profit). 
Note: The existence of asymmetric information comes from 
the postulate in the schemata that no objective knowledge is 
possible. 

Turnover: an agent feels so much misalignment that it is 
leaving its group (examples are in employment, marriage, 
club membership, etc.) 

Cognitive dissonance: An agent tries to reconcile 
misalignment between its own perception of fitness with the 
group’s perception of fitness (Festinger, 1947 [53]). Values 
held by agents can be understood as the agent’s ideas about 
best direction to go, so these values are part of utility in this 
scheme. 

Ajzen’s (2011) theory of planned behavior [52] 
recognizes environment, i.e., the interactions that one agent 
feels from other ones, via the subjective norm and shows that 
this influences the dynamics (intentions leading to 
behaviors). 

Marketing: People do not always go for the least 
expensive purchase, because buying upscale signals to others 
their ability to survive (analogous to the potlatch). Giving of 
presents serves the same purpose. 

Global Controller: Holland, 1988 [54] notes that in 
biological CASs there is no global controller, i.e., no paid 
boss – even the queen bee doesn’t get paid to tell worker 
bees what to do. However, all organizations have a CEO 
who is paid to take charge, take control, etc., and lower-level 
managers who are also paid to be in charge. This asymmetry 
between agents is probably the most fundamental difference 
between biological species and herds vs. human 
organizations.  
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Theories of leadership: Complex Leadership Theory 
(CLT). Continuing where Holland (1988) [54] left off, Uhl-
Bien et al. (2007) [55] point to the unavoidable consequences 
of fractality and heterogeneity. In every group, (subsystem), 
leaders and followers will emerge, because agents are 
heterogeneous and interactions are asymmetric. Some groups 
are labelled “formal” and others “informal” but that is pure 
convention. Leaders in formal group are called 
administrative leaders and function differently towards the 
environment and are usually recognized by it. Leadership in 
informal groups (“adaptive leadership”) is often not 
recognized outside the group. In this framework, it becomes 
very hard to evaluate objectively people’s contributions. 
Leaders of one group can enhance their fitness and the 
fitness of their own group sometimes by co-opting the 
leaders that spontaneously emerged from a different group. 
This process is called enabling leadership.   

Leadership Exchange Theory: All leadership occurs in 
the space between agents. Theories like Leadership 
Exchange Theory amount to a more precise specification of 
the schemata. 

Resource-based view of the firm applies to all groups 
(systems). There is always an advantage in pooling resources 
from the postulate of bonding. 

Test particle approach: Introduce one agent into an 
organization – i.e., an agent is hired. In a first approximation, 
the agent’s dynamics starts to be determined by the 
interaction of its own perception of fitness and the influence 
of all the other agents. This influence of all the other agents 
on a single agent is called organizational culture. In a second 
approximation, one can “calculate” the influence that this 
particular agent’s new dynamics (which includes its own 
previous learning, experience and other attributes) is having 
on the organization. Then one can “calculate” again the 
influence of the new organizational dynamics on the person, 
and so finally arrive at a self-consistent description (in 
theory, not in practice). The second approximation, the 
influence of the agent on the culture of its group, is 
alternatively called leadership, art, volunteerism, and any 
other way agent influences on a system to which it belongs 
are named. 

 
All the above aspects have in common that they mirror 

standard areas of business science. However, in the 
conventional treatment these normally disparate areas are not 
put into one unified framework. This shows that the 
schemata used in this description are powerful enough 
(Cramer, 1993 [13]) to reproduce standard theory (or 
alternatively, if you want that interpretation, that many 
management theories have very simple assumptions about 
the interactions of the agents) (Williamson, 1975 [56]; Read, 
1990 [57]). However, in the above applications they do not 
really test the dynamics of the system. 

 

B. The agent in its environment: dynamic descriptions 

 
Dynamic capabilities: Many benefits of groups result 

from pooled resources. This is the resource-based view of the 

firm (Barney, 1991 [58]; Barney, Wright, and Ketchen, 2001 
[59]) (which applies in this view to every CAS, as there is no 
fundamental difference between a firm and any other CAS). 
So, this theory is really the resource-based view of the group 
or system, and results from the nature of the fundamental 
interactions between agents. When it is necessary for the 
CAS to increase its fitness because of external events 
(threats, opportunities), often its resources need to be re-
configured. This will need to be done in different ways 
depending on the amount of turbulence and change. 
Eisenhardt and Martin, 2000 [60], discern high-velocity and 
medium-low velocity markets. Under high turbulence, many 
tools, like standard strategic forecasts, lose their value. 

Strategy: Depends on the ability to make a moderately 
successful prediction of the future of the group where one 
belongs. Events that can be classified as “punctuated 
equilibrium” or “black swans” (Taleb, 2007 [61]) are 
inherently nearly impossible to predict accurately (“black 
swans” result from the fat tails of power laws; the 
descriptions of the domino theory of punctuated equilibrium 
and power laws are probably related). Under moderate 
turbulence, some prediction might be possible (Eisenhardt 
and Martin, 19[60]. In the transition from low turbulence to 
high turbulence regions, a prediction about future changes in 
the fitness landscape, and therefore strategy, becomes more 
and more unreliable (Holland, 1995 [3]; Krugman, 1996 
[27]; Dooley and Van de Ven, 1999 [62]; Sornette, 2003 
[63]; De Vany, 2004 [64]; Sornette et al., 2004 [65]; Baum 
and McKelvey, 2006 [66]). One of the CAS alternatives is to 
strengthen connections and upgrade the knowledge of the 
agents (change their schemata by learning), which moves the 
organizational culture of the company closer to the “edge of 
chaos” (Carley, 1999 [16]; Pascale, Millemann, and Gioja, 
1999 [37]). The organization is more adaptive and better 
learning at this point, and this gives it more of a chance to 
survive as a group (Carley and Hill, 2001[17]). If it fails to 
do this, its constituent agents will move on to different 
groups (given enough employment possibilities) and add 
variety to their new group, as discussed above. 

Some economic models rely on heterogeneity of agents 
and mirror such conclusions, like the work by Melitz (2003) 
[67]. 

  
In the foregoing description, organizational failure can be 

beneficial because it releases agents to other groups that are 
hopefully better equipped at this juncture in time. However, 
it follows also that each organization fails because of some 
specific circumstances in its ecology (e.g., Blackberry) and 
(in general) not from some type of generalized low capacity 
for success (e.g., UK public rail system; Cyprus banks). 
Survival does not signify a generalized better “health”. A 
bank that survived a financial crisis can still be defenseless 
against fraud. A software company that was very successful 
in developing operating systems for PCs might still stumble 
in with tablets or smartphones (e.g., Blackberry and Nokia). 
There is a large path dependency here. The amount of 
control that a CAS has in determining its own future when 
multiplicative interaction (connectivity) effects instigate 
extreme events is much more problematic, if not actually 
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reduced (Anderson, 2006 [68]; McKelvey and Andriani, 
2010 [69]; Andriani and McKelvey, 2011 [70]). 

 
In biology, there is no control at all. Survival is random 

from accidental ability to survive certain threats. The control 
among human agents comes from their intentionality (we do 
not want to enter into a discussion if this is real or just an 
illusion, it makes no difference for this discussion.) Jack 
Welch, former CEO of GE, is a good example of CEO who 
created tensions to motivate managers and employees to seek 
better solutions by changing their objectives and learning 
from other executives and/or employees (often newly 
acquired by “M&A” activities), along with various 
additional complexity elements so as to get employees, 
departments, divisions, and companies operation closer to 
the edge of chaos (McKelvey, 2010 [71]). 

 
Computational Simulation [agent-based computational 

models (ABMs)]: ABMs allow computational simulations 
when details of the schemata are sufficiently specified. Many 
models that can be analytically analyzed have chaotic 
regions [caused by too many connected variables (degrees of 
freedom)] in the phase space—like the “melting zone” (the 
Region of Emergent new Order between the Edge of Order 
and the Edge of Chaos) in Kauffman’s (1993) NK-model [2]. 
Mathematical optimization models work well below the 
Edge of Order (in the Region of Order). However, 
instabilities are expected once the system being modeled tips 
over the Edge of Chaos.(Canuto et al., 2005 [72]; Bruun, 
2006 [73]). Averaging over coordinates of the phase space 
that are judged irrelevant (coarse graining) reduces the 
degrees of freedom and makes optimization models more 
feasible. Incorporating feedback mechanisms (intermediate 
changes in the schemata made by the agents), and other 
smoothing mechanisms can handle numerical instabilities 
that are otherwise unavoidable in chaotic regions, which is to 
say, get the system out of chaos and back into the Region of 
Emergence.  

In realistic ABM simulations, one would also attach 
probabilities to some of the options that an agent has, 
because one could not be sure what an agent would do, given 
the imperfect knowledge an agent has about other agents. 
This would also require an ensemble-averaging by making 
many simulation runs (usually somewhere between 250 and 
10,000 runs of the same ABM design to get the average). 
ABM simulations allow the exploration of interesting areas 
of phase spaces that current management theories do not 
probe. For instance, does cognitive dissonance play a role in 
principal-agent issues? ABM simulations make it possible to 
formulate hypotheses that can be empirically tested and go 
beyond the over-simplified math-based optimization models 
that characterize standard management science by making 
less rigorous simplifications. 

 
 
 

VII.  CHECKLAND’S SOFT SYSTEM 

METHODOLOGY 

 
The Soft System Methodology (SSM) of Checkland 

(2000) [74] and co-workers can be understood as an attempt 
to transfer diagnostic tools from “hard systems”  as much as 
possible to “soft systems”. Hard systems are those that can 
be observed from the outside and the dynamics measured 
with arbitrary precision limited by technology or physics. 
Hard systems are diagnosed with instruments via 
observations. Such observations provide a snapshot in time 
about the system. Experiments can probe its dynamics by 
disturbing the system.   

We assume that there is one (or in any case very few) 
observers in an organizational CAS who want to know 
system-wide properties. Most agents will be satisfied with 
local observations because their dynamics are more 
determined by these. Others do not have the access or the 
tools, or do not have the impetus. Managers, who are the 
administrative leaders in the formal organizations, usually 
make such more system-wide observations because they 
need to confront “messy” or “wicked” problems that do not 
have a “best” solution. At best, managers can develop 
“approximate” solutions, which may be improved over 
time—usually in changing environments in which no single, 
permanent solution is possible, relevant or desirable. 

Some of their diagnostic tools are: 
- Agents’ own observations of the system dynamics: This 

entails a shift to an interpretive stance, as the observing agent 
has usually no means to validate its observations in an 
objective way. (This relates to the postulate in the schemata 
that no objective knowledge is possible for an agent about 
another agent) 

- Possibly objective observations like business statistics, 
stored computer records, and so on. These data usually 
require interpretation as well. 

- Ask other agents for their observations. The Soft 
Systems literature calls this “collecting worldviews”. 
Diverging worldviews are a hallmark of a messy problem.  
Such messy problems are typical for open systems, because 
these provide the adaptive tensions that create such “messy” 
problems. 

 
 In principle, the Checkland’s soft tools could be applied 

to a larger organization, but in practice, they do not scale up 
sufficiently—they are overwhelmed by too many degrees of 
freedom. In a small subsystem, however, Checkland’s SSM 
approach may offer different worldviews than can shed light 
on smaller scale messy problems.  

The insider/outsider problem boils down to the 
impossibility for the manager-agent to hold the two 
measurements resulting from using different diagnostic tools 
in its mind at the same time. It is not fruitful to consider this 
as a deep epistemological problem as is sometimes done in 
the literature. It is just observing the system from two 
different positions. There is no mystery in that the two views 
do not coalesce and that looking at a system from two 
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different points of view with different diagnostic tools does 
not give a consistent description.  

The process of collecting worldviews and possibly get to 
some convergence among stakeholders, amount to a 
snapshot and does not lead to new knowledge about the 
dynamic properties of the system. However, it is more 
cognizant of systemic issues than most other business and 
organizational science. On the one hand, an ABM allows the 
mixing of different views in different contexts to search for 
the best-at-the-time perspective. On the other, the ABM 
allows a manager to search for the parts of systemic issues 
that are essentially the same across the system vs. those that 
are demonstrably different. 

 

VIII.  ACTION RESEARCH 

 
The only way to learn something about the dynamics of a 

system for which there is no mathematical model is to look 
at the effects under disturbances. Such disturbances can 
come from the environment. Much research has been done in 
observing shocks to systems; most case studies fall in this 
category. Only via experiments can one alter the 
disturbances affecting an organization. But we can’t put 
organizations into laboratories. ABMs, however, allow to 
simulate organizational phenomena and then conduct 
simulated experiments. 

Alternatively, manager-agents can sometimes apply more 
controlled shocks themselves. This provides an interpretation 
in CAS terms of the work of Lewin (1946) [75]. Applying 
shocks and studying scientifically the resulting changed 
dynamics is, in this interpretation, Action Research. 
Managers can apply Actions themselves, but it makes sense 
to first learn as much of the system as possible. One tool is 
SSM.The problem with SSM is that the static snapshot is 
little predictive about the dynamics, and so can lead to 
unintended and unforeseen consequences. But again, doing 
this in real time with real people could have negative 
consequences. Safer to use an ABM. 

 
This provides a useful demarcation for what should be 

called Action Research and what not. Action Research is the 
scientific study of the dynamical properties of systems by 
applying shocks in a controlled way and studying the results 
in an accepted (quantitative or qualitative) way. This 
criterion, compatible with Checkland’s, is very different 
from Coghlan’s [76], for instance. One of the most important 
points of difference is that our and Checkland’s research see 
CAS and Action Research as (descriptive) science and not as 
a tool for emancipation or other ethically driven goals. Such 
goals are possible and compatible, but they are not part of a 
scientific description. As an alternative for direct 
observation, this one can do with ABMs. 

 
IX. CONCLUSION AND OUTLOOK 
 
We have shown that it is possible to give a transparent 

account of CAS with human agents as the indivisible 
smallest elements that account for most of the characteristics 

of organizations as they are discussed in management 
science. This clarifies the relationship between biological 
CAS systems and organizational ones.   

Similarities as well as differences between the models are 
very important.  

- Business agents are inherently less homogeneous than 
the agents in biology, making fractality much more 
prominent in business systems. Business agents are 
constantly adjusting their behavior over a much larger range 
than in biology, where phenotype behavior is generally set 
by genotype. Consequently: 

- Dynamics is less predictable in business system because 
of the many degrees of freedom. ABMs become the more 
relevant method since they offer modeling options and 
results across a much broader range of interaction effects and 
nonlinear dynamics resulting from connectivities among 
some number of heterogeneous agents. Math models cannot 
be successfully applied to such phenomena. 

- Timescales are much smaller. Biological evolution 
plays out over hundreds of generations. Businesses change at 
a scale within the lifetime of many organizations, and 
business adapt. This is possible because of much faster 
learning in human than in most biological systems, where 
most evolutionary change is due more to the genetic 
structure of offspring than the learning abilities of living 
phenotypes (Darwin, 1859 [77]), though many biologists 
now place some emphasis on “organic learning” (i.e., 
learning and change during a phenotype’s lifetime (Baldwin, 
1896 [78]; Simpson, 1953 [79]; Crispo, 2007 [80]; Badyaev, 
2009 [81]; Kauffman, 2013 [82]; Scarfe, 2013 [83]). 
Survival in changing environments is a function of learning 
quickly as needed in addition to surviving because of 
genetic, structural or endemic advantage. 
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