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. INTRODUCTION
The existing literature about organizations seeouhh a

Complex Adaptive Systems (CAS) lens (Lewin, 199P [1

Kauffman, 1993 [2]; Holland, 1995 [3]; Maguire ét, 2006
[4]) usually borrows for a discussion of system ganies
from biology, mainly from evolutionary dynamics (lnd,
1975 [5]; Mandelbrot, 1982 [6]; Nicolis and Prigngi 1989
[7]; Kauffman, 1993 [2]; Aldrich, 1999 [8]; McKelye
1982 [9]; Nelson and Winter, 1982 [10]) and fronygics
(Prigogine, 1955 [11]; Kaye, 1993 [12]; Cramer, 3923];
Gell-Mann, 1994 [14]). Not only does this make ttie
literature extremely hard to read for manageriareists
and practitioners, it also obscures that CAS inad@cience
have essential differences with biological systeis.show
here that organizational systems (businesses, it
exclusively) can be easily interpreted as a catbectof
agents (Carley, 1992 [15], 1999 [16]; Carley and, 2D0O1
[17]). While standard CAS literature avoids speicifythe
attributes of the agents and their interactionbgstata), we
show here that specifying these schemata leads &asily
understandable framework that encompasses most
standard business science, and gives a clear lietatipn of
most standard CAS literature on organizations. I#o a
makes it easier to see what the differences aagivrelto the
evolution of biological systems (McKelvey, 1982 ;[9]
1994[18]; Maguire et al, 2006 [4]; McKelvey et a2013
[19)).

The plan of this work is as follows. In Sectiondlbrief
overview of some salient literature is given. Irctem 1,
schemata between agents are formulated. After tthatrest
of the paper is devoted to how these schemataguajth
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admittedly (too) simple to be predictive of all lsfor of
agents, are sufficient to reproduce most standais C
management literature. So, in Section IV, suddefissim
phase space from punctuated equilibrium are disduss
Section V focuses on the Edge of Chaos. Sectiofodlses
on how the agent description reduces to many stdnda
management science descriptions when certain atiena

are small compared with others and therefore can be

neglected. As these standard management descsigtere
been usually experimentally verified, this providdse
necessary link with empirical descriptions in ag&anumber
of limiting cases. Section VIl provides an intetpten of
the Soft System Methodology in an agent view. $actilll
does the same for Action Research. Section IX pesvi
some conclusions and an outlook.

IIl.  LITERATUREREVIEW FORCAS

Especially when the application of CAS to business
developed, authors frequently considered the bssine
ecology as analogous to evolutionary biologicatesys (for
instance Kauffman, 1993 [2]; Bak, 1996 [20]; Anders
1999 [21], Gell-Mann, 1994 [14]). This has oftereberery
fruitful. McKelvey (1982, 1994) [9][18], McKelvey teal.
(2013) [19], and in an unpublished work McKelvey(@2)

N[22] identified many patterns that are common betwéhe

dynamics of biological systems under influence of
evolutionary forces and the dynamics of businestesys.
However, the relationship between biological andaiado
CAS remains unclear. In this work, we show:

- Both may be represented and studied via agewidbas

&omputational) models of system dynamics (aggesgaf

agents)

- In general, models need to be sufficiently dethito
that they can reproduce the characteristics of mhjecga On
the other hand, models should focus on essentidisiat be
cluttered with too many details. Davis and Eisedh&2007)
[23] called this the “sweet spot” of model desiyie give
arguments here that it is possible to develop ssfak
models of both biological and business dynamics
independently. Such independent modeling has ajrbadn
done successfully for biology, and it will be dome a
heuristic way in this work for the kinds of CAS &S in
human organizations. Such a model for social omgdioins
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can reproduce most of business science, and isgfohe,
empirically valid. A useful beginning is the modigveloped
by Carley and Hill (2001) [17].

- There is a large similarity between the two medahd
this explains similarities in evolutionary dynamidi&e the
patterns found by McKelvey (2002) [22].

- There are also essential differences betweenvtbe
models, and this explains where the analogies bdeakn.
Biology is a metaphor, not an explanation for besi
science (McKelvey et al., 2013 [19]).

. THEMODEL

As postulated by an agent-model of CAS that appbes
most of management science, agents have the falipwi
attributes—mostly developed early on by Carleyle{eag.,

A technical assumption is based on transitivity of
choices: If Choice A is preferred over B and alsoisB
preferred over C, then A is preferred over C. lis ttase,
perceived fithess can be measured on a one-dinmatsio
scale, it is a mathematical non-linear function aif
variables/needs.

Given these assumptions, agents always have a
perception of a best course of action. This isiceffit to
define a fitness landscape and a phase space toonsié
{needs x perceived fithess}. The dynamics of agearts
determined by their attempts to increase percefitadss.
Their interactions lead to a CAS: the dynamics are
irreducible (cannot be compartmentalized). Agerasmf
systems because of the long-range attraction aod-inge
repulsion, which leads to an optimal size with extpto

Carley, 1992 [15], 1999 [16], 2002 [24]; Carley andcosts. An example provides the work by Bettencaz0t,3

Svoboda, 1996 [25]; Carley and Hill, 2001[17]):
. Needs for food, energy, shelter,
(equivalent needs for organizations)
. Need
connections (attractive force)

[26] on the size of cities or the work of Krugmd®96 [27]

and similaron spatial economy. The schemata also cause thensys

operate far from equilibrium (Lewin, 1992 [1]; Cram1993

company and bonding mediated by[13]). The above needs/schemata are insufficieréxfaain

all observed dynamics. For instance, for human tagen

. Need space (privacy, physical room (repellentdsychological factors (in principle, part of thehemata) are

force)

not included in the above model. In modern timgsathics

+  Needs are hierarchical, a lower more essentiad ne between agents are mostly determined by other sigert
can overcome a higher need, analogous to Maslow80t by a non-human environment (like forces of regturhe

hierarchy.

interaction between agents is now termed co-ewnluti

« Intentionality (considered also as a need, fa th (Kauffman, 1993 [2]).

ease of discussion here)

* Agents can (and actually like) to learn (learning
behavior change under influence of stimuli on lontyme
scales).

In a business science context, agents are heterogen
they can be and usually are different. These diffees are
expressed in that they react differently to theivienment

«  Agents cannot have perfect knowledge about otheand to other agents (because of differences iibatis), and

agents. There is always interpretation.

Satisfying needs comes with costs. The number edsie
is countable, possibly (and probably) infinite. Agein this
context can be people but also organizations, aed/ether
kind of system that is studied in social science. Will show
that the above needs are sufficient to define a .CH®
system shows many characteristics of CAS as disduss
the management literature and provides helpful anadd for
managers in understanding system effects.

Agents try to do what they perceive as best fomthe
fulfil their needs and survive while taking intocacnt the
costs to do so, and therefore, make an assessmhémeio
needs and situation and try to improve their sibuatCAS
literature calls this measure of how well needs satisfied
(fitness), but it is a perception of ‘fitness’ {ifness is taken
as defined in biology by ability for survival). Reived
fitness is an assessment how well various needsagisdied
and in which direction an agent would like to mawerder
to satisfy better the needs and enhance survivabtioer
measures of success. This includes an outlookéfuture.
Perceived utility is the gain that can be made enceived
fitness (a small extension of or maybe identifiwatwith the
economic term). Utility is a function of the needs.
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that therefore they tend to have different intéomst
Technically, agents have different schemata (Carl&p2
[15], 1999 [15]; Carley and Hill, 2001 [17]; llgeand Hulin,
2000 [28]).

IV. PUNCTUATEDEQUILIBRIUM

Most agents are close to a local peak, but not e
optimal but (usually) more distant global peak (€&arand
Svoboda, 1996 [25]). Usually, most changes in agngg
environment can be accommodated by making gradual
moves. Changes in environment can be limited togbs in
the relative height of peaks. Sometimes peaks pésapor
new peaks emerge. Such events can have a dramatic
influence, because disappearance or growth of ea& pan
lead to a domino effect and influence peaks in the
neighborhood of those peaks that in turn influepeaks in
their neighborhood and so on, leading to a major
configuration (Barabési, 2005 [29]). This can lead huge
change in the fithess landscape for an agent. skiags that
often changes for an agent can be accommodatedyslow
close to a dynamic equilibrium, but sometimes tiee$s
landscape, and with that the dynamics of an agdainges
tremendously and no slow (adiabatic) change is ipless
anymore. Equilibrium is punctuated by sudden disong
(Bak and Sneppen, 1993 [30]; Romanelli and Tushman,
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1994 [31]; Bak, 1996 [20]; Gould and Eldredge, 2(82)).
Disruptive technology is an example of this (Andriand
Cohen, 2013 [33]).

V. THEEDGEOFCHAOS

In every assembly of such agents, intuitively, ¢hare
three regions: not enough meaningful interactiotwben
them to speak of a system, enough interaction abt#cit
and explicit knowledge is exchanged between noales,a
region in which too many interactions make the eyst

McKelvey, (2007 [46], 2009 [47]), McKelvey and Sador
(2011) [48], and McKelvey, Lichtenstein and Andiian
(2013) [49] offer 200+ examples of how the manyialsles
characterizing organizations result in fractal. (iRareto long
tailed rather than normal) distributions.

A. Theagent inits environment and misalignment issues:
static descriptions

Organizational CASs are fractal systems, they éihib

uncontrollable and overreacting (Langton, 1990 ;[34] self-similarity in their dynamics, and becauseto$ tsimilar

Kauffman and Johnson, 1991 [35]; Lewin, 1992 [lipBn

and Eisenhardt, 1998 [36]; Pascale, Millemann, @mnja,

1999 [37]). The transition between “enough intdoactand

“too much” is metaphorically called the edge of aha
Although in certain mathematical models in biolothe

uncontrollable region is chaotic in the matheméatsense,
here the dynamics is not predictable enough to nsaich

general mathematical statements as the existentsizs of
Lyapunov coefficients (Montroll and Badger, 1978])3

In organizations, overly connected regions of th&SC
that have too few links with their environment aaled
silos (LaBonte, 2001 [39]; Diamond, Stein, and il
2002 [40]; Dell, 2005 [41]). They are a sad conseme of
the heterogeneity of agents, which in good casdemthe
system more adaptive. If agents were homogeneaastly
similar, each agent would have the same type efagtions
with other agents, and the phase diagram woull etite
symmetry breaking, but not on such a large scaleiould

social structures arise at various sizes (Stanieal.£1996
[50]; Solé, 2001 [51]; Andriani and McKelvey, 20046],
2009 [47]). Agents are part of many groups of défe sizes.
All these groups have their own perception of merhese
perceptions are in general not aligned. The rasuthat an
agent in a group may feel misalignment up to aagert
degree, between its own perception and the pecrepbf
fitness (mission, goal, purpose) of the group tactvhit
belongs. Examples:

Resistance to change: An agent’'s perception obvis
fithess clashes with the perception of the fitrefss group it
belongs to. This is usually its employer or bosg,dan be a
religious or political or other organization.

Principal Agent Problem: Aided by asymmetric
information, perception of fitness of a C-level atitor is
misaligned with the perception of fitness of thenevs of the
firm (who are after maximization of shareholder fjijyo
Note: The existence of asymmetric information corfines
the postulate in the schemata that no objectivevladge is

be homogenous throughout each of the three regionBOssible.

Therefore, in an organization the three-region rhade

Turnover: an agent feels so much misalignmentithat

simplistic. Regions of more and less connections arleaving its group (examples are in employment, iager,

scattered all over the organization (often depantragse, or
otherwise as informal groups, see above for argtsmieow
such more or less stable subsystems diminish cdsties
not help that because of fractality (i.e., selfitanity), these
subsystems have their own edge of chaos (Schrotget,
[42]). A silo is an uncontrollable region wherekimside
link density is too high from the point of view of
controllability by the enveloping organization. ditively, it

is similar to a type of attractor (fixed point, lincycle, limit
torus, strange attractor, not necessarily chaotic).

VI.  LINKS WITH KNOWN MANAGEMENT

SCIENCE

The agent model given here reproduces a large nuoibe
disparate management fields of study. It reproducest of
the standard CAS literature. It
assumptions are different, for instance Staceyd 12 [43]
theory of responsive processes stresses very ddliffer
interactions between agents (different schemata} makes
the scope of applicability of Stacey’s theoriesydifferent.

In fact, there is increasing evidence that vari@usls of
both static and dynamic aspects of organizatiomes saif-
similar from small to large to environmental scalBsitty
and Longley (2004) [44], Newman (2005) [45], Andiand
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deviates where th

club membership, etc.)

Cognitive dissonance: An agent tries to reconcile
misalignment between its own perception of fitneith the
group’s perception of fitness (Festinger, 1947 J58phlues
held by agents can be understood as the agentis algout
best direction to go, so these values are partilitf/un this
scheme.

Ajzen’s (2011) theory of planned behavior [52]
recognizes environment, i.e., the interactions trat agent
feels from other ones, via the subjective norm stravs that
this influences the dynamics (intentions leading
behaviors).

Marketing: People do not always go for the least
expensive purchase, because buying upscale signatisers
their ability to survive (analogous to the potlgtdBiving of

to

é)resents serves the same purpose.

Global Controller: Holland, 1988 [54] notes that in
biological CASs there is no global controller, ,i.eo paid
boss — even the queen bee doesn't get paid tavteker
bees what to do. However, all organizations haveED
who is paid to take charge, take control, etc., langr-level
managers who are also paid to be in charge. Thimmastry
between agents is probably the most fundamenti@rdifce
between biological species and herds vs. human
organizations.
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Theories of leadership: Complex Leadership Theonyirm (Barney, 1991 [58]; Barney, Wright, and Ketoh2001
(CLT). Continuing where Holland (1988) [54] leftfofJhl-  [59]) (which applies in this view to every CAS, thsre is no
Bien et al. (2007) [55] point to the unavoidablesaquences fundamental difference between a firm and any o@%8).
of fractality and heterogeneity. In every groupb@ystem), So, this theory is really the resource-based vitthe group
leaders and followers will emerge, because agemts aor system, and results from the nature of the foeddal
heterogeneous and interactions are asymmetric. §omo@s  interactions between agents. When it is necessanthie
are labelled “formal” and others “informal” but this pure CAS to increase its fitness because of externanteve
convention. Leaders in formal group are called(threats, opportunities), often its resources neede re-
administrative leaders and function differently &ods the configured. This will need to be done in differamays
environment and are usually recognized by it. Lestdp in  depending on the amount of turbulence and change.
informal groups (“adaptive leadership”) is often tno Eisenhardt and Martin, 2000 [60], discern high-egloand
recognized outside the group. In this frameworketomes medium-low velocity markets. Under high turbulencgny
very hard to evaluate objectively people’s contiitms. tools, like standard strategic forecasts, lose thadue.
Leaders of one group can enhance their fitness thad Strategy: Depends on the ability to make a modigrate
fitness of their own group sometimes by co-optitg t successful prediction of the future of the groupemhone
leaders that spontaneously emerged from a diffegemip. belongs. Events that can be classified as “punstiuat
This process is called enabling leadership. equilibrium” or “black swans” (Taleb, 2007 [61]) ear

Leadership Exchange Theory: All leadership occuars iinherently nearly impossible to predict accuratélylack
the space between agents. Theories like Leadershgwans” result from the fat tails of power laws; the
Exchange Theory amount to a more precise spedificaf  descriptions of the domino theory of punctuatedildsyium
the schemata. and power laws are probably related). Under moderat

Resource-based view of the firm applies to all geou turbulence, some prediction might be possible (ttiaedt
(systems). There is always an advantage in pooisgurces and Martin, 19[60]. In the transition from low twibnce to
from the postulate of bonding. high turbulence regions, a prediction about futthranges in

Test particle approach: Introduce one agent into athe fitness landscape, and therefore strategy,nbesanore
organization — i.e., an agent is hired. In a fygbroximation, and more unreliable (Holland, 1995 [3]; Krugman,989
the agent's dynamics starts to be determined by thR7]; Dooley and Van de Ven, 1999 [62]; Sornett®02
interaction of its own perception of fithess and thfluence [63]; De Vany, 2004 [64]; Sornette et al., 2004][@aum
of all the other agents. This influence of all tther agents and McKelvey, 2006 [66]). One of the CAS alternasivis to
on a single agent is called organizational cultlirea second strengthen connections and upgrade the knowledgdeof
approximation, one can “calculate” the influencattithis  agents (change their schemata by learning), whimhesithe
particular agent’s new dynamics (which includes atsn  organizational culture of the company closer to“#dge of
previous learning, experience and other attributeslaving chaos” (Carley, 1999 [16]; Pascale, Millemann, &idja,
on the organization. Then one can “calculate” aghiem 1999 [37]). The organization is more adaptive awedtdn
influence of the new organizational dynamics ongheson, learning at this point, and this gives it more oftence to
and so finally arrive at a self-consistent deswipt(in  survive as a group (Carley and Hill, 2001[17])itIfails to
theory, not in practice). The second approximatithe do this, its constituent agents will move on tofatiént
influence of the agent on the culture of its group, groups (given enough employment possibilities) auldl
alternatively called_leadership, art, volunteerisaimd any variety to their new group, as discussed above.

other way agent influences on a system to whidieibngs Some economic models rely on heterogeneity of agent
are named. and mirror such conclusions, like the work by Me(i2003)
[67].

All the above aspects have in common that theyamirr
standard areas of business science. However, in the In the foregoing description, organizational fadlwan be
conventional treatment these normally disparatesaage not beneficial because it releases agents to othepgrthat are
put into one unified framework. This shows that thehopefully better equipped at this juncture in tirawever,
schemata used in this description are powerful gimou it follows also that each organization fails beeao$ some
(Cramer, 1993 [13]) to reproduce standard theory (ospecific circumstances in its ecology (e.g., Blazky) and
alternatively, if you want that interpretation, themany (in general) not from some type of generalized tapacity
management theories have very simple assumptioost ab for success (e.g., UK public rail system; Cyprusiksy.
the interactions of the agents) (Williamson, 1956]] Read, Survival does not signify a generalized better Itmga A
1990 [57]). However, in the above applications theynot  bank that survived a financial crisis can still defenseless
really test the dynamics of the system. against fraud. A software company that was verygasssful
in developing operating systems for PCs might stilimble
in with tablets or smartphones (e.g., Blackberrg Biokia).
There is a large path dependency here. The amdunt o
control that a CAS has in determining its own fatuvhen

Dynamic capabilities: Many benefits of groups resul multiplicative interaction (connectivity) effectsnstigate
from pooled resources. This is the resource-bassdof the  extreme events is much more problematic, if notialbt

B. Theagent in itsenvironment: dynamic descriptions
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reduced (Anderson, 2006 [68]; McKelvey and Andriani VIl. CHECKLAND'S SOFTSYSTEM
2010 [69]; Andriani and McKelvey, 2011 [70]). METHODOLOGY
In biology, there is no control at all. Survivalrendom The Soft System Methodology (SSM) of Checkland

from accidental ability to survive certain threafbe control
among human agents comes from their intentionélity do
not want to enter into a discussion if this is realjust an
illusion, it makes no difference for this discuss)oJack
Welch, former CEO of GE, is a good example of CE@w
created tensions to motivate managers and empléyesesk
better solutions by changing their objectives agdrring
from other executives and/or employees (often newl
acquired by “M&A” activities), along with various
additional complexity elements so as to get emmsye
departments, divisions, and companies operatiosecl®o
the edge of chaos (McKelvey, 2010 [71]).

(2000) [74] and co-workers can be understood aastt@mpt
to transfer diagnostic tools from “hard systems' nauch as
possible to “soft systems”. Hard systems are thbae can
be observed from the outside and the dynamics medsu
with arbitrary precision limited by technology ohysics.
Hard systems are diagnosed with instruments via
observations. Such observations provide a snapshine
Yabout the system. Experiments can probe its dyrsaimc
disturbing the system.

We assume that there is one (or in any case vavy fe
observers in an organizational CAS who want to know
system-wide properties. Most agents will be satikfith

ocal observations because their dynamics are more

mog;??%g&%?ﬁl ASBIrIUIléla;I%:N [sg%nt;?:tfgr?alCgirpn%lf;?;%na!ietermined by these. Others do not have the acedw
: P tools, or do not have the impetus. Managers, wieothe

Vn\;r;?jglgettﬁz Or:;f:]e E(;hear?]:'fa .are"sufnmelntly dé[thadr%/ tadministrative leaders in the formal organizationsyally

: yically analyzed have @haot, . o such more system-wide observations because the
regions [caused by too many connected variablegréds of o0 1+ confront “messy” or “wicked” problems thiat not
free(_jom)] in the phase space—like the “melting Zdtlee have a “best’ solution. At best, managers can dgvel
Region of Emergent new Order between the Edge déOr “approximate” solutions., which }nay be improved over

and the Edge of Chaos) in Kauffman’s (1993) NK-nid2ke : . : X : o
X e time—usually in changing environments in which imgke,
Mathematical optimization models work well beloweth permanent solution is possible, relevant or dekirab

Edge of Order (in the Region of Order). However, oo . i
: g : . Some of their diagnostic tools are:
instabilities are expected once the system beindeted tips - Agents’ own observations of the system dynaniites

over the Edge of Chaos.(Canuto et al., 2005 [72}uB, ; . X : .

) . entails a shift to an interpretive stance, as thseoving agent
2006 [73]).' Averagmg over coordinates (.)f. the phasace has usually no meanspto validate its observat?cnngari
that are judged irrelevant (coarse graining) resu objective way. (This relates to the postulate i sbhemata

degrees of freedom and makes optimization modelse mo L : -
feasible. Incorporating feedback mechanisms (inteliate g]na(;trrl]gr ggjéar?:;ve knowledge s possible for an agdout

O o e o e e ey - Possbl cbjectve cbservalions ke businesisks
9 ; . . . L stored computer records, and so on. These datdlyusua
that are otherwise unavoidable in chaotic regiasch is to ire int tati I
say, get the system out of chaos and back int&éggon of require Interpretation as wet. - -
' - Ask other agents for their observations. The Soft

Emﬁ]rgfen;“es'tic ABM simulations. one would also attachSyStems literature calls this “collecting worldv&w
’ Diverging worldviews are a hallmark of a messy feah

probabilities to some of the options that an ageas, Such mess ;

y problems are typical for open systeptause
beca_luse one could not be sure what an agent woulgivén these provide the adaptive tensions that create ‘snessy”
the imperfect knowledge an agent has about othentag problems

This would also require an ensemble-averaging bkimga
many simulation runs (usually somewhere betweeng?tD
10,000 runs of the same ABM design to get the a&ra
ABM simulations allow the exploration of interegfimreas
of phase spaces that current management theorigsotdo

p:%t::?';_o; 'Qﬁﬁggﬁ’egg ?B(Kﬁgs?:;lxgt?éisso%ilnk%eﬁ)ﬂs tlg approach may offer different worldviews than caadshght
P pal-ag ’ on smaller scale messy problems.

Loem(])ﬂgt(tahgy(?\?etr-iisrﬁsliﬁ‘?:é E?;thtfgaig‘dp'gcglr%;aeme%g The insider/outsider problem boils down to the
thaﬁ characterize sta%dard mana ementpscience kingna impossibility for the manager-agent to hold the two
9 N3 - heasurements resulting from using different diaoadsols

less rigorous simplifications. in its mind at the same time. It is not fruitful ¢onsider this
as a deep epistemological problem as is sometiroas th
the literature. It is just observing the systemnfrdawo
different positions. There is no mystery in that thvo views
do not coalesce and that looking at a system fram t

In principle, the Checkland’s soft tools could dplied
to a larger organization, but in practice, theyndo scale up
sufficiently—they are overwhelmed by too many degref
freedom. In a small subsystem, however, ChecklaB8&M
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different points of view with different diagnostiools does
not give a consistent description.

The process of collecting worldviews and possildy g
some convergence among stakeholders, amount to

of organizations as they are discussed in managemen
science. This clarifies the relationship betweealdgjical
CAS systems and organizational ones.

a Similarities as well as differences between the efodre

shapshot and does not lead to new knowledge almeut tvery important.

dynamic properties of the system. However, it israno
cognizant of systemic issues than most other bssiaad
organizational science. On the one hand, an ABbhallthe
mixing of different views in different contexts gearch for
the best-at-the-time perspective. On the other, ABM
allows a manager to search for the parts of systéssies
that are essentially the same across the systethose that
are demonstrably different.

VIIl. ACTION RESEARCH

The only way to learn something about the dynarmifcs
system for which there is no mathematical modéb ibok
at the effects under disturbances. Such disturlsames
come from the environment. Much research has beea th
observing shocks to systems; most case studiesnfaliis
category. Only via experiments can one alter
disturbances affecting an organization. But we tcamit
organizations into laboratories. ABMs, howeverpwllto

- Business agents are inherently less homogenéaus t
the agents in biology, making fractality much more
prominent in business systems.
constantly adjusting their behavior over a muclhydarange
than in biology, where phenotype behavior is gdheset
by genotype. Consequently:

- Dynamics is less predictable in business systetatlise
of the many degrees of freedom. ABMs become theemor
relevant method since they offer modeling optiomsl a
results across a much broader range of interaefients and
nonlinear dynamics resulting from connectivities ozig
some number of heterogeneous agents. Math modef®ica
be successfully applied to such phenomena.

- Timescales are much smaller. Biological evolution
plays out over hundreds of generations. Busineds@sge at
a scale within the lifetime of many organizatiorand
business adapt. This is possible because of musterfa

thdearning in human than in most biological systembere

most evolutionary change is due more to the genetic
structure of offspring than the learning abilities living

simulate organizational phenomena and then condugthenotypes (Darwin, 1859 [77]), though many bicdte)i

simulated experiments.

Alternatively, manager-agents can sometimes apphem
controlled shocks themselves. This provides ampnégation
in CAS terms of the work of Lewin (1946) [75]. Applg
shocks and studying scientifically the resultingarfed
dynamics is, in this interpretation, Action Reséarc
Managers can apply Actions themselves, but it makese
to first learn as much of the system as possibiee @ol is
SSM.The problem with SSM is that the static snapsho
little predictive about the dynamics, and so caadldo
unintended and unforeseen consequences. But alyaiy
this in real time with real people could have nagat
consequences. Safer to use an ABM.

This provides a useful demarcation for what shdgd
called Action Research and what not. Action Rede&rt¢he
scientific study of the dynamical properties ofteyss by
applying shocks in a controlled way and studying tsults
in an accepted (quantitative or qualitative) wayhisT
criterion, compatible with Checkland’s, is very fdient
from Coghlan’s [76], for instance. One of the miagbortant
points of difference is that our and Checklandsesrch see
CAS and Action Research as (descriptive) sciendenahas
a tool for emancipation or other ethically drivemats. Such
goals are possible and compatible, but they argadtof a
scientific description. As an alternative for direc
observation, this one can do with ABMs.

IX. CONCLUSION AND OUTLOOK

We have shown that it is possible to give a traresga

now place some emphasis on “organic learning”,(i.e.
learning and change during a phenotype’s lifetiB@dwin,
1896 [78]; Simpson, 1953 [79]; Crispo, 2007 [80fdyaev,
2009 [81]; Kauffman, 2013 [82]; Scarfe, 2013 [83]).
Survival in changing environments is a functionledrning
quickly as needed in addition to surviving becaude
genetic, structural or endemic advantage.
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