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Abstract—The Lloyd algorithm is a key concept in multi-robot block of our approach is the so-call&tackelberg game theory
Voronoi coverage applications. Its advantages are its sindigity [10], [11], which belongs to the more general noncoopeeativ
of implementation and asymptotic convergence to the robots  game theory [10], [12]. Game theory has been successfully
optimal position. However, the speed of this convergence Baot  gpplied in various fields; its known applications in the rito
be guaranteed and therefore reaching the optimal position ray field relate to pursuit-evasion and search problems [13]].[1

be very slow. Moreover, in order to ensure the convergencehe o ; .
Hessian of the corresponding cost function has to be positv However, appllc_atlon of the Stackelberg games in the multi
robot coverage is new.

definite all the time. Validation of this condition is mostly
impossible and, as a consequence, for some problems the siard

approach fails and leads to a non-optimal positioning. In sah S . R .
situations more advanced optimization tools have to be adaed. motivation example of classical coverage limitations viad

This paper introduces Stackelberg games as such a tool. The Presented in Section Il. In Section Il we will briefly review
key assumption is that at least one robot can predict short- the game-theoretic preliminaries and introduce Stackglbe
term behavior of other robots. We introduce the Stackelberg games. In Section IV the Voronoi-based coverage problem
games, apply them to the multi-robot coverage problem, and Wwill be defined as a Stackelberg game and its properties
show both theoretically and by means of case studies how the will be discussed. The simulation setup and the results of
Stackelberg_-based coverage approach outperforms the stedard applying the proposed approach will be presented in Sestion
Lloyd algorithm. In Section VI we will discuss the advantages of the StaCo
approach and give concluding remarks.

The remainder of the paper is structured as follows: A

Keywords—Swarm robots; Coverage control; Lloyd algorithm;
Game theory; Stackelberg games

II. MOTIVATION

. INTRODUCTION . N o
A motivaton example, which illustrates the limitations of

In recent years many researchers in robotics, control, andassical approaches in mutli-robot coverage, is shown in
computer science have focused on swarm robotics and hawégure 2. The group of robots, initiated in the position agxl
developed solutions of fundamentlarm roboticproblems in Figure 2a, moves based on the standard coverage approac
(see [1] for solving flocking control problem, [2] for aggre- suggested in [3]. With this approach, the robots are drigen t
gation, [3] for multi-robot coverage, and [4] for formatjon the final configuration shown in Figure 2b. However, this con-
However, most of the proposed solution methods encountdiguration is sub-optimal (The globally optimal solutionliwi
difficulties in real-world applications, such as findingyslub-  be found adopting the StaCo approach proposed in this pape
optimal solutions and the inability of the algorithms toagnt  in Section V, Figure 7c). The problem of being enmeshed
for non-convex environments. Subsequently, despite tlue wi
range of existing works in the domain of multi-robot coverag
[3], [5]-19], there are still only very few in-field deploymés,
due to a wide gap between the theory of multi-robot coverag &
systems and the practice.

The Stackelberg Coverage (StaCo) approach proposed &
this paper addresses the deficiencies of the existing work o
in multi-robot coverage, by adding one or more relatively
advanced robots, called leaders, to the swarm. In othersyord a’
we assume a priori a heterogeneous robotic swarm, similar t -
that shown in Figure 1. In this figure, two intelligent robatg g
as the leaders, which can perceive the environment glgball @ -
and a large swarm of simple robots following simple local
rules. The main advantage of such a heterogeneous approach _ _ _

s presenving the simplicty of the major populaton of the C8is L | teregirenus obede swarn w2 e s
rObOt'(_: swarm, while a small group of rObOt$ can pre(_:“Ctneighbors, while thé leaders are capable of collectingrinétion from the
behavior of the others and act so that the desired behavior igire robotic swarm. The leaders may be able to predictifessuture
achieved faster and with a higher precision. The main buildi reactions of the followers and to enforce their own decision the followers.
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g el Cortauaten 5 Final Configuraton argmin Jp, (ur, Rp(uz)) instead ofu!™). Subsequently, fol-
7 7 uL
6 6 lower I chooseSuﬁf) (there is no otherur for which
5 : T (e up) < Jpu$? W) Point s = (w8, u) is
E4 Ea then theStackelberg solution (equilibriumgf the game and
s 3 T (WS D), Je (uf®u) are Stackelberg outcomes of
2 2 this game for the leader and the follower, respectively [10]
E 1 [11].
00 2 4 6 8 00 2 4 6 8
*m) Xm) We will now generalize the example. Let us state first the
(@) () assumptions that we raise on the cost functions and decisior

Figure 2. Example of the problem in which the standard c@e@pproach spaces in the static game:

leads to only a locally optimal but not the globally optimahéiguration (dots

denote robot locations and lines denote boundaries of thenddregions): (a) (AL) LetI'y an.d.FF be convex compact sets, referred
initial configuration, (b) final configuration achieved bypapach suggested to as decision spaces for the leader and follower,
in [3]; this final configuration is suboptimal respectively.

(AZ) LetJ, : Iy xT'r > TrandJp : Ty xT'r - T'p

. local . 0 b . ) be strictly convex smooth functions dhy, x I'g,
in a local optimum can also be seen in non-convex environ- referred to as costs for the leader and follower,

ments (e.g. in presence of obstacles). With the motivation t respectively.

avoid such complications and to speed up the procedure of

finding the global optimum, we introduce the StaCo approachimposing assumptions (Al) and (A2), we provide following
Adopting this approach, the majority of the swarm consistaefinitions:

of simple robots following local rules introduced in [3], ié
one or two more advanced robots (leaders) improve the syste .
performance by taking different actions, taking the decisi dgf(ijrfer di%srug%tr;ogtsragél) ang(Aglz, Lthbe ]SgtuL)) _C{ Fg
of the others into account. Consequently, the decentehlize "™ < J WL VL Fy 'utLh ~ t'€ |
behavior of the swarm and the simplicity of most robots is, © r(uz,€) < Jr(ur,up), Vup € Tr} is the optima
preserved, while overall system performance is signifigant response sefor F.

B}efinition ll1.2. (Optimal response set in the static game)

improved. Definition 111.3. (Stackelberg strategy in the static game)
Under assumptions (Al) and (A2) and wift\uy) unique
I1l. BASICS OFSTACKELBERG GAMES for eachuy € I'y, strategyuLS € I'p is called a Stack-
o . S S
Let us explain basics of Stackelberg games by the following!berg equilibrium  strategy forL if Jr(u, R(u$®)) =
static example. ming, er,, Jz(ur, R(ur)).

Example 1ll.1. (Two-player static game) Let two playefs
and F' have decision variables; € R andug € R, respec-
tively. Let functions/;, : R? — R andJ : R2 — R be smooth
and strictly convex oiR?. Player L chooses:;, € R in order
to minimize her cost/y, (ur,ur), while player F' minimizes ur,
Jr(up,ur) by choosing:r € R. lllustration of this situation JF — const JE = const
is given in Figure 3, where level curves (contours)Jef and

Jr are depicted inuy, ur)-plane. If there is no hierarchy be-
tweenL and F (i.e., if they either act simultaneously or if they
do not know how the other player acts), the Nash equilibrium
applies [15]. In such a situation[. and F' would picku(N)

and u%N )| respectively, whera(LN )

u%N) = argmin Jp(u(LN),uF). The outcome of the game

ur
would beJ; (u$™ ™M) and Jp (u$™, wN) for L and F,
respectively (i.e., the values df, and Jr evaluated at point
N = (uf™ !}, which is theNash solution (equilibriumf
the game. Note that in Figure 3, poinf = (u(LN),u%N)) lies
on the intersection of the curvé®, (ur) and Rp(uy ) defined

by 2= = 0 (bold dotted curve) andZ= = 0 (bold dashed uls e up

Curve)’ respectlvely. Figure 3. lllustration of the difference between Stackejb¢S) and Nash
Let us now consider a different situation: Playér (in (N) equilibrium solutions. When compared to the Nash epuiim, under

. . . : the same conditions of the game the Stackelberg equilibrierer leads to
this new situation re,ferred to aseadej knows ,RF(UL) higher costs for the leader (provided that they both exid@reover, there
(bold dashed curve) in advance and can act first. In suchye sjtuations in which the Stackelberg equilibrium conaejght be more

a situation it is better for the leader to Choogggs) = profitable for the follower as well, as this figure illustrate

The existence and uniqueness of Stackelberg strategy is
discussed in following lemma:

. N
= argmmJL(uL,u% ),
ur

(S)
ur,

o
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Lemma lll.4. (Existence and uniqueness of Stackelberg stratwhereu;(t) is the control (decision) of theth robot at timer.
egy) Every two-person static game with leadeand follower  The cost functions for the leader (robot 1) at times given
F, where (Al) and (A2) hold, admits a unique Stackelbergoy
strategy for the leader.
[ e-npa. @
Proof. If I'y, and I'r are convex compact sets an : ie{t,...my 7 Vil®)

IpxTp—TpandJp: Ty xTp = I'p are strictly convex | gt 7 pe the stopping time, i.e. the minimal time such that
sm_ooth cost func’qons, theR(ur) C T'r by Definition III.2: for eachr > T’ the costCy(r) does not changef’ = min{t :
Existence and uniqueness of the Stackelberg strategytlglirec Cy(r) = Cy(T) for ¥ = > T}. Then the leader minimizes

follow from Definition I1.3. C1(T). The cost function for the followej € {2,..., M} at
To conclude this short introduction, we state the obvioud!Mmet 1S

property of the Stackelberg outcome. C;(t) = / o — (t)]2dw. 3)

Lemma IIl.5. (Stackelberg outcome versus Nash outcome V; (t)

in a static game) For a two-person static game with leaderThe problem of the leader (robot 1) can be then defined as
L and follower F', where assumptions (Al) and (A2) hold, ) ) )
s (u(LS),Ugf)) <J, (U(LN)vung))- Find u;”’(t) = ariglgl)m Ci(T), w.r.t.
Py (t) = i — 2 (t)||Pdw.

If the decisions of the players and the state of the system (Fstaco) - u;(1) arfjgl)m Jvy ) e = ()]
evolve in time, while each of these decisions and the state & (t) = wi(t),
of the system influence (also future) decisions and states, w ith 7 — 2 N oi—1 N
refer to the game as théynamicgame. Without going into V'™ J = % -5 AN 0= 14, -y AN
too much detail, we state that theory introduced in thisisect The solution strongly depends on the so-called information
for static games can be extended into the dynamic settingyattern, i.e., on the amount of information that each player
in both discrete-time dynamic and continuous dynamic case&nows and recalls over her own state, state of the others, anc
under additional assumptions on the system dynamics. Faction made by herself and the others during the game.
an overview of theory of Stackelberg games with varying
information each of the players might know, see [10], [11],
[16], [17]. Moreover, a Stackelberg game can also be playe

Proposition IV.1. Let at timet¢ each player: know only
atatexi(t) and corresponding/;(¢) and let Hessian of2) be
positive definite at each Then the so-called continuous-time

among one leadel, and multiple followersFy, ..., Fu, Liovd d {13

where the leader, having complete information about thie sta oyd descent [3]

cost functions, and dynamics of the followers can impose her fvv(t) x dx;

decision on the followers at each time stepe {1,...,N} up (t) =k W —ai(t) ], 4)
(resp. each time € [0, 7)) in the discrete and continuous case, vi(e) T

respectively. x> 0, asymptotically converges to minimé@l () for player

1 and to minimalC;(T") for j =2,..., M.

IV. STACO APPROACH Proof: As shown in [3],u} () defined by (4) with respect

In this section we formulate multi-robot coverage problemto Z;(t) = u;(t) converges asymptotically to the set of critical
as a dynamic Stackelberg game with one leader and multipleoints of (2). The critical points of (2) coincide with cail
followers. The approach proposed in this section will bepoints of (3). If corresponding/; is finite, this solution is
referred to as StaCo: Stackelberg-based Coverage Approaciglobal due to positive definiteness of (2) [18]. ]

Let us consided/ robots (players) positioned at time= 0 Remark IV.2. Note that validating the positive definiteness of
in convex polytopeQ c RZ. One of the players, denoted (2) is an open problem [3] and even if the convergence to the

for the sake of simplicity as playet, is the leader, other global optin"_num is guaranteed,_in gen_eral no guarantees en th
det  Speed of this convergence exist. This leads us to the qoestio

play?rs, d(;,\noted by,tm,bM7tr?re the]IoIIOV\{[grs L?tt;]‘(ﬁ) T) i whether there exist algorithms that perform better than the
{a1(t), 22(t), ..., 2 (1)} be the configuration of the robots ), jeq| Lloyd algorithm if we allow the leader (robot 1) to

at _timet, with te _[0,_T], X_(Ol).: {931(9)#52(,0% s xar(0)) have more information about the state and decisions of the
being the a priori given initial configuration of the robots followers

and x(T) = {x1(T),z2(T),...,xzm(T)} being their final
configuration at final timel", with z;(¢) # x;(¢) if i # j. Let ~ Proposition IV.3. Let player 1 knowe;(7) andu;(r) (for all
V;i(t) indicate the Voronoi region (cell) in whichth robot is  j # 1) for 7 € [t,t+A], with A > 0, whereu;(t) Is defined by
located at time. For eachx(t) the Voronoi regions are defined (4), Letuf)(t) denote the optimal control of playér possibly
by the Voronoi partition of Q, V(¢) = {Vi(t),...,Vu(t)}  dependententon,(r), 7 € [t,t + A]. Let T, and C2 (T2)
generated by the points(t) = (21(t),....zam(t)) : Vi(t) =  denote the corresponding stopping time and the final payoff
{fweQ: flw—zt)] < llw—azt)|, Vj#i}. System for player 1 in such a situation, respectively. Thaf* < T
dynamics (with state variable) are given by the following and CH(T4) < C1(T).
system of ordinary differential equations:
) ) Proof: The leader’s decision is not bounded by any
Li(t) = ui(t), i=1,...,.M (1) restrictions. Setting this decision to (4) leads ¢ = T,
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Final Configuration

C{P(TA) = O1(T). Note that the Hessian of (2) might not be Inital Configuration

positive definite with the leader’s decision defined by (4)ug,

u}(t) either coincides with (4) or, if this choice would lead

to only sub-optimal solutiom*{’s(zﬁ) differs from (4) and leads

to a better outcome. This result also follows from extensibn

Lemma 111.5 into dynamic setting with the state equation (1)
[ |

Giving more information to the leader almost always leads
to the better outcome for the leader also in a very general
setting [10], [11], while the StaCo approach never leads to
the outcome worse than that reached by standard methods [3].

y(m)

o = N w S (4] o ~ o]
y(m)

o = N w S (5] (=2} ~ ©

In the next section we will illustrate that when the claskica ~— Classical Coverage|| 3000 ~— Classical Coverage
Lloyd algorithm fails and leads to only a local optimum, the 300 Staco £ oo Saco .
StaCo approach can find the global solution. For the case _ g
. . . . . . S pt _
studies in the next section, the time and space are disedetiz % £ 2000 _
and therefore the leader can choose from a limited number of £ **° £ o0
.« . . ] \ ? 7
decisions at each time stép © 150 R 38 /
T - - S 1000
100 i E
V. CASE STUDIES “ ? 500
) . . 0 50 100 150 0 50 100 150
In this section, we will study the performance of the Time(s) Time(s)
proposed StaCo approach in comparison with the classical (c) (d)

\oronoi-based coverage approach. . .
9 PP Figure 4. Comparison of performance of the proposed Sta@maph and

. . the standard approach for a particular configuration: (glgainconfiguration
A. Simulation Setup (b) final configuration (c) coverage cost function (d) costction summed up

[ Wi time.
To simulate StaCo and compare it with the standard©

approach, we have developed a 2D robot simulator. This
simulator is written in Java and supports simple massldsstro the StaCo and the classical coverage approaches are aplied
motion. The environmeng to be covered in all simulations this configuration; with the StaCo approach the leader makes
is a8 m x 8 m square and the speed of each robot is limiteda prediction of the swarm behavior for one subsequent time
to 4 cm/s. The time discretization of the systenig s. step. The final configuration afté70 s is shown in Figure 4b.
learly, both methods reach the same final configuration;
owever, as shown in Figure 4c, StaCo reaches the final
onfiguration faster than the classical approach. Finatfly,
ggure 4d, the cost functions for both techniques are summed
Hup over the time. This figure shows that the StaCo approach
converges to the optimal configuration faster than the idaks
approach. The settling time of both approaches can be easily
measured via the horizontal lines in Figure 4c (The upper and
lower lines refer respectively t6'(Ts) and C1 (), which
denote thd).05 error bound). Therefore, in this particular case
tudy, the settling time for the StaCo approacfifiss, and for
the classical coverage approach itli¥ s.

The designed simulator supports Voronoi cell computatio
for each robot. In each time step, firstly the locations ofotsb
x are used to compute the Voronoi cell of each robot an
subsequently the centroid of each cell is computed and us
by the robots to find the gradient descent direction (4). Wit
the StaCo approach the robot closest to the centef a$
considered as the leader. In each time step, instead ofiolip
the gradient descent direction (4), the leader first dis@etts
surrounding space into a limited number of accessible iocst
(in our simulations 8 points on a circle of radiug cm, with
equal distances to each other). Then for moving to each
these locations, the leader predicts the possible movethef o
robots, in one or two time steps, and chooses the movement,
which minimizesC; (i.e. the best possible response to theB. Effect of Swarm Size

other robots). In order to compare both techniques in a more generic way,

In order to measure the performance of the StaCo approaake have applied our simulation to groups2f 20 robots,20
and to compare it with the performance of the classicatimes for each swarm size, with random starting configunatio
coverage techniques, we introduce tBettling Timeas the The convergence settling times for both techniques were-acc
time required for the cost function (2) of the whole swarm torately measured based on (5). Their statistical representa
enter and remain within a prespecified error boundary. Morés illustrated in Figure 5. In this figure, the average valhe,
precisely, we define the settling tin¥e as minimum, and the maximum of the settling time o@&rruns

are plotted with respect to the swarm size. From Figure 5

< 5} (5)  we can conclude that the StaCo approach performs bettel
compared to the classical coverage approach. For ceridal in
configurations both methods achieve the final configuration
with the same settling time, while for the majority of possib
initial configurations the StaCo approach performs be®ech

As an example of the simulation setup, Figure 4a show$ehavior is observed in simulations and is also supported by
an initial configuration of a robotic swarm @&f robots. Both  the theoretical arguments in Sections IIl and IV.

7, % in {TS € [O,Tf}’\ﬁ ST ‘%

wheree = 0.05, C'; is defined by (2), and’ is the simulation
stopping time, i.e. the minimal time such that the c6%t.)
doesn’t change.
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Figure 5. Comparison of the coverage settling time betwé&enptroposed 3 8
StaCo approach and the classical coverage approach foticalvearms of 2
different sizes. .
0 0

0 50 100 150
Time(s)

(d

C. Effects of Leader's Speed and Prediction Horizon

Figure 7. Comparison of coverage performance between thgoped StaCo
Firstly, we examine the effect of the leader’s speed on thepproach and the standard coverage approach for an initiéigeration close
performance of StaCo. Secondly, we will investigate how thdo a sub-optimal configuration: (a) initial configuratiom) final configuration

L . for standard coverage approach; (c) final configurationHer3taCo approach;
number of prediction steps influences the performance. (d) comparison of the cost functions.

We employ a robotic swarm with eight robots. For each ) ) ) _
initial configuration, we increase the speed of the leademfr D. Escaping sub-optimal configurations

4 cm/s up tol6 cm/s in steps of Cmf’ yvhille the followers’ In StaCo approach the leader is able to perceive global
maximum speed remainscm/s. Each simulation is repeated ihtormation about the position of all swarm robots. Thisliai

20 times from random initial configurations. Afterwards, the 5y help the swarm to escape from sub-optimal configurations
simulations are repeated with the leader's predictionZeori o g3 mple initial configuration, already discussed in Sectlo
being increased to up ®subsequent time steps, with varying i shown in Figure 7a.

leader’s speed.
This initial configuration is very close to a suboptimal

The results presented in Figure 6 show that increase oéase' which is achieved if each robot moves a bit up or

the leader's speed and prediction horizon can improve th
convergence performance of the StaCo approach.

own and settles in the center of its rectangular Vorondi cel

Ithough the classical coverage approach terminates m thi
local minimum immediately (see Figure 7b), it is very easy
for the StaCo approach to escape from this local minimum.
The final configuration achieved by the StaCo is shown in
Figure 7c. Comparison of costs over the time are illustrated
6 — one Prediction Step Figure 7d. Clearly, the StaCo approach performs much better

—*— Two Prediction Steps|

©
o

©
o
T

Similarly to the results depicted in Figure 7, starting
from any other initial configuration close to a sub-optimal
configuration, the standard coverage approach will resukttis
sub-optimal position. The perception capabilities of thader
in StaCo allow for finding the globally optimal configuration

a @ ~
o o o
T T T

Settling Time (s)
B
o
T

VI. DISCUSSIONS ANDCONCLUSIONS

w
o
T

This article addressed the multi-robot coverage problem
and presented a new approach called StaCo, which is basel
on the game-theoretic concept of Stackelberg games. StaCc
takes advantage of the high perception capabilities of dlsma

N
o
T

=
o
T

1;1 151 2‘:1 2.5‘):1 3‘:1 351 4:‘1 .
Ratio of Max. Leader Speed to Max. Followers Speed group of robots (leaders) among a large group of simple
robots (followers) and allows for a very efficient coverage
Figure 6. Coverage settling time of a robotic swarm of oneifegrobot and ~ Performance. No communication among the robots takes place
seven following robots for different leader's speeds, whtie leader makes The leader(s) choose(s) a position in such a way that the othe
predictions for one or two future time steps. robots will, by optimizing their own objectives, improveeth
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overall configuration of the system. Therefore, this appihda [6]
a non-intrusive way to steer the system into a desirabledire
tion and leads to fast and effective coverage of an envirohme

StaCo always performs at least as well as the classical
approach, mostly StaCo performs better. This outcome wad’]
shown both theoretically and by means of case studies. More-
over, StaCo is able to escape from sub-optimal configursition

when the classical approach is doomed to fail. (8]

A possible limitation of the StaCo approach is that cur-
rently there is no explicit form of the optimal Stackelberg
solution of the game due to the complexity of the cost fumctio
of the leader; however, its derivation is a subject of ouraing
research.

9]

StaCo opens a promising new research avenue: Using hétd
erogenous robotic swarms for coverage in complex scenarigs;
such as those with non-convex environments (environments
with obstacles or with non-convex boundaries). As desdribe
many existing works, accomplishing a swarm robotic mission
in a non-convex environment is a difficult task. However, the[12]
authors believe that the StaCo approach can be very sugtessf

in such scenarios. (13]
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