
Multilevel Planning for Self-Optimizing Mechatronic
Systems

Christoph Rasche
C-LAB

University of Paderborn
crasche@c-lab.de

Steffen Ziegert
Department of Computer Science

University of Paderborn
steffen.ziegert@uni-paderborn.de

Abstract—This paper presents a multilevel planning approach
for the use in complex self-optimizing mechatronic systems. The
approach has been designed for the RailCab system, which is an
autonomous railbound transportation system. The term multilevel
planning denotes planning on different levels of abstraction where
each level involves different aspects and thus raises different
planning tasks to solve. These planning tasks are not independent
of each other. Plans for the higher level planning tasks involve re-
configurations of the system’s software architecture and influence
parameters used by the lower level planner to compute Pareto
optimal behavior. Additionally, the higher level planner relies
on plans computed by the lower level planner in order to meet
the execution times (of system reconfigurations) that it assumed.
To actually assure that the lower level planner computes Pareto
optimal plans and takes multiple objectives (which are conflictive)
into account, it is based on multi-objective optimization (with
Pareto fronts as output).

Keywords—hybrid planning; graph transformation; temporal
planning; Pareto front; optimal planning

I. INTRODUCTION

The ever increasing complexity of mechatronic systems and
the integration of more and more sophisticated functionality
leads to new challenges for their design and development. The
Collaborative Research Centre 614 “Self-optimizing Concepts
and Structures in Mechanical Engineering” (CRC 614) at the
University of Paderborn treats problems that occur during the
design of complex mechatronic systems. The goal is to design
self-optimizing systems, that are able to react autonomously to
environmental changes by changing their parameters, as well
as their objectives, if necessary. The developed concepts go far
beyond simple control strategies.

To be able to test the approaches under real world conditions
the RailCab system [1], an innovative autonomous railbound
transportation systems has been built at the University of
Paderborn. It consists of single RailCabs for the driverless
transportation of passengers and goods while each vehicle
drives on demand. The RailCabs are not coupled mechanically
but convoys can be created in order to decrease energy
consumption.

A highly complex system like the RailCab system involves
various tasks that need to be achieved during runtime. These
tasks involve behavior at different levels of abstraction. Each
RailCab has an individual goal, e.g., transporting passengers or
goods to a specified target station within a specified time.
On a high level of abstraction RailCabs plan their route
to the target station. Each route in the railway network is

assumed to consist of a number of track segments, leading
to a discrete planning task at this level. The choice of route
and driving speed depends on the routes of other RailCabs in
the system. Thus, this abstraction level includes planning of
system reconfigurations, like the establishment or breakup of
a convoy of RailCabs. These reconfigurations require precise
timing information and affect the software architecture of the
system, e.g., a convoy operation requires a communication link
between the participating RailCabs.

The planning task on the lower level considers continuous
behavior and parameters of a single RailCab that has to be
planned according to external requirements. For example, a
RailCab has to provide a certain level of driving comfort and
must not run out of energy before reaching its destination.
The fulfillment of these conflictive requirements depends on
a variety of control parameters of the RailCab, for which the
planner has to determine Pareto optimal settings. The approach
is called hybrid planning because it uses an initial discrete plan
and forecasts continuous system behavior by simulation during
runtime.

Decisions on the higher level, like joining or leaving a
convoy, also affect the lower level planning task: due to
changing operating conditions, the parameter settings of the
lower level planner have to be adapted online to still move
with Pareto optimal settings. Since, the planning technique on
the lower level refines the higher level actions into continuous
behavior, it can guarantee that the next track segment is reached
in exactly the time that the higher level temporal planner
assumed. Thus, replanning on the lower level will not cause
the higher level plan to be invalid afterwards.

This paper presents a hierarchical planning system for
self-optimizing mechatronic systems. The temporal planning
technique deployed on the higher level of abstraction has
been published before in [2], but was treated in isolation only.
Here, we specifically address the interrelation of this planning
technique with a lower level planner and its ability to adapt its
parameter settings online.

The paper is structured as follows. The temporal planning
technique, which is used on the higher level of abstraction
for planning routes and cooperative behavior, is introduced in
Section II. Afterwards, the hybrid planning approach, which is
based on multi-objective optimization and used as the lower
level planning technique, is described briefly in Section III.
The ability to adapt the environmental changes, like emerging
drag or temperature changes during movement, is outlined in

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

duration = 4

:Track

:RailCab

:Convoy

:RailCab

:Track :Track

«++»
member

next

«- -»
on

member

on

next

«++»
on

Fig. 1: Story pattern joinConvoy

Section IV. The remainder of the paper shows related work in
Section V before giving a conclusion in Section VI.

II. TEMPORAL PLANNING OF SOFTWARE ARCHITECTURE
RECONFIGURATION

We employ a model-based approach to the design of self-
optimizing mechatronic systems. System models are given in
MECHATRONICUML [3], a UML profile for the development
of such systems. In the model for the RailCab scenario, the
railway system consists of track segments that are connected
to each other via next links. A RailCab that operates in the
system can occupy such a track segment. Furthermore, RailCabs
can coordinate with other RailCabs to form a convoy. To
safely operate in a convoy, acceleration and braking has to
be coordinated and managed between convoy members. Such
an active convoy operation is represented by an instance of the
Convoy type. A Convoy instance has a member link to each
participating RailCab.

This approach to temporal planning deals with software
architecture reconfiguration of self-optimizing systems. The
communication behavior of components is not considered
by this technique. Reconfigurations concerning the software
architecture, e.g., the instantiation of a convoy, are modeled
with story patterns [4], an extension of UML object diagrams.

Story patterns have a formal semantics based on (typed)
graph transformation systems [5]. A graph transformation
system consists of a graph representing the initial configuration
of the system and a set of rules. Each rule consists of
a pair of graphs, called left-hand side (LHS) and right-
hand side (RHS), that schematically define how the graph
representing the system’s configuration can be transformed into
new configurations. Elements that are specified in both graphs
are preserved, other elements are deleted (if specified in the LHS
only) or created (if specified in the RHS only). Syntactically, a
story pattern represents such a rule by integrating the LHS and
RHS into one graph and using stereotypes to indicate elements
that are only present in the LHS or in the RHS.

Fig. 1 provides an example of a reconfiguration, which takes
4 time units: a RailCab joining a convoy of RailCabs. Objects
and links that are being created or deleted by the application
of the story pattern are labelled with the stereotypes «++» and
«--», respectively. The story pattern specifies the creation of
a member link representing the RailCab’s participation in the
convoy operation simultaneously with its movement to the next
track segment. The story pattern can be executed to transform
the state graph into a new configuration if it contains a subgraph
that matches the LHS of the story pattern.

duration = 4

:Track:Track

:RailCab

«- -»
:Convoy

:RailCab

:Track

:RailCab

next

on «- -»
on

«- -»
member

next

member

«- -»
member

«++»
on

Fig. 2: Story pattern breakConvoy

Our modeling formalism also allows to express that certain
objects or links are not permitted to appear in the current state
graph. See for example the story pattern given in Fig. 2. The
crossed out RailCab object and the link connecting it to the
Convoy object are not allowed to appear in the state graph.
Such a restriction to the applicability of a story pattern is called
a negative application condition (NAC).

In addition to the story patterns that define possible
transformations, we need an initial configuration and a goal
specification to feed the planning system with. A goal specifi-
cation is a partly specified configuration that can be modeled
as an ordinary object graph. Goal specifications are either
generated from user input or predefined by the system designer.
Initial configurations for the planning system are generated
from actual runtime states of the system.

Consequently, we are interested not only in which graph
transformations to execute but also in the points in time when
a graph transformation is supposed to start. In this temporal
planning approach, a plan is therefore a set of tuples of points
in time and graph transformations. The graph transformations
itself have annotated durations.

We solve these planning tasks by translating the models
into the Planning Domain Definition Language (PDDL) [6]
and feeding them into an off-the-shelf planning system, like
SGPlan6 [7]. In PDDL, a domain is defined by action schemata,
as well as types and predicates that can be used within action
schemata. An action schema consists of a list of parameters,
a precondition, and an effect. In the precondition, a list of
literals that are required for applying the action can be specified.
Similarly, the effect of an action specifies a list of literals that are
obtained when the action is applied. An action is instantiated –
in the context of PDDL this is called grounding – by substituting
the parameters with existing objects. Our translation scheme
builds the declarations (of types and predicates) from the class
diagram and generates an action schema for each story patterns.

In PDDL, action schemata for time-consuming actions split
the literals used in their precondition and effect into different
sets according to their time of evaluation. Literals can be
required at_start, over_all, and at_end when used in the
precondition and be effective at_start and at_end when
used in the effect. The obvious approach to assume that the
applicability check happens (in zero time) at the beginning
of the reconfiguration and the actual change at its end is not
suitable for many situations. Unintended interferences, e.g., the
deinstantiation and use of a software component at the same
time, could occur. The planning domain has to be generated
in a way such that conflicts due to a concurrent execution of

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

60.041: (MOVE rc0 t16 t17) [4.0000]
60.042: (MOVECONVOY convoy0 rc2 rc3 t18 t19 t20) [4.0000]
64.043: (BREAKCONVOY convoy0 rc2 rc3 t19 t20 t21) [4.0000]
64.044: (MOVE rc0 t17 t18) [4.0000]
68.045: (MOVE rc3 t21 t22) [4.0000]
68.046: (CREATECONVOY convoy0 rc2 rc1 t19 t25 t26) [4.0000]
72.047: (MOVE rc3 t22 t23) [4.0000]
72.048: (MOVECONVOY convoy0 rc2 rc1 t25 t26 t27) [4.0000]
72.049: (MOVE rc0 t18 t19) [4.0000]

Fig. 3: Excerpt of a concurrent reconfiguration plan

reconfigurations are not possible. However, we do not want to
burden the designer of the planning domain with its complicated
and error-prone definition. Therefore, the questions that our
translation scheme needs to address are: does the concurrent
execution of two graph transformations result in any conflicts,
and how can such a concurrent execution be avoided? To safely
control whether a concurrent execution is allowed, our solution
generates additional literals that lock access to graph nodes and
edges when they are in use by a reconfiguration.

Consider for instance the application of the story patterns
joinConvoy and breakConvoy given in Fig. 1 and 2. Let us
assume that one of the reconfigurations, e.g., breakConvoy, is
currently being applied. This means, its condition has already
been checked but the alteration of the configuration has not yet
been executed. The execution of a reconfiguration of RailCab
r1 joining the convoy makes no sense in this situation and
should not be allowed because the convoy will be deinstantiated
by breakConvoy. The problem is that the configuration is
in the process of being changed, but this is not reflected in
the intermediate state graph. Checking the applicability at the
beginning of a reconfiguration and executing the alteration at
its end is ineligible as a general solution. Our solution to this
problem encodes information about the deinstantiation of the
convoy into the configuration by acquiring a write lock of the
Convoy object when the breakConvoy reconfiguration starts
and releasing the lock when the reconfiguration ends. In the
opposite case, i.e., if joinConvoy starts first, it encodes into the
configuration that it requires the Convoy object by acquiring a
read lock and releasing it when the reconfiguration ends. This
approach is very suitable for a translation into PDDL since
locking functionality can simply be realized by defining new
predicates and functions for the locks. Since acquiring and
releasing all locking literals of a reconfiguration is done as an
atomic step (at the beginning and the end of the reconfiguration,
respectively), there can be no deadlocks when acquiring the
locks. For more details on the translation scheme we refer the
reader to [2].

Our model includes story patterns to move RailCabs or
convoys of RailCabs and story patterns related to convoy de-
/instantiation and membership change. All these story patterns
are available in the generated planning domain as action
schemata.

Listing 3 shows an excerpt of a plan that was generated by
SGPlan6 for a planning task involving 4 RailCabs. During the
interval [60–64], RailCabs rc2 and rc3 operate in convoy mode.
From 64 to 68, they break up the convoy operation because the
underlying domain specifies a Y junction between tracks t19,
t20, and t25, and they need to move along different routes to
arrive at their target locations. To do so, rc2 has to fall back,

i.e., it still occupies t19 at 68. Concurrently, i.e., during the
interval [60–68], rc0 moves from t16 to t18 but waits from 68
to 72 to not crash into rc2. To sum up, the reconfiguration plans
that SGPlan6 produces take advantage of parallel execution of
actions when possible, while guaranteeing that concurrently
executed actions do not interfere with each other. With regard
to the application scenario, this means that RailCabs operate
in parallel if they are sufficiently apart from each other, but
wait for the execution of other RailCabs’ reconfigurations if
necessary, e.g., to clear a common track segment.

III. HYBRID PLANNING

Besides the temporal planning approach for the coordination
of several RailCabs, e.g., to create a convoy each RailCab
computes single behavioral plans in order to move from its
initial position to its destination with Pareto optimal settings
on the lower level. Such plans are necessary as the RailCab
has only limited energy resources. The passengers can, e.g.,
change the velocity of their RailCab, which influences the
energy consumption.

A hierarchical hybrid planner is used for the purpose of
creating behavioral plans [8]. This hybrid planning approach
first computes an initial plan and forecasts continuous system
behavior. The purpose is the creation and adaptation of a plan
in order to always move with Pareto optimal settings from the
start position to the destination. The problem of planning is
modeled as a linear optimization problem and solved using the
Simplex algorithm.

Such a plan has to consider conflictive objectives. These
objectives have to be optimized which leads to a multi-objective
optimization problem. A Pareto set is the solution set of such
a problem and forms a (k − 1)-dimensional object. In this
context, k denotes the number of objectives involved in the
problem. The computation of a single Pareto front for each
track section is neglected in this paper. The interested reader
is referred to a detailed description in [10].

A multi-objective optimization, using the program GAIO
[9], [10] is performed, which results in Pareto fronts. Based on
the Pareto fronts several Pareto optimal configurations of system
parameters with different degrees of performance regarding
each objective are provided to the planner. The planner then
selects one of these sets of Pareto points for each track section.
A plan then consists of a set of Pareto points leading to Pareto
optimal settings at each track section.

The initially computed plan, based on the Pareto points
computed before starting the journey, does not take into account
the actual operating conditions during the journey, which might
deviate from the a priory assumed conditions, e.g., due to
environmental changes. Hence, only preliminary parameters
can be taken into account for the computation of feasible plans.

Creating and dissolving convoys, for example, leads to
states where the RailCabs do not move any longer with
Pareto optimal settings due to a considerable change of drag.
In a convoy each RailCab behind the leader moves in the
slipstream of the RailCab in front of it. This changes the
energy consumption at consistent movement speed dramatically
for most of the RailCabs and a new plan considering the new
energy consumption should be computed for every RailCab

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 4: An example Pareto front. The blue circle represents the Pareto point
selected by the planner while the red cross shows the working point.

that is affected by these changes. Additionally, the energy
consumption has to be decreased when moving in a slipstream
as the current energy consumption would increase the speed of
the RailCab and the timing assumptions, on which the temporal
planner relies, would not be met.

The same is true, if a RailCab leaves a convoy. It then
faces a higher drag and thus needs more energy to keep its
speed constant. Therefore, an adaptation of the Pareto front is
performed, as described in the following section. The planner
then computes a new plan that is based on new parameters,
which are calculated by the adaptation approach, in order to
always work on valid data.

IV. BEHAVIORAL ADAPTATION OF DIFFERING MODEL
PARAMETERS

As mentioned, it is hardly possible to avoid deviations
between the settings achieved by the use of previously computed
Pareto fronts and the real settings, reached during operation.
From this it follows that the Pareto points, on which the original
plan is based, become invalid and thus the entire plan becomes
invalid. To still be able to use a plan, which is as close to be
optimal as possible, a change of the Pareto front has to be
conducted.

Fig. 4 shows an example for a parameter change. The line
denotes the Pareto front computed by the use of the model
values and the blue circle shows the Pareto point selected
by the planner. Each Pareto point considered in this paper
has a comfort value, given by f1 and an energy consumption
value, given by f2. The currently measured comfort and energy
consumption leads to the working point denoted by a red
cross. This example includes considerable changes in the
energy consumption as well as between the measured comfort
value and the comfort value given by the selected Pareto
point. Such differences make the entire plan invalid and a
recalculation, based on the newly determined working point
must be conducted.

To be able to detect such deviations and to change the plan,
several values like energy consumption and passenger comfort

have to be measured continuously during RailCab operation.
Based on the measured values the current working point has
to be calculated.

It is not possible to simply compute new Pareto fronts,
leading to the measured working point as the changes of the
environmental parameters are not computable and it is possible
that the current working point is not Pareto optimal. In that
case no Pareto front, containing the working point exists. Thus,
an iterative approximation of the model Pareto front towards
the measurements is conducted.

A. Taylor Series Approximation

An approximation using Taylor Series expansion can be
performed, to successively approximate a Pareto front given
by model parameters closer to a working point, obtained by
measured values [11].

The functions, used to compute Pareto fronts for an entire
RailCab are rather complex and mainly a combination of the
multi-objective functions for single systems, presented in [8],
[12], [13] and [14]. The resulting Pareto points selected by
the planner are n-dimensional. To adapt a Pareto point to a
working point each dimension is considered individually.

Let x0 be the Pareto point and let xm be the working point.
First, a Taylor series for each parameter pi in dimension i
of the multi-objective function is computed, using the partial
derivatives as follows:

Ti(x) = f(x0) +

∂f(x0)
∂xi

1!
(x− x0) +

∂2f(x0)
∂xi

2!
(x− x0)2

+

∂3f(x0)
∂xi

3!
(x− x0)3 + · · ·

(1)

Additionally, the differences between the Pareto point and
the working point for each parameter ∆pi = ‖x0 − xm‖i
are computed. These differences are used to compute new
parameter values pin , as shown in the following equation.

pin = pi +
∆pi

Ti(xm)
(2)

The Pareto front is then newly computed, based on this
new parameters and the procedure is started over again until no
further reduction of the differences is achieved. The resulting
Pareto front is close to the working point and based on the
new environmental parameters. The planner then uses Pareto
fronts, based on the newly determined parameters to conduct a
replanning, leading to a new and feasible path.

B. Result

Fig. 5 shows an example for a recalculated Pareto front.
The values used in this example are abstract values without
units of measurement. Two simple functions were used to
represent passenger comfort and an energy consumption at
a specific movement speed. The functions lead to a two-
dimensional Pareto front. The axis f1 depicts the current energy
consumption and the axis f2 the current passenger comfort.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 5: Recalculated Pareto front based on measurement point. The blue circle
shows the Pareto point selected by the planner. The red cross denotes the

working point. The original Pareto front has been adapted towards the
working point.

A low comfort value results in a high passenger comfort. In
the depicted example scenario the planner selected the Pareto
point at position (26.5,11.2) from the model Pareto front for
the current track section, framed by a blue circle in order to
reach the required comfort without consuming too much energy.
The measured data revealed a current working point at position
(10,5), which is framed by a red cross.

Such a difference between the Pareto point and the working
point makes the overall plan, used to move to the destination
invalid. In order to be able to compute a new plan an adaptation
of the Pareto front towards the working point is conducted, as
shown in Fig. 5. Based on these resulting values new Pareto
fronts can be computed, used by the planner to create a feasible
plan.

V. RELATED WORK

The multilevel planning approach presented in this paper is
based on the assumption that the planning tasks are inherently
hierarchical and can be separated into higher level and lower
level tasks. No interleaving between the planning techniques
is necessary; thus, they can be applied sequentially on their
respective abstraction levels (beginning at the highest level). For
systems where a strict separation of the planning tasks is not
possible, Marthi et al. [15] proposed an approach called angelic
hierarchical planning. Their approach provides the higher level
planner with models that allow to make guarantees on the
satisfiability of the lower level planning tasks. This prevents
the system from having to backtrack to a higher abstraction
level, which results in a significant speedup.

When researchers try to tie AI planning techniques with
the software engineering domain, their techniques often rely
on graph transformation systems. Estler and Wehrheim [16]
developed a heuristic search planner along with a technique
to learn domain-specific heuristics from modeling artifacts
(among other things from a meta-model). These techniques are
promising because of their intuitive representation and close

association to model-based software engineering. However,
up to today, they usually do not support time-consuming
reconfigurations.

Similar to our approach for the generation of temporal
plans, Tichy and Klöpper [17] presented an automatic trans-
lation of graph transformation rules into PDDL actions to
plan self-adaptive behavior. The support for time-consuming
reconfigurations was addressed only in terms of stereotypes;
concurrency issues were not treated. Our temporal planning
technique can be seen as an extension of their approach.

The use of Pareto optimal solutions is a common approach
for planning in multi-objective applications. Hongfu et al. [18],
e.g., solve the multi-objective problem of intelligent mission
planning in dynamic environments by a combination of Pareto
fronts, receding horizon control, fuzzy inference systems and
expert knowledge. In contrast to the approach presented in this
paper they select a Pareto point from the computed front, based
on expert knowledge.

Klöpper et al. [19] use Pareto based planning in multi-
agent mechatronic systems. In their system operation strategies
exist, that correspond to Pareto optimal configurations. These
operation strategies represent trade-offs between the system
objectives and expected system state changes regarding limited
resources, as e.g., energy and execution time. The resulting
Pareto optimal configurations are used as input to the planning
model, which is based on a state-action formalism. They also
use a hybrid planning approach, combining local planning and
reactive behavior for decision making in real-time.

VI. CONCLUSION

We presented a multilevel planning approach for self-
optimizing mechatronic systems that adapt itself to envoronmen-
tal changes. Many other planning approaches do not consider
environmental influences. A plan is often computed a priori
and followed by the autonomous system. Changes of the
environment, like newly detected obstacles, can then force
a replanning. Nevertheless, most times it is assumed that parts
of the environment, like weather, temperature, etc., have no
influence to the system. There are several applications for which
such an assumption does not hold. The presented RailCab
system is such a system that is directly influenced, e.g., by
drag changes which influences the energy consumption.

In our approach, Pareto optimal plans cannot be created
a priory due to unpredictable environmental influences, like
emerging headwind or temperature changes during movement.
Such influences lead to changing parameter values that have
to be taken into account. Therefore, the Pareto front that the
initial plan is based on is adapted online towards a measured
working point. After such an adaptation, the planner replans
using the updated parameter values.

In addition, there are planning tasks on a higher abstraction
level that are solved by an independent planning system. Plans
for the higher level planning tasks involve reconfigurations of
the system’s software architecture and influence parameters
used by the lower level planner to compute Pareto optimal
behavior. This higher level temporal planner allows to execute
system reconfigurations in parallel. Its planning tasks are solved
by translating them into a PDDL representation that can be
handled by off-the-shelf planning systems.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Our combined approach is a first step towards a self-
optimizing system that computes temporal reconfiguration plans,
which change the software architecture of the system and solve
conflictive objectives. Furthermore, it is able to adapt its control
parameters to environmental changes like changing drag. In
theory, it can be applied to several applications that need to take
temporal properties and environmental changes into account.

ACKNOWLEDGMENT

This work was developed in the course of the Collaborative
Research Centre 614 “Self-optimizing Concepts and Structures
in Mechanical Engineering” and funded by the German
Research Foundation (DFG).

REFERENCES

[1] C. Henke, M. Tichy, T. Schneider, J. Bocker, and W. Schafer, “System
architecture and risk management for autonomous railway convoys,” in
Systems Conference, 2008 2nd Annual IEEE, April 2008, pp. 1–8.

[2] S. Ziegert and H. Wehrheim, “Temporal reconfiguration plans for self-
adaptive systems,” in Software Engineering (SE 2013), ser. Lecture
Notes in Informatics (LNI). Gesellschaft für Informatik e.V. (GI),
February 2013.

[3] S. Becker et al., “The MechatronicUML design method – process, syntax,
and semantics,” Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Tech. Rep., 2012.

[4] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story diagrams: A
new graph rewrite language based on the unified modeling language,” in
6th Int. Workshop on Theory and Application of Graph Transformations
(TAGT 1998), 1998.

[5] H. Ehrig et al., “Algebraic approaches to graph transformation II: Single
pushout approach and comparison with double pushout approach,” in
Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1: Foundations, G. Rozenberg, Ed. World Scientific, 1997,
ch. 4, pp. 247–312.

[6] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing
temporal planning domains,” Journal of Artificial Intelligence Research
(JAIR), vol. 20, 2003, pp. 61–124.

[7] Y. Chen, B. W. Wah, and C.-W. Hsu, “Temporal planning using subgoal
partitioning and resolution in SGPlan,” Journal of Artificial Intelligence
Research (JAIR), vol. 26, 2006, pp. 323–369.

[8] N. Esau et al., “Hierarchical hybrid planning for a self-optimizing active
suspension system,” in 7th IEEE Conference in Industrial Electronics
and Applications, IEEE. Singapore: IEEE, 18 - 20 Jul. 2012.

[9] M. Dellnitz, O. Schütze, and T. Hestermeyer, “Covering Pareto sets by
multilevel subdivision techniques,” Journal of Optimization Theory and
Application, vol. 124 (1), 2005, pp. 113–136.

[10] O. Schütze, K. Witting, S. Ober-Blöbaum, and M. Dellnitz, “Set oriented
methods for the numerical treatment of multi-objective optimization
problems,” in EVOLVE – A Bridge Between Probability, Set Oriented
Numerics, and Evolutionary Computation, ser. Studies in Computational
Intelligence, E. T. et al., Ed. Springer Berlin Heidelberg, 2013, vol.
447, pp. 187–219.

[11] J. Li, H.-C. Zhang, and Z. Lin, “Asymmetric negotiation based
collaborative product design for component reuse in disparate products,”
Computers & Industrial Engineering, vol. 57, no. 1, 2009, pp. 80–90.

[12] C. Romaus, J. Bocker, K. Witting, A. Seifried, and O. Znamenshchykov,
“Optimal energy management for a hybrid energy storage system
combining batteries and double layer capacitors,” in Energy Conversion
Congress and Exposition, 2009. ECCE 2009. IEEE, September 2009,
pp. 1640–1647.

[13] A. Trachtler, E. Munch, and H. Vocking, “Iterative learning and self-
optimization techniques for the innovative railcab-system,” in IEEE
Industrial Electronics, IECON 2006 - 32nd Annual Conference on,
November 2006, pp. 4683–4688.

[14] A. Pottharst et al., “Operating point assignment of a linear motor driven
vehicle using multiobjective optimization methods,” in Proc. of the
11th International Power Electronics and Motion Control Conference
(EPE-PEMC 2004), 2004.

[15] B. Marthi, S. J. Russell, and J. Wolfe, “Angelic hierarchical planning:
Optimal and online algorithms,” in Int. Conf. on Automated Planning
and Scheduling (ICAPS 2008), 2008.

[16] H.-C. Estler and H. Wehrheim, “Heuristic search-based planning for
graph transformation systems,” in Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS 2011), 2011, pp. 54–61.

[17] M. Tichy and B. Klöpper, “Planning self-adaptation with graph transfor-
mations,” in Int. Symp. on Applications of Graph Transformation with
Industrial Relevance (AGTIVE 2011), 2011.

[18] H. Liu, X. Gu, J. Chen, and H. Liu, “Intelligent multi-objective receding
horizon control for ucav mission planning,” in Computer Science
and Information Processing (CSIP), 2012 International Conference on,
August 2012, pp. 1154–1158.

[19] B. Klöpper, S. Honiden, and W. Dangelmaier, “Divide & conquer in
planning for self-optimizing mechatronic systems - a first application
example,” in Computational Intelligence in Control and Automation
(CICA), 2011 IEEE Symposium on, April 2011, pp. 108–115.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

