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Abstract—Current and real association rule mining tasks can 
only be successfully done in a distributed setting where 
transaction data sites are mined dynamically and 
appropriately as they are updated. Mobile agents’ paradigms 
are now used to mine association rules in such circumstances. 
As these mobile agents travel in the distributed association 
rules mining environment, they are liable to unforeseen 
changes, circumstances and faults that may arise in these 
environments. Few researches had been carried out on the 
adaptivity of mobile agents, but the adaptivity of distributed 
association rule mining agents is yet to be explored. Therefore, 
this work examines an adaptive architectural framework that 
mines association rules across multiple data sites, and more 
importantly the architecture adapts to changes in the updated 
database and the mining environment giving special 
considerations to the incremental database. This system was 
made adaptive both at the algorithm level and the mining 
agent level. Adaptation at the mobile agent level uses sensors to 
sense environmental changes, creates a percept of the 
environment and sends it to the adapter which adapts to the 
environmental changes by dynamically changing the goals of 
the mining agents or maintaining the original goals. The 
system promises to efficiently generate new and up-to-date 
rules while also adapting to faults and other unforeseen 
circumstances in the distributed association rules mining 
environment without the usual user’s interference. The model 
presented here provided the background ideas needed for the 
development of adaptive distributed association rule mining 
agents. 

Keywords-adaptive agents; distributed association rule 
mining; distributed databases; knowledge integration; mobile 
agents 

I.  INTRODUCTION 
Association rule mining (ARM) finds frequent patterns, 

associations, correlations, or casual structures sets of items or 
objects from large databases [1]. The idea is to find out the 
relation or dependency of occurrence of one item based on 

occurrence of other items. Distributed Association Rule 
Mining is the process of mining association rules and 
patterns from distributed data sources. Mobile agents are any 
relatively autonomous entity able to perform actions in an 
environment perceived by it. Mobile agents’ paradigm [7] 
has several advantages among which are: conservation of 
bandwidth and reducing latencies while also complex, 
efficient and robust behaviors can be realized with 
surprisingly little code. Performance of these mining agents 
may be hampered in the distributed association rule 
environments due to faults and other unforeseen 
circumstances. Therefore, in this research, we capitalized on 
the power of agents to introduce an adaptive distributed 
association rule mining agents that mines across distributed 
databases while adapting to unforeseen changes in the entire 
system. The organization of the rest of this paper is as 
follows. Section II provides a review of some existing and 
related works. Section III describes the design details of the 
adaptive distributed association rule mining agents. Finally, 
section IV contains some concluding remarks and scope for 
future work. 

II. LITERATURE REVIEW 
This section reviews existing work on distributed 

association rule mining, agents and adaptive systems. 

A. Association Rule Mining 
Association Rule Mining (ARM) is one of the most 

popular tasks of Data Mining (DM). Data mining is a 
powerful new technology with great potential to help 
companies focus on the most important information in the 
data they have collected about the behavior of their 
customers and potential customers [2]. It finds patterns in 
data that show associations between domain elements. DM is 
generally focused on transactional data, such as a database of 
purchases at a store. This task is known as Association Rule 
Mining (ARM), and was first introduced in Agrawal et al. 
[1]. An association rule is of the form X  Y, where X and 
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Y are disjoint conjunctions of attribute-value pairs. The most 
commonly used mechanism for determining the relevance of 
identified ARs is the support and confidence framework. The 
confidence of the rule is the conditional probability of Y 
given X, that is Pr(Y|X). The support of the rule is the prior 
probability of X and Y, that is Pr(X and Y). Distributed 
association rule mining (DARM) refers to the mining of 
association rules from distributed data sets. The data sets are 
stored in local databases hosted by local computers which 
are connected through a computer network [3]. Typical 
DARM algorithms involve local data analysis from which a 
global knowledge can be extracted using knowledge 
integration techniques [4]. A review of current distributed 
association rule mining methods was presented by Ogunde et 
al. [5]. Albashiri [6] gave some key issues to be addressed 
for distributed data mining tasks dwelling so much on the 
extendability of the system but the adaptivity has so far not 
been addressed by researchers. 

B. Agents and Multi-Agent Systems (MAS) 
Agents are defined by Wooldridge [7] as computer 

software that are situated in some environment and are 
capable of autonomous action in this environment in order to 
meet their design objectives. Agents are active, task-oriented, 
modeled to perform specific tasks and capable of decision 
making. By combining multiple agents, in one system, to 
solve a problem, the resultant system is a MAS. From the 
literature, well documented advantages of MAS includes: 
Decentralized control, Robustness, Simple extendability, 
Sharing of expertise and Sharing of resources [7]. According 
to Wooldridge [8], the cognitive functions of a rational agent 
are categorized into the following three modalities. First, 
beliefs are facts which the agent holds, which represent the 
properties about the agent’s environment. Ideally, the agent’s 
current belief set should be consistent. Second is that desires 
are the agent’s long term goals. There is no requirement that 
the agent’s desires should be consistent. Third modality is 
that intentions represent a staging post between beliefs and 
desires, in that they represent goals or sub-goals that the 
agent intends to actually bring about. 

C. Adaptivity in Multi-Agent Systems 
Agents typically operate in dynamic environments. 

Agents come and go, objects appear and disappear, and 
cultures and conventions change. Whenever an environment 
of an agent changes to the extent that an agent is unable to 
cope with (part of) the environment, an agent needs to adapt. 
Changes in the social environment of an agent, for example, 
may require modifications to existing agents [9]. The ability 
to adapt to dynamic environment and unexpected events is a 
key issue for mobile agents [10]. These inherent changes are 
dynamic in nature and demands that multi-agent systems 
should be adaptive and flexible. Therefore, for a multi-agent 
system, adaptation represents the ability of the multi-agent 
system to recognize and response to unanticipated internal 
and external change. Few researches have been done on 
agents’ adaptability but there are none on the adaptivity of 
DARM agents [9]. Most especially, adaptive agents 

proposed in this work were based on the foundation laid by 
Ranjan et al. [10] for adaptive mobile agents.  

Lacey and Hexmoor [11] addressed the question of 
assigning social norms to agents that will eventually act in 
complex dynamic environments and also treated the 
possibility of allowing the agents to adapt to new situations 
as they arise, and choose their norms accordingly. The 
researchers argued that adaptation is preferable to 
prescription, in that agents should be allowed to revise their 
norms when there is a need to adapt to new situations by 
revising their norms as appropriate. They also argued that 
their approach is better than prescribing norm adherence at 
design time. In Lacey and Hexmoor [11], a system was 
constructed in which the performance of multiple agents 
operating in the same environment were assessed and 
experimental results showed that in some circumstances 
adaptive norm revision strategies performed better than 
prescriptive norm assignment at design time. 

In Tamargo et al. [12], knowledge dynamics in agents' 
belief based on a collaborative multi-agent system was 
examined. Four change operators were introduced: 
expansion, contraction, prioritized revision, and non-
prioritized revision. For all of them, both constructive 
definitions and an axiomatic characterization by 
representation theorems were given. Minimal change, 
consistency maintenance, and non-prioritization principles 
were formally justified by the researchers. Khan and 
Lespérance [13] and Riemsdijk et al. [14] also contributed in 
the area of agents’ beliefs and goals changing. Khan and 
Lespérance [13] in their work ensured that the agent’s 
chosen goals/intentions were consistent with each other and 
with the agent’s knowledge. When the environments change, 
the agents recomputed their chosen goals and some inactive 
goals may become active again. This ensured that the agent 
maximized utility. Riemsdijk et al. [14] gave a formal and 
generic operationalization of goals by defining an abstract 
goal architecture, which described the adoption, pursuit, and 
dropping of goals in a generic way. 

In our work, we considered that adaptation could be 
provided at both the agent level and the algorithm level; but, 
in this paper, emphasis was placed on adaptivity of the 
mining agents. 

III. SYSTEM DESIGN 
This design of the proposed adaptive mining agent 

architecture is presented in this section.  

A.  The Proposed Adaptive Architecture 
The adaptive architecture described in this work was 

based on the earlier Distributed Association Rule Mining 
(DARM) architecture AMAARMD presented by Ogunde et 
al. [15].  The architecture was characterized by a given 
distributed data mining task being executed in its entirety 
using the mobile agents. In general, this was expressed as m 
mobile agents traversing n data sources (where m >n).  

B. The Adaptive Algorithm 
In our architecture, the very first mining by the system is 

based on the traditional Apriori algorithm (if the initial 
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dataset is very small) and the Partition Enhanced Algorithm 
(PEA), which is an improved version of the state-of-the-art 
Apriori algorithm contributed by the researchers. PEA 
partitions the large dataset into smaller partitions, while 
mining each partition (as it easily fits into the memory) to 
generate local patterns, which was integrated to generate 
global frequent patterns for a particular large data site in the 
DARM architecture. The partition sizes were chosen such 
that each partition can be accommodated in the main 
memory, so that the partitions are read only once in each 
phase. In this work, the mining agent examines the system 
to obtain the current total available memory space and then 
use this information to divide DB into the several partitions. 
This is to ensure that each partition fits into the main 
memory during the first phase of the mining. Subsequent 
mining of the incremental database is done with the 
Adaptive Incremental Mining (AIM) algorithm also 
contributed by the researchers. Details of PEA and AIM 
algorithms were not presented as this particular work is 
focused on the adaptivivity of DARM agents. AIM mines 
only the incremental database dynamically whenever there 
is a pre-defined increase in the total transactions inside the 
database. It stores the previously frequent and non-frequent 
itemsets to be able to determine whether an itemset is still 
frequent in the updated database or it is no more frequent, 
taking note of the specific time and periods when these 
changes occurred for proper management decisions by data 
miners. 

C. Description of the Adaptive DARM Agents 
In this section, the different types of agents and users in 

the architecture are described. Agent types: User Agent 
(UA), Association Rule Mining Coordinating Agent 
(ARMCA), Data Source Agent (DSA), Mobile Agent Based 
Association Rule Miner (MAARM), Mobile Agent- Based 
Result Reporter (MARR), Results Integration Coordinating 
Agent (RICA), Task Agent (TA)  and Registration Agent 
(RA). All agents are created and resident in the DARM 
server. The UA and DSA are interface agents because they 
all provide “interfaces” to either users, or data sources. UA 
provides the interface between the architecture, users and the 
rest of the architecture; while DSA provides the interface 
between input data and the rest of the architecture. MAARM 
agents are processing agents because they carry out the 
required ARM at the data sites automatically or in response 
to user requests, and possibly, to pre-process data within the 
system. A description of the various agents in the system 
described and their interactions are summarized in Figure 1. 

 
 
 
 
 
 
 
 
 

 
 Figure 1: Agent Architecture for the System. 

According to Figure 1, the task agent receives a DARM 
request and asks ARMCA to check all available databases 
(DA) and MAARM agents to find: (i) which data to use, and 
(ii) which data mining algorithms held by ARM agents are 
appropriate. The RA informs all appropriate agents that are 
already in the system and interested of a new agent arrival. 
When any new agent is introduced into the system, the TA 
then passes the DARM task to MAARM agents, which 
clones itself into multiple copies depending on the number 
of available data sites, and then travel to each data site in the 
DARM task. Each data site must have an interface agent – 
data agent (DA) to check the database for a matching 
schema and then report back to the MAARM agent. 
Distributed association rule mining at each data source is 
performed by the ARM agents – MAARMs. The return of 
results information at each data site is carried out by the 
MARRs. The agent RICA integrates the various local 
results to get a global rule from the DARM sites. Final 
results or knowledge are passed from the RICA to the TA 
and then to the UA all through the DARM server. 

D. Adaptive Mobile Agent Association Rule Miner 
(AMAARM) 
An agent can be viewed as software satisfying an ordered 

set of goals to achieve some overall objective. The agent 
takes a sequence of action in order to satisfy the next goal in 
the set. Adaptation can be viewed as changing the goal set. 
The effect of the change can be a new set of actions to 
achieve the same overall objective as before, or it may even 
result in a new overall objective if the original objective 
cannot be achieved anymore in the current environment. The 
model described here consists of two components: a 
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Mechanism and an Adapter. The Mechanism is the interface 
of the AMAARM to the environment. It contains sensors 
that periodically sense the DARM environment parameters 
and report their findings to the Mechanism.  

For instance, if a particular data server is down out of 
five data sites or there is a sort of interference to the mining 
process, the mechanism of the mining agent senses this and 
reports it to the Adapter, which decides a waiting period for 
the agent in order to make another attempt to complete the 
mining process or in the worst case excludes the result of 
that particular site from the global knowledge integration 
performed by RICA after a number of preset trial-times. This 
means that if the set goal for RICA was to integrate local 
ARM results from five data sites, it will now change the set 
goal to integrate only the four available results, which are 
returned as the global knowledge.  

It also contains actors that can take actions to change the 
environment the mining agent is in. The Adapter is the 
component that decides whether adaptation is necessary or 
not. If adaptation is necessary, the adapter determines how 
best to adapt to the current environment. The Mechanism 
senses the environment through the sensors, analyze them, 
and create a view of the environment called a percept. The 
percept is passed on to the adapter, which then decides 
whether adaptation is necessary or not. Another instance of 
an unforeseen problem that can arise here are the 
possibilities of collision of the mining agent with either other 
mining agents or agents carrying out some other tasks within 
the same environment. As a matter of fact, all these agents 
could be possibly competing for the same resources and 
these could hamper the performance of the association rule 
mining agent in such environments, hence there is a need for 
adaption on the fly by these agents. Therefore, if adaptation 
is needed, a new set of goals is passed on to the mechanism, 
which then transforms the set of goals into a set of actions to 
be carried out, and then carries out the actions. The actors are 
used to make any environment change specified in an action. 
Figure 2 shows the basic structure of the AMAARM 
components and their interactions as explained above. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Components of AMAARM 
 

In figure 2, the mechanism actually senses the DARM 
environment, creates a percept for the adapter, which decides 
the action, that is, whether initial the goals of the mining 
agent should be maintained or changed. 

E.  Description of the AMAARM’s Mechanism 
The state of the AMAARM’s Mechanism is represented by 
the 3-tuple <S, L, T>, where S represent the behavioral state 
of the Mechanism which identifies what the Mechanism is 
doing currently. S could therefore be the state where the 
Mechanism senses the environment for changes or the state 
at which action is taken to change the agent’s goal. L is the 
current location of the agent, and T is the time the 
Mechanism had spent in its current state. The state variable S 
can take one of three possible values: extractGoal, 
executeCommand and senseEnvironment. In the extractGoal 
behavioral state, the Mechanism picks up the current mining 
goals to be executed, and generates the set of commands for 
it. In the executeCommand behavioral state, the generated 
commands are carried out. In the senseEnvironment 
behavioral state, the Mechanism senses the environment and 
forms a current view of the environment, and then passes it 
to the Adapter. Figure 3 is a state diagram showing the 
different states that the AMAARM’s Mechanism can be at 
any point in time and the possible state transitions. 

According to Figure 3, the Mechanism can always be in 
any of these three states: the FirstNormalState = 
<extractGoal, L, T> or SecondNormalState = 
<executeCommand, L, T> or SenseEnvironmentState = 
<senseEnvironment, L, T>, where L and T retains their 
predefined definitions as L contains the current location of 
the agent, and T is the time the MAARM had been in that 
state, which is usually reset to 0 every time a state transition 
occurs. Initially, the mechanism enters the FirstNormalState 
on receiving an ordered set of goals from the adapter. The 
commands for the next goal in the ordered list are generated 
and a transition to state SecondNormalState occurs.  
 

 
 

Figure 3: State Diagram of AMAARM 
 

In the SecondNormalState, the commands are executed, 
and then, the transition goes back to the FirstNormalState in 
order to generate the commands for the next goal in the list 
of goals. This process continues until all the goals in the list 
are executed by the Mechanism. However, the Mechanism 
may go to the third state, that is, SenseEnvironmentState = 
<senseEnvironment, L, T> from either the FirstNormalState 
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or the SecondNormalState if any of the following happens: a 
timeout, a fault, or a coded adaptation (an explicit command 
in the application code itself to sense the environment for 
adaptation reasons), a collision, an attempt to corrupt the 
mining agent, etc. The T component of the Mechanism state 
detects a timeout if an action is not carried out within a 
specified time in the SecondNormalState. This may indicate 
changed environment and may force AMAARM to sense the 
environment and determine whether adaptation is necessary.  

In the SenseEnvironmentState, the environment is 
usually sensed for any sort of change earlier mentioned and a 
percept is sent to the Adapter to see if any adaptation is 
necessary. Normally, the environment can also be sensed in 
the FirstNormalState and the SecondNormalState, 
occasionally as the case may be; but, in these cases there is 
usually no interaction with the Adapter, therefore the values 
sensed are usually used internally by those states of the 
AMAARM. 

Given a DARM environment, there may be different 
ways the mining agent can adapt. Thus some type of ranking 
of the adaptation methods in the adaptation policy is 
necessary. This is achieved by a motivation degree function. 
Motivation is any desire or preference that that can lead to 
the generation and adoption of goals and which affects the 
outcome of the reasoning or behavioral task intended to 
satisfy the goal [16]. A motivation degree is therefore 
associated with each adaptation method, which is the 
probability of success in achieving the final goal if the set of 
goals corresponding to the adaptation method is selected as 
the current set of goals. The Adapter then selects the 
adaptation method with the highest motivation degree 
corresponding to the current environment. The set of 
adaptation methods and the motivation degree function can 
be hard-coded or learnt dynamically from history or a 
combination of both where the user specifies an adaptation 
policy and a motivation degree function, which then can be 
modified dynamically as well. For the purpose of this work, 
the adaptation policies for AMAARM are hard-coded. 

The adaptive state of the AMAARM is thus described by 
the 3-tuple <MS, AS, AS>, where MS is the Mechanism 
state, AS is the Adapting state, and AS is the Application- 
specific state for the AMAARM. On receiving a percept 
from the Mechanism, the Adapter goes through the set of 
adaptation methods, looking for the ones that match the 
percept. The one with the highest motivation degree is then 
chosen, and the current set of ARM goals are modified to be 
the one corresponding to that adaptation method. The new 
ARM goal set is passed to the Mechanism, which then 
generates and executes commands for the set of goals. If no 
adaptation method matches the current environment, 
adaptation is deemed unnecessary and no change to the goal 
set occurs. Thus, no adaptation can also be viewed as a 
special adaptation method.  

F. Description of the AMAARM’s Adapter 
The Adapter state consists of the two tuple <S, T>, where 

S is the behavioral state of the Adapter, which can only adapt 
by either maintaining the mining goals, if a change of goal is 
not necessitated by the percepts received from the 

mechanism, or modify the mining goals if the percepts 
received from the mechanism is significant for modifying the 
original goals. T is the time spent in the AdaptToChange 
state. An attribute is a perceivable feature of the DARM 
environment, e.g., a fault in the DARM environment, a time-
out, agent collision or an attack or violation of the integrity 
of the mining agents. A percept is a set of attributes, that is, a 
view of the DARM environment. An adaptation method is a 
single mapping from a percept to a set of mining goals. An 
adaptation policy is a set of adaptation methods. Thus, in this 
case, the adaptation policy specifies the possible ways in 
which the AMAARM adapts to different DARM 
environments.  

IV. CONCLUSION AND FUTURE WORK 
An adaptive distributed association rule mining 

architecture with adaptive mining agents was presented.  The 
system described here promises to guarantee the completion 
of major DARM tasks even in the face of unforeseen 
circumstances and faults. Each individual data server has 
some specific data and resource requirements, all of which 
have to be satisfied before the task can be started. An 
adaptive mining agent AMAARM executing a task migrates 
to a data server from the DARM server, and tries to generate 
the frequent itemsets. If all the necessary resources at the 
data site are available and the environment is conducive, then 
the mining task is executed. Otherwise, the data server 
environment is sensed to get an idea about the time the 
adaptive mining agent may have to wait to perform the 
mining task. The MAARM relies on the coded adaptation to 
make this adaptation decision. Future work will consider the 
set of adaptation methods and policies in DARM that will be 
a combination of hard-coded policies and also dynamic 
learning of earlier mining agents’ adaptation from history. 
Implementation of the system using synthetic and real life 
datasets in order to test the performance of this method will 
also be done as a future work. 
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