
On the Adaptivity of Distributed Association Rule Mining Agents

Adewale Opeoluwa Ogunde
Dept. of Mathematical Sciences
Redeemer's University (RUN),

Redemption Camp, Nigeria
ogundea@run.edu.ng

Olusegun Folorunso
Dept. of Computer Science

Federal University of Agriculture,
Abeokuta, Nigeria

folorunsolusegun@yahoo.com

Adesina Simon Sodiya
Dept. of Computer Science

Federal University of Agriculture,
Abeokuta, Nigeria

sina_ronke@yahoo.co.uk

Abstract—Current and real association rule mining tasks can
only be successfully done in a distributed setting where
transaction data sites are mined dynamically and
appropriately as they are updated. Mobile agents’ paradigms
are now used to mine association rules in such circumstances.
As these mobile agents travel in the distributed association
rules mining environment, they are liable to unforeseen
changes, circumstances and faults that may arise in these
environments. Few researches had been carried out on the
adaptivity of mobile agents, but the adaptivity of distributed
association rule mining agents is yet to be explored. Therefore,
this work examines an adaptive architectural framework that
mines association rules across multiple data sites, and more
importantly the architecture adapts to changes in the updated
database and the mining environment giving special
considerations to the incremental database. This system was
made adaptive both at the algorithm level and the mining
agent level. Adaptation at the mobile agent level uses sensors to
sense environmental changes, creates a percept of the
environment and sends it to the adapter which adapts to the
environmental changes by dynamically changing the goals of
the mining agents or maintaining the original goals. The
system promises to efficiently generate new and up-to-date
rules while also adapting to faults and other unforeseen
circumstances in the distributed association rules mining
environment without the usual user’s interference. The model
presented here provided the background ideas needed for the
development of adaptive distributed association rule mining
agents.

Keywords-adaptive agents; distributed association rule
mining; distributed databases; knowledge integration; mobile
agents

I. INTRODUCTION
Association rule mining (ARM) finds frequent patterns,

associations, correlations, or casual structures sets of items or
objects from large databases [1]. The idea is to find out the
relation or dependency of occurrence of one item based on

occurrence of other items. Distributed Association Rule
Mining is the process of mining association rules and
patterns from distributed data sources. Mobile agents are any
relatively autonomous entity able to perform actions in an
environment perceived by it. Mobile agents’ paradigm [7]
has several advantages among which are: conservation of
bandwidth and reducing latencies while also complex,
efficient and robust behaviors can be realized with
surprisingly little code. Performance of these mining agents
may be hampered in the distributed association rule
environments due to faults and other unforeseen
circumstances. Therefore, in this research, we capitalized on
the power of agents to introduce an adaptive distributed
association rule mining agents that mines across distributed
databases while adapting to unforeseen changes in the entire
system. The organization of the rest of this paper is as
follows. Section II provides a review of some existing and
related works. Section III describes the design details of the
adaptive distributed association rule mining agents. Finally,
section IV contains some concluding remarks and scope for
future work.

II. LITERATURE REVIEW
This section reviews existing work on distributed

association rule mining, agents and adaptive systems.

A. Association Rule Mining
Association Rule Mining (ARM) is one of the most

popular tasks of Data Mining (DM). Data mining is a
powerful new technology with great potential to help
companies focus on the most important information in the
data they have collected about the behavior of their
customers and potential customers [2]. It finds patterns in
data that show associations between domain elements. DM is
generally focused on transactional data, such as a database of
purchases at a store. This task is known as Association Rule
Mining (ARM), and was first introduced in Agrawal et al.
[1]. An association rule is of the form X Y, where X and

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Y are disjoint conjunctions of attribute-value pairs. The most
commonly used mechanism for determining the relevance of
identified ARs is the support and confidence framework. The
confidence of the rule is the conditional probability of Y
given X, that is Pr(Y|X). The support of the rule is the prior
probability of X and Y, that is Pr(X and Y). Distributed
association rule mining (DARM) refers to the mining of
association rules from distributed data sets. The data sets are
stored in local databases hosted by local computers which
are connected through a computer network [3]. Typical
DARM algorithms involve local data analysis from which a
global knowledge can be extracted using knowledge
integration techniques [4]. A review of current distributed
association rule mining methods was presented by Ogunde et
al. [5]. Albashiri [6] gave some key issues to be addressed
for distributed data mining tasks dwelling so much on the
extendability of the system but the adaptivity has so far not
been addressed by researchers.

B. Agents and Multi-Agent Systems (MAS)
Agents are defined by Wooldridge [7] as computer

software that are situated in some environment and are
capable of autonomous action in this environment in order to
meet their design objectives. Agents are active, task-oriented,
modeled to perform specific tasks and capable of decision
making. By combining multiple agents, in one system, to
solve a problem, the resultant system is a MAS. From the
literature, well documented advantages of MAS includes:
Decentralized control, Robustness, Simple extendability,
Sharing of expertise and Sharing of resources [7]. According
to Wooldridge [8], the cognitive functions of a rational agent
are categorized into the following three modalities. First,
beliefs are facts which the agent holds, which represent the
properties about the agent’s environment. Ideally, the agent’s
current belief set should be consistent. Second is that desires
are the agent’s long term goals. There is no requirement that
the agent’s desires should be consistent. Third modality is
that intentions represent a staging post between beliefs and
desires, in that they represent goals or sub-goals that the
agent intends to actually bring about.

C. Adaptivity in Multi-Agent Systems
Agents typically operate in dynamic environments.

Agents come and go, objects appear and disappear, and
cultures and conventions change. Whenever an environment
of an agent changes to the extent that an agent is unable to
cope with (part of) the environment, an agent needs to adapt.
Changes in the social environment of an agent, for example,
may require modifications to existing agents [9]. The ability
to adapt to dynamic environment and unexpected events is a
key issue for mobile agents [10]. These inherent changes are
dynamic in nature and demands that multi-agent systems
should be adaptive and flexible. Therefore, for a multi-agent
system, adaptation represents the ability of the multi-agent
system to recognize and response to unanticipated internal
and external change. Few researches have been done on
agents’ adaptability but there are none on the adaptivity of
DARM agents [9]. Most especially, adaptive agents

proposed in this work were based on the foundation laid by
Ranjan et al. [10] for adaptive mobile agents.

Lacey and Hexmoor [11] addressed the question of
assigning social norms to agents that will eventually act in
complex dynamic environments and also treated the
possibility of allowing the agents to adapt to new situations
as they arise, and choose their norms accordingly. The
researchers argued that adaptation is preferable to
prescription, in that agents should be allowed to revise their
norms when there is a need to adapt to new situations by
revising their norms as appropriate. They also argued that
their approach is better than prescribing norm adherence at
design time. In Lacey and Hexmoor [11], a system was
constructed in which the performance of multiple agents
operating in the same environment were assessed and
experimental results showed that in some circumstances
adaptive norm revision strategies performed better than
prescriptive norm assignment at design time.

In Tamargo et al. [12], knowledge dynamics in agents'
belief based on a collaborative multi-agent system was
examined. Four change operators were introduced:
expansion, contraction, prioritized revision, and non-
prioritized revision. For all of them, both constructive
definitions and an axiomatic characterization by
representation theorems were given. Minimal change,
consistency maintenance, and non-prioritization principles
were formally justified by the researchers. Khan and
Lespérance [13] and Riemsdijk et al. [14] also contributed in
the area of agents’ beliefs and goals changing. Khan and
Lespérance [13] in their work ensured that the agent’s
chosen goals/intentions were consistent with each other and
with the agent’s knowledge. When the environments change,
the agents recomputed their chosen goals and some inactive
goals may become active again. This ensured that the agent
maximized utility. Riemsdijk et al. [14] gave a formal and
generic operationalization of goals by defining an abstract
goal architecture, which described the adoption, pursuit, and
dropping of goals in a generic way.

In our work, we considered that adaptation could be
provided at both the agent level and the algorithm level; but,
in this paper, emphasis was placed on adaptivity of the
mining agents.

III. SYSTEM DESIGN
This design of the proposed adaptive mining agent

architecture is presented in this section.

A. The Proposed Adaptive Architecture
The adaptive architecture described in this work was

based on the earlier Distributed Association Rule Mining
(DARM) architecture AMAARMD presented by Ogunde et
al. [15]. The architecture was characterized by a given
distributed data mining task being executed in its entirety
using the mobile agents. In general, this was expressed as m
mobile agents traversing n data sources (where m >n).

B. The Adaptive Algorithm
In our architecture, the very first mining by the system is

based on the traditional Apriori algorithm (if the initial

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

dataset is very small) and the Partition Enhanced Algorithm
(PEA), which is an improved version of the state-of-the-art
Apriori algorithm contributed by the researchers. PEA
partitions the large dataset into smaller partitions, while
mining each partition (as it easily fits into the memory) to
generate local patterns, which was integrated to generate
global frequent patterns for a particular large data site in the
DARM architecture. The partition sizes were chosen such
that each partition can be accommodated in the main
memory, so that the partitions are read only once in each
phase. In this work, the mining agent examines the system
to obtain the current total available memory space and then
use this information to divide DB into the several partitions.
This is to ensure that each partition fits into the main
memory during the first phase of the mining. Subsequent
mining of the incremental database is done with the
Adaptive Incremental Mining (AIM) algorithm also
contributed by the researchers. Details of PEA and AIM
algorithms were not presented as this particular work is
focused on the adaptivivity of DARM agents. AIM mines
only the incremental database dynamically whenever there
is a pre-defined increase in the total transactions inside the
database. It stores the previously frequent and non-frequent
itemsets to be able to determine whether an itemset is still
frequent in the updated database or it is no more frequent,
taking note of the specific time and periods when these
changes occurred for proper management decisions by data
miners.

C. Description of the Adaptive DARM Agents
In this section, the different types of agents and users in

the architecture are described. Agent types: User Agent
(UA), Association Rule Mining Coordinating Agent
(ARMCA), Data Source Agent (DSA), Mobile Agent Based
Association Rule Miner (MAARM), Mobile Agent- Based
Result Reporter (MARR), Results Integration Coordinating
Agent (RICA), Task Agent (TA) and Registration Agent
(RA). All agents are created and resident in the DARM
server. The UA and DSA are interface agents because they
all provide “interfaces” to either users, or data sources. UA
provides the interface between the architecture, users and the
rest of the architecture; while DSA provides the interface
between input data and the rest of the architecture. MAARM
agents are processing agents because they carry out the
required ARM at the data sites automatically or in response
to user requests, and possibly, to pre-process data within the
system. A description of the various agents in the system
described and their interactions are summarized in Figure 1.

 Figure 1: Agent Architecture for the System.

According to Figure 1, the task agent receives a DARM
request and asks ARMCA to check all available databases
(DA) and MAARM agents to find: (i) which data to use, and
(ii) which data mining algorithms held by ARM agents are
appropriate. The RA informs all appropriate agents that are
already in the system and interested of a new agent arrival.
When any new agent is introduced into the system, the TA
then passes the DARM task to MAARM agents, which
clones itself into multiple copies depending on the number
of available data sites, and then travel to each data site in the
DARM task. Each data site must have an interface agent –
data agent (DA) to check the database for a matching
schema and then report back to the MAARM agent.
Distributed association rule mining at each data source is
performed by the ARM agents – MAARMs. The return of
results information at each data site is carried out by the
MARRs. The agent RICA integrates the various local
results to get a global rule from the DARM sites. Final
results or knowledge are passed from the RICA to the TA
and then to the UA all through the DARM server.

D. Adaptive Mobile Agent Association Rule Miner
(AMAARM)
An agent can be viewed as software satisfying an ordered

set of goals to achieve some overall objective. The agent
takes a sequence of action in order to satisfy the next goal in
the set. Adaptation can be viewed as changing the goal set.
The effect of the change can be a new set of actions to
achieve the same overall objective as before, or it may even
result in a new overall objective if the original objective
cannot be achieved anymore in the current environment. The
model described here consists of two components: a

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Mechanism and an Adapter. The Mechanism is the interface
of the AMAARM to the environment. It contains sensors
that periodically sense the DARM environment parameters
and report their findings to the Mechanism.

For instance, if a particular data server is down out of
five data sites or there is a sort of interference to the mining
process, the mechanism of the mining agent senses this and
reports it to the Adapter, which decides a waiting period for
the agent in order to make another attempt to complete the
mining process or in the worst case excludes the result of
that particular site from the global knowledge integration
performed by RICA after a number of preset trial-times. This
means that if the set goal for RICA was to integrate local
ARM results from five data sites, it will now change the set
goal to integrate only the four available results, which are
returned as the global knowledge.

It also contains actors that can take actions to change the
environment the mining agent is in. The Adapter is the
component that decides whether adaptation is necessary or
not. If adaptation is necessary, the adapter determines how
best to adapt to the current environment. The Mechanism
senses the environment through the sensors, analyze them,
and create a view of the environment called a percept. The
percept is passed on to the adapter, which then decides
whether adaptation is necessary or not. Another instance of
an unforeseen problem that can arise here are the
possibilities of collision of the mining agent with either other
mining agents or agents carrying out some other tasks within
the same environment. As a matter of fact, all these agents
could be possibly competing for the same resources and
these could hamper the performance of the association rule
mining agent in such environments, hence there is a need for
adaption on the fly by these agents. Therefore, if adaptation
is needed, a new set of goals is passed on to the mechanism,
which then transforms the set of goals into a set of actions to
be carried out, and then carries out the actions. The actors are
used to make any environment change specified in an action.
Figure 2 shows the basic structure of the AMAARM
components and their interactions as explained above.

Figure 2: Components of AMAARM

In figure 2, the mechanism actually senses the DARM
environment, creates a percept for the adapter, which decides
the action, that is, whether initial the goals of the mining
agent should be maintained or changed.

E. Description of the AMAARM’s Mechanism
The state of the AMAARM’s Mechanism is represented by
the 3-tuple <S, L, T>, where S represent the behavioral state
of the Mechanism which identifies what the Mechanism is
doing currently. S could therefore be the state where the
Mechanism senses the environment for changes or the state
at which action is taken to change the agent’s goal. L is the
current location of the agent, and T is the time the
Mechanism had spent in its current state. The state variable S
can take one of three possible values: extractGoal,
executeCommand and senseEnvironment. In the extractGoal
behavioral state, the Mechanism picks up the current mining
goals to be executed, and generates the set of commands for
it. In the executeCommand behavioral state, the generated
commands are carried out. In the senseEnvironment
behavioral state, the Mechanism senses the environment and
forms a current view of the environment, and then passes it
to the Adapter. Figure 3 is a state diagram showing the
different states that the AMAARM’s Mechanism can be at
any point in time and the possible state transitions.

According to Figure 3, the Mechanism can always be in
any of these three states: the FirstNormalState =
<extractGoal, L, T> or SecondNormalState =
<executeCommand, L, T> or SenseEnvironmentState =
<senseEnvironment, L, T>, where L and T retains their
predefined definitions as L contains the current location of
the agent, and T is the time the MAARM had been in that
state, which is usually reset to 0 every time a state transition
occurs. Initially, the mechanism enters the FirstNormalState
on receiving an ordered set of goals from the adapter. The
commands for the next goal in the ordered list are generated
and a transition to state SecondNormalState occurs.

Figure 3: State Diagram of AMAARM

In the SecondNormalState, the commands are executed,
and then, the transition goes back to the FirstNormalState in
order to generate the commands for the next goal in the list
of goals. This process continues until all the goals in the list
are executed by the Mechanism. However, the Mechanism
may go to the third state, that is, SenseEnvironmentState =
<senseEnvironment, L, T> from either the FirstNormalState

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

or the SecondNormalState if any of the following happens: a
timeout, a fault, or a coded adaptation (an explicit command
in the application code itself to sense the environment for
adaptation reasons), a collision, an attempt to corrupt the
mining agent, etc. The T component of the Mechanism state
detects a timeout if an action is not carried out within a
specified time in the SecondNormalState. This may indicate
changed environment and may force AMAARM to sense the
environment and determine whether adaptation is necessary.

In the SenseEnvironmentState, the environment is
usually sensed for any sort of change earlier mentioned and a
percept is sent to the Adapter to see if any adaptation is
necessary. Normally, the environment can also be sensed in
the FirstNormalState and the SecondNormalState,
occasionally as the case may be; but, in these cases there is
usually no interaction with the Adapter, therefore the values
sensed are usually used internally by those states of the
AMAARM.

Given a DARM environment, there may be different
ways the mining agent can adapt. Thus some type of ranking
of the adaptation methods in the adaptation policy is
necessary. This is achieved by a motivation degree function.
Motivation is any desire or preference that that can lead to
the generation and adoption of goals and which affects the
outcome of the reasoning or behavioral task intended to
satisfy the goal [16]. A motivation degree is therefore
associated with each adaptation method, which is the
probability of success in achieving the final goal if the set of
goals corresponding to the adaptation method is selected as
the current set of goals. The Adapter then selects the
adaptation method with the highest motivation degree
corresponding to the current environment. The set of
adaptation methods and the motivation degree function can
be hard-coded or learnt dynamically from history or a
combination of both where the user specifies an adaptation
policy and a motivation degree function, which then can be
modified dynamically as well. For the purpose of this work,
the adaptation policies for AMAARM are hard-coded.

The adaptive state of the AMAARM is thus described by
the 3-tuple <MS, AS, AS>, where MS is the Mechanism
state, AS is the Adapting state, and AS is the Application-
specific state for the AMAARM. On receiving a percept
from the Mechanism, the Adapter goes through the set of
adaptation methods, looking for the ones that match the
percept. The one with the highest motivation degree is then
chosen, and the current set of ARM goals are modified to be
the one corresponding to that adaptation method. The new
ARM goal set is passed to the Mechanism, which then
generates and executes commands for the set of goals. If no
adaptation method matches the current environment,
adaptation is deemed unnecessary and no change to the goal
set occurs. Thus, no adaptation can also be viewed as a
special adaptation method.

F. Description of the AMAARM’s Adapter
The Adapter state consists of the two tuple <S, T>, where

S is the behavioral state of the Adapter, which can only adapt
by either maintaining the mining goals, if a change of goal is
not necessitated by the percepts received from the

mechanism, or modify the mining goals if the percepts
received from the mechanism is significant for modifying the
original goals. T is the time spent in the AdaptToChange
state. An attribute is a perceivable feature of the DARM
environment, e.g., a fault in the DARM environment, a time-
out, agent collision or an attack or violation of the integrity
of the mining agents. A percept is a set of attributes, that is, a
view of the DARM environment. An adaptation method is a
single mapping from a percept to a set of mining goals. An
adaptation policy is a set of adaptation methods. Thus, in this
case, the adaptation policy specifies the possible ways in
which the AMAARM adapts to different DARM
environments.

IV. CONCLUSION AND FUTURE WORK
An adaptive distributed association rule mining

architecture with adaptive mining agents was presented. The
system described here promises to guarantee the completion
of major DARM tasks even in the face of unforeseen
circumstances and faults. Each individual data server has
some specific data and resource requirements, all of which
have to be satisfied before the task can be started. An
adaptive mining agent AMAARM executing a task migrates
to a data server from the DARM server, and tries to generate
the frequent itemsets. If all the necessary resources at the
data site are available and the environment is conducive, then
the mining task is executed. Otherwise, the data server
environment is sensed to get an idea about the time the
adaptive mining agent may have to wait to perform the
mining task. The MAARM relies on the coded adaptation to
make this adaptation decision. Future work will consider the
set of adaptation methods and policies in DARM that will be
a combination of hard-coded policies and also dynamic
learning of earlier mining agents’ adaptation from history.
Implementation of the system using synthetic and real life
datasets in order to test the performance of this method will
also be done as a future work.

REFERENCES
[1] R. Agrawal, T. lmielinski, and A. Swami, “Mining Association Rules

between Sets of Items in Large Databases,” In Proceedings of the
ACM SIGMOD Conference on Management of Data, Washington,
D.C, 1993, pp. 207-216.

[2] V. S. Rao and S. Vidyavathi, “Distributed Data Mining And Mining
Multi-Agent Data,” (IJCSE) International Journal on Computer
Science and Engineering vol. 02, no. 04, 2010, pp. 1237-1244.

[3] M. Z. Ashrafi., D. Taniar, and K. Smith, Monash University “ODAM.
An Optimized Distributed Association Rule Mining Algorithm”,
IEEE distributed systems online, pp. 1541-4922 © 2004 published by
the IEEE computer society vol. 5, no. 3; march 2004

[4] H. Kargupta, H. Ilker, and S. Brian, “Scalable, istributed data mining-
an agent architecture,” In Heckerman et al. [8], pp. 211.

[5] A. O. Ogunde, O. Folorunso, A. S. Sodiya, and G. O. Ogunleye, “A
Review of Some Issues and Challenges in Current Agent-Based
Distributed Association Rule Mining,” Asian Journal of Information
Technology, vol. 10, no. 02, 2011, pp. 84-95.

[6] K. A. Albashiri, “EMADS: An Investigation into the Issues of Multi-
Agent Data Mining,” PhD Thesis, The University of Liverpool,
Ashton Building, United Kingdom, 2010.
www.csc.liv.ac.uk/research/techreports/tr2010/ulcs-10-004.pdf
[retrieved: June, 2012]

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

[7] M. Wooldridge, “An Introduction to Multi-Agent Systems,” John
Wiley and Sons (Chichester. United Kingdom), 2009.

[8] M. Wooldridge, “Reasoning About Rational Agents,” Cambridge,
MA: MIT Press, 2000.

[9] F. M. T. Brazier., and N. J. E. Wijngaards, “Automated servicing of
agents,” AISB Journal, vol.1, no.1, pp. 5-20, 2001.

[10] S. Ranjan, A. Gupta, A. Basu, A. Meka, and A.Chaturvedi, “Adaptive
mobile agents: Modeling and a case study”. 2nd Workshop on
Distributed Computing “IEEE md CFP : WDC’2000’.

[11] N. Lacey and H.Hexmoor, “Norm Adaptation and Revision in a
Multi-Agent System”, American Association of Artificial
Intelligence, FLAIRS 2003, pp. 27-31.

[12] L. H. Tamargo, A. J. Garcia, M. A. Falappa, and G. R. Simari,
“Modeling knowledge dynamics in multi-agent systems based on
informants,” The Knowledge Engineering Review, Cambridge
University Press, DOI: 10.1017/S000000000000000, Printed in the
United Kingdom, vol. 00:0, pp. 1-31, 2010.

[13] S. M. Khan and Y. Lespérance, “A Logical Framework for Prioritized
Goal Change,” Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), May, 10–14, 2010, Toronto,
Canada, pp. 283-290.

[14] M. B. Riemsdijk, M. Dastani, and M. Winikoff, “Goals in Agent
Systems: A Unifying Framework,” Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2008), May,
12-16, 2008, Estoril, Portugal, pp. 713-720.

[15] A. O. Ogunde, O. Folorunso, A. S. Sodiya, and J. A. Oguntuase,
“Towards an adaptive multi-agent architecture for association rule
mining in distributed databases,” Adaptive Science and Technology
(ICAST), 2011 3rd IEEE International Conference on 24-26 Nov.
2011, pp. 31 – 36 from IEEE Xplore.

[16] Z. Kunda, “The case for motivated reasoning,” Psychological
Bulletin, 108 (3), pp. 480-498, 1990.

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

