
Adaptation Algorithm for Navigation Support in User Adaptive Enterprise

Application

Inese Supulniece

Institute of Information Technology, Riga Technical University

Kalku 1, Riga, Latvia, LV-1658

Inese.Supulniece@rtu.lv

Abstract—User Adaptive Enterprise Application supports

users in identification of more efficient variations of business

process executions. It is the set of adaptive components to be

added to standard enterprise application. Adaptive navigation

support is one of identified components with the aim to help

users execute routine activities faster, reduce amount of

mistakes and support new users of the system. The paper

presents a meta-model, architecture and adaptation algorithm

behind the adaptive navigation support. Business process

constraints are used to describe business rules and restrictions.

Process execution patterns are used to discover characteristics

and preferences of individual users. The proposed algorithm is

evaluated using simplified sales process simulation in

Microsoft Dynamics AX and task management process

simulation. The results of the early evaluation show that

adaptive navigation component supports business rules and

individual variations of business process execution. It also

indicated some limitations of applying business process

constraints on user interface level.

Keywords-user adaptive system; enterprise application;

adaptation algorithm; recommendation.

I. INTRODUCTION

Today, in rapidly changing environment, business
processes are dynamic [1]. The need to adapt a process has
been a topic of interest in the recent years [1]. Enterprise
applications are used to execute business processes. Usually,
these are packaged applications providing standardized
implementations of business processes. Users of enterprise
applications either use predefined workflows or rely on user
documentation and best practices to execute their business
processes [2]. Besides these standard capabilities, in many
cases, users also can use other functions provided by
enterprise applications subject to their access rights. That
means that users have possibilities to introduce their own
variations in process execution. By considering these
variations, users might come up with more efficient ways of
executing business processes [3]. If an enterprise application
supports users in identification of more efficient variations of
business process execution and enables for continuous
execution refinement it is referred as to as User Adaptive
Enterprise Application (UAEA) [4].

There exist various approaches, on how to manage
business process variants without violating organisational
rules. One of them is description of business processes, using
process constraints [5]. Business process constraints can
express minimal restrictions on the selection and ordering of

tasks of the targeted business process, thus providing a
degree of flexibility in process execution. Constraint-based
models are considered to be more flexible than traditional
models because of their semantics: everything that does not
violate constraints is allowed [5].

The objective of this paper is to present the meta-model,
architecture and adaptation algorithm behind Adaptive
Navigation Support (ANS) of UAEA. This component is
using 1) business process constraints to keep main rules of
the processes under control while allowing different business
process execution variants; and 2) task execution patterns to
manage individual user oriented process variants.

The rest of paper is structured as follows: Section 2
provides brief introduction to UAEA. Section 3 presents
adaptation constraints for business process variants. The
ANS component is explored in Section 4. The paper
concludes with Section 5, where conclusion and further
research are discussed.

II. USER ADAPTIVE ENTERPRISE APPLICATION

There are multiple ways the enterprise applications could
be adapted, e.g. [1], [6], [7]. In the context of UAEA, the
adaptation engine generates the user-oriented view of
business processes in the enterprise application. Given that
ERP systems are mainly used for repetitive tasks [8], the
user-oriented process adaptation uses previously observed
users’ behavior to optimize performance of business
activities. [6] and [7] discusses the same problems and
similar approaches for solving them, however, architecture
and logics differ per each research (also for this paper). Each
of proposals has its own motivating business case, benefits
and restrictions, thus it is rather impossible to compare their
effectiveness. For example, the adaptation mechanism in [6]
applies two data sets: the process model, which describes
business rules and the sequence graph, which comprises
nodes representing the individual process steps. An directed
edge between two nodes A and B of the sequence graph
describes a temporal sequence that process step B follows
immediately after A and edge value represents the likehood
of following a particular path through the process. Our
adaptation mechanism uses business process constraints to
describe business rules and an ordinary sequence to keep
individual process execution variants. The choise between
usage of the full business process model (as in [6]) or
business process constraints (as in this paper) depends on the
flexibility degree of the process.

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

mailto:Inese.Supulniece@rtu.lv

The idea of the UAEA and main characteristics are
described in [4], where the model of UAEA is elaborated.
The overall goal of the UAEA is to identify possibilities of
existing enterprise applications to raise performance
efficiency (see Figure 1). Related operational goals are:
optimization of routine activities, preventing mistakes,
decreasing the learning time for new processes and for new
employees. Technically, system should optimize routine
activities, prevent mistakes and support non-routine
activities. This is measured in process execution time and
amount of mistakes.

<<Business goal>>

<<Operational goal>>

<<Technical goal>>

(<<Measurement>>)

Raise performance

efficiency

Optimise routine

activities

Prevent mistakes

Decrease learning

time for new

processes

Decrease learning

time for new

employees

Improve system’s

usability

Optimise routine

activities
(Execution time)

Prevent mistakes
(Amount of mistakes)

Support non-routine

activities
(Execution time and

amount of mistakes)

Figure 1. The goal model of the UAEA.

UAEA is the set of six adaptive components to be added
to a standard enterprise application:

Adaptive process execution overview shows full process
or part of the process, current activity and possible paths to
finish the process. The aim of this recommendation is to
provide local or global guidance for user, especially for non-
routine activities.

Adaptive navigation support (ANS) presents
recommendation block with recommended navigation item,
mandatory and prohibited activities for particular process.
The aim of this recommendation is to help user execute
activities faster, to reduce amount of mistakes and support
new users of the system.

Adaptive information support recommends related
documents, systems or data based on local or global patterns.

Adaptive decision support recommends possible
decisions based on local or global decision patterns.

Adaptive problem preventing presents most common
problems and solutions related to current activity. It prevents
possible mistakes for non-routine activities or new users.

Adaptive error and exception handling notifies user
about incompleteness in process execution, e.g., missed
activity or not finished process.

Idea of the ANS for the UAEA lies in the following
observation [9]: users use enterprise application to
accomplish their tasks, usually consisting of multiple steps;
each user or user group has a preferred sequence of the steps
(task execution patterns). UAEA attempts to exploit such
usage patterns with the aim to improve performance
efficiency.

This paper explores a meta-model, architecture and
adaptation algorithm behind ANS component.

III. ADAPTATION CONSTRAINTS FOR BUSINESS PROCESS

VARIANTS

In large enterprises, it can be observed that a common
business processes exists in many variations across different
parts of the organisation [10]. When supporting business
processes there is a difficult trade-off to be made between
control and flexibility [5].

Control is achieved with restrictions for the process
adaptation, which are modeled as rules or constraints.
Business process constraints are suitable for supporting
flexible processes that allow many different executions [5].
Most theoretical process modeling languages, such as Petri
Nets, process algebras, BPMN, UML and EPCs define direct
causal relationships between activities in process models.
Opposed to this, constraint-based languages are of a less
procedural nature and use a more declarative style [5].
Declarative languages are more flexible by nature, and it is
more likely that users working in such an environment need
support, e.g. recommendations [7].

There have been proposed a number of constraint
languages in various disciplines, e.g., ConDec [11], Object
Constraint Language [12], MiniZinc [13]. These are
extensive approaches; consequently they require specific
knowledge and complex algorithms for run-time process
adaptation based on available constraints.

Lu et al. [14] presents how task selection constraints can
be specified at design time, through selection constraints.
This approach was adapted for the ANS, because it is
unsophisticated, efforts for managing and using the business
process constraints should be kept minimal and seems to be
promising approach for combining process constraints and
task executions patterns in adaptation algorithm.

In [14], the following classes of selection constraints
have been identified:

(1) Mandatory constraint man defines a set of tasks that
must be executed in every process variant, in order to
guarantee that intended process goals will be met.

(2) Prohibitive constraint pro defines a set of tasks that
should not be executed in any process variant.

(3) Cardinality constraint specifies the minimal
minselect and maximal maxselect cardinality for
selection among the set of available tasks.

(4) Inclusion constraint inc expresses the dependency
between two tasks Tx and Ty, such that the of Tx
imposes restriction that Ty must also be included.
Prerequisite constraint pre is the inverse of an
inclusion constraint.

(5) Exclusion constraint exc prohibits Ty from being
included in the process variant when the Tx is
selected.

(6) Substitution constraint sub defines that if Tx is not
selected, then Ty must be selected to compensate the
absence of the former.

(7) Corequisite constraint cor expresses a stronger
restriction in that either both Tx and Ty are selected,
or none of them can be selected, i.e., it is not
possible to select one task without the other.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

(8) Exclusive-Choice constraint xco is also a more
restrictive constraint on the selection of alternative
tasks, which requires at most one task to be selected
from a pair of tasks (Tx, Ty).

The mentioned classes of selection constraints are re-
used in the ANS component.

IV. ADAPTIVE NAVIGATION SUPPORT

The main goal of the ANS component is to optimize
routine activities, prevent mistakes and also support new
users during non-routine activities. The changing object for
this component is user and task. It means that adaptation
result differs per user and takes into account situational
aspects.

Figure 2 presents a meta-model of the ANS component,
which illustrates the main concepts used by the adaptation
algorithm. An enterprise application consists of user
interface (UI) elements, which are mapped to the activities of
the process. Capturing the activities, which are not related to
the control UI elements of the application, is out of the scope
of this research and proposed adaptation algorithm. Each UI
element belongs to some UI form or window. Constraint
consists of two activities. Constraints are defined separately
for each form/window. Process execution pattern comprises
activities representing the actually executed process steps. It
consists of two or more activities and it is related to the user,
who executed the particular pattern. Each pattern has the
attribute – frequency of execution – how many times the
pattern was executed. The set of global patterns include all
execution patterns, despite the user, who created it. The set
of local patterns include only those patterns, which were
executed by the particular user.

Activity Patterns

Constraint

UI element

User

Global Pattern

Local Pattern

--Frequency of

execution

Form/window

1

0..*
2..*0..*

2

0..*

1

1

11..*

0..*

1

Figure 2. The meta-model of the ANS component.

The architecture of the ANS component is illustrated in
Figure 3. It consists of data bases (event logs); repositories
(users, constraints, activities, execution patterns); engine for
the adaptation algorithm and the user interface of the ANS.
Types of business rules or constraints are adapted from [14]
and are available in the form:

<form/window>,<constraint_type>{Tx, Ty}.

Standard UI of

Enterprise Application

Event logs

Users

repository

Activities

(UI elements)

repository

Business

rules

(constraints)

repository

Adaptation Algorithm for Adaptive Navigation Support

Adaptive Navigation

Support UI
User

interface

Engines

Repositories

Data bases

C
lie

n
t
s
id

e
S

e
rv

e
r

s
id

eProcess

models

(execution

patterns)

repository

Figure 3. The architecture of the ANS component.

Process models or execution patterns are saved as the
sequences of activities a1, a2, …an. All activities executed by
each individual user are perceived and stored as business
process patterns.

A. Description of the adaptation algorithm

The current activity, process execution patterns
(individual and global) and business process constraints
forms the input to the adaptation algorithm (see Figure 4).
The main output is recommended next step.

Adaptation

algorithm

Process execution

 patterns

Business process

constraints

Recommendation:

next step

Mandatory activities

(to complete the

process successfully)

Prohibited activities

(to complete the

process successfully)

Current activity

Figure 4. Input/ouput view of the adaptation algorithm.

To realize the adaptation algorithm of the ANS, the
following data sets are introduced: 1) M – consists of
activities M1, M2, …, Mk, which are mandatory; 2) E –
consists of activities E1, E2, …Eu, which are prohibited; 3) I –
consists of executed activities I1, I2, …Ip. All mentioned data
sets are sequences.

Figure 5 presents simplified view of the adaptation
algorithm behind the ANS. Firstly, the system reads the
activity A performed by the user, identifies the form Fo and
selects all constraints, which include activity A. When the
user executes any activity inside some form/window Fo, then
all activities from the set of constraints {Fo,man{Ti}} are
automatically added to the set M and all activities from the

Read user activity

A

Select all constraints, where activity A

is presented and fullfill the sets M and

E according to special rules*

Are there local patterns like

„I, %”?

Are there

global

patterns like

„I, %”?

no yes

no

yes

Select the list of the

potential next steps

(candidates) based on

pattern usage frequency

Sort out those

candidates, which

exists in the set E

Is there left any

candidate?

no

yesRecommend next activity

Recommend the first

activity from the set M,

which is not in the set I.

User chooses proposed or other activity

Content of the set I is

added to the list of

patterns. The sets M,

I, E are emptied.

User chooses

to finish the

work with

the system

Activity A is added to the set I

Identify the form/

window Fo for

activity A and select

all constraints for

this form

All mandatory activities from

the derived set are added to

the set M. All prohibited

activities from the derived set

are added to the set E.

Figure 5. Simplified view of the adaptation algorithm behind the ANS.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I. THE LIST OF SPECIAL RULES

When any element H is added to the set M, then following rules

should be verified:

If there exists constraint Then execute following action

{Fo,inc(H, Tyi)} Tyi is added to the set M

{Fo,exc(H, Tyi)} Tyi is added to the set E

{Fo,pre(Txi, H)} Txi is added to the set M

{Fo,cor(H, Tyi)} Tyi is added to the set M

When any element H is added to the set E, then following rules

should be verified:

If there exists constraint Then execute following action

{Fo,sub(H, Tyi)} Tyi is added to the set M

{Fo,cor(H, Tyi)} Tyi is added to the set E

set {Fo,pro{Ti}} are automatically added to the set E. But
activity A is added to the set I.

Secondly, all constraints (including activity A) are
reviewed by the system using special rules and the sets M
and E are supplemented. For example, if there exists
constraint {Fo,inc(A, Tyi)}, then both activities A and Tyi

must be executed together. Consequently Tyi is added to the
set of mandatory activities M. The special rules are listed in
Table 1.

Further the list of local patterns is identified. If there are
not local patterns, then system looks for global patterns. The
list of the potential next steps is prepared according to the
pattern usage frequency. If candidate exists in the set E, then
it is removed from the list of the potential next steps. The
system recommends the candidate with the highest pattern
usage frequency index. If there are no candidates, then
system recommends the first element from the set M, which
is not executed yet. Next, it is up to user to utilize or ignore
the recommendation.

B. Initial testing of the algorithm

The aim of initial testing was to prove: (1) if constraint
types from [13] can be applied on user interface level and (2)
if logic of the algorithm provides expected results.

Recommendation (Adaptive

Navigation Support)

Recommended step:

Form: Activity (form will be opened)
Click here for all recommended steps

Mandatory activities:

Form: Activity (form will be opened)

Form: Activity (form will be opened)

Form: Activity (form will be opened)

Form: Activity (form will be opened)

...

Prohibited activities:

Form: Activity (form will be opened)

Form: Activity (form will be opened)

Form: Activity (form will be opened)

...

Executed activities:

Form: Activity (form will be opened)

Form: Activity (form will be opened)

Form: Activity (form will be opened)

...

START NEW TASK/PROCESS

CANCEL EXECUTED TASK/PROCESS

STANDARD FUNCTIONALITY

Figure 6. User interface prototype of the ANS.

Testing was performed as 1) simplified task management
process simulation and 2) simplified sales process simulation
in Microsoft Dynamics AX [15] Sales module and system
proposed recommendations according to the user interface
prototype, which is presented in Figure 6.

At the current stage of the research the main idea of
testing was to perform initial validation of logics. Usability,
performance and effectiveness testing is planned in nearest
future.

The results of the testing indicated limitations and
problems of applying mentioned constraints on user interface
level.

1) Task management process support
Before the testing, the following preparation works were

done:

 Business process constraints were transferred to user
interface level – see Table II.

 Four different process execution alternatives were
stored in execution patterns repository – see Table
III.

In the task management process, a user selects new or
existing task. The task can be completed, forwarded, closed
and/or supplemented with additional information. The
possible process execution alternatives are illustrated in
Figure 7.

1

2

3

4

5

6 7

8

9 10

11

12
13

14

Figure 7. Task management: variations in process execution.

One variant of the process execution was simulated
during the initial testing. The simulated process included
nine activities. Seven activities corresponded to system
recommendations and one recommendation failed. Testing
report is available in Figure 8.

1 3 5 8 9 1013 14 3Actual activity A

1 1 1,5

Recommended

activity 2 5 13 14 3 8 9 10 -

M 1 1,5 1,5 1,5,13 1,5,

13,14

1,5,13,

14,3

1,5,13,

14,3,8

1,5,13,

14,3,8,9

1,5,13,14,

3,8,9,10

-E 2,42,42,42,4----

I 1,5,13 1,5,

13,14

1,5,13,

14,3

1,5,13,

14,3,8

1,5,13,

14,3,8,9

1,5,13,14,

3,8,9,10

Figure 8. Task management: testing results.

2) Sales process support
The three alternatives of the basic sales process activities
were executed during the testing. The first alternative was
linked to the user 1 – very careful person, who verifies the
data before doing any action, e.g., prove the stock before
adding the product to the offer. Second alternative was
linked to the user 2 - person, who trusts the system and does
only basic steps. Third alternative was linked to the user 3.

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE II. BUSINESS CONSTRAINTS

Type Form Activities

EXC New/existing task 3,2

EXC New/existing task 3,4

PRE New/existing task 5,3

PRE Forwarding form 8,9

PRE Additional information 13,14

PRE Closing form 11,12

PRE Solution form 6,7

TABLE III. BUSINESS PROCESS PATTERNS

Pattern Usage frequency User

1,2,6,7 5 1

1,3,8,9,10 2 1

1,4,11,12 3 1

1,5,13,14,3,8,9,10 1 1

These alternatives were stored as process execution patterns
and business process constraints were transferred to user
interface level, e.g., delivery address and currency is
mandatory information.

C. Limitations

The main problem is related to usage of constraints,
because originally constraints in this form were developed
for description of business processes. Constraints in current
form define only relations between every 2 activities. For
example, none of described constraints allows specifying the
following rule: if client is selected, then afterwards it is
mandatory to Save the form OR Cancel the form. One option
would be to write this rule as inc{(client is selected),
xco{Save, Cancel}}. But this requires more sophisticated
algorithm, which might end with performance issues on real
life system and data amount.

 Another problem is related to user interface design of
described component. How to track read-only fields; when
user uses it; when they stop to be relevant to particular
activity?

Consequently, currently design of Adaptive Navigation
Support component recommends only next executable
activity and opens the full form, where it is located.

V. CONCLUSION AND FUTURE RESEARCH

This paper presented a meta-model, architecture and
adaptation algorithm behind adaptive navigation support
component in user-adaptive enterprise application. Business
process constraints are used to describe business rules and
restrictions. Process execution patterns are used to discover
characteristics and preferences of individual users.

Important problems are identified at current stage, e.g.,

limitations of existing form of defining the constraints. Now
the aim is to develop an interactive prototype of the Adaptive
Navigation Support component and test usability,
effectiveness and performance by real users.

Also valuable ideas rose during the research, e.g.
differentiation between mandatory and optional constraints
as suggested by [5].

ACKNOWLEDGMENT

This work has been supported by the European Social
Fund within the project «Support for the implementation of
doctoral studies at Riga Technical University».

REFERENCES

[1] G. Hermosillo, L. Seinturier, L. Duchien, „Using Complex
Event Processing for Dynamic Business Process Adaptation”,
In Proc. of the 7th IEEE 2010 International Conference on
Services Computing, 2010. DOI : 10.1109/SCC.2010.48

[2] T.A. Curran, A. Ladd, “SAP R/3 Business Blueprint:
Understanding Enterprise Supply Chain”, Prentice Hall PTR,
Upper Saddle River, 2000.

[3] H. Topi, W. Lucas, T. Babaian, “Identifying usability issues
with an ERP implementation”, In Proc. of ICEIS 2005, pp.
128-133.

[4] I.Supulniece, J.Grabis, “Modeling of user adaptive enterprise
applications”, In Proc. of ICEIS 2012, in press.

[5] M. Pesic, M.H. Schonenberg, N. Sidorova, W.M.P. van der
Aalst, ”Constraint based workflow models: Change made
easy”. In Proc. of OTM Confederated International
Conferences 2007, 2007, pp. 77-94.

[6] C. Dorn, T. Burkhart, D. Werth, S. Dustdar, „Self-adjusting
recommendations for peopledriven ad-hoc processes”, In:
Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol.
6336, Springer, Heidelberg, 2010, pp. 327–342.

[7] B. Weber, B.F. van Dongen, M. Pesic, C.W. Guenther,
W.M.P. van der Aalst, „Supporting flexible processes through
recommendations based on history”, Eindhoven University of
Technology Eindhoven, BETA Working Paper Series, 2007.
ISBN: 978-90-386-1038-2.

[8] H. Klaus, M. Rosemann, G.G. Gable, “What is ERP?”
Information Systems Frontiers 2:2, 2000, pp. 141-162.

[9] I. Supulniece, J. Grabis, “Discovery of personalized
information systems usage patterns”, In Proceedings of
ICIST, Kaunas, Lithuania, 2010, pp. 25-32.

[10] M. Weidlich and M. Weske. “Structural and behavioural com-
monalities of process variants”. In Proc. of ZEUS'10, Berlin,
Germany, CEUR vol.563, 2010, pp. 41-48, CEUR-WS.org

[11] M. Pesic and W.M.P. van der Aalst, “A declarative approach
for flexible business processes”. In J.Eder and S.Dustdar,
(eds.), Business Process Management Workshops, Workshop
on Dynamic Process Management (DPM 2006),LNCS, vol.
4103, Springer-Verlag, Berlin, 2006, pp. 169-180.

[12] Object Management Group, “Object constraint language
specification version 2.3.1”. OMG, 2012

[13] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck
and G. Tack, “MiniZinc: Towards a standard CP modelling
language”. In CP, LNCS 4741, 2007, pp. 529–543

[14] R. Lu, S. Sadiq, G. Governatori, X.Yang, “Defining
adaptation constraints for business process variants”, In Proc.
of BIS, 2009, pp. 145-156

[15] Microsoft Dynamics AX, Retrieved from http://www.
microsoft.com/en-us/dynamics/erp-ax-overview.aspx

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

http://www.microsoft.com/en-us/dynamics/erp-ax-overview.aspx
http://www.microsoft.com/en-us/dynamics/erp-ax-overview.aspx

