ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Real-Time Transfer and Evaluation of Activity Recognition Capabilities in an
Opportunistic System

Marc Kurz, Gerold Holzl, Alois Ferscha
Johannes Kepler University Linz
Institute for Pervasive Computing

Linz, Austria
{kurz, hoelzl, ferscha} @pervasive.jku.at

Abstract—This paper describes and evaluates the challenging
feature of an opportunistic activity recognition system to train
a newly discovered sensor with the available sensing devices
to recognize activities at runtime. The term ”opportunistic”’
means that the system does not operate with a fixed set of
sensor devices, but uses and configures the currently available
sensors that just happen to be available. Therefore, the paper
presents a reference implementation of an opportunistic system,
referred to as OPPORTUNITY Framework, and demonstrates
the transfer of recognition capabilities from a fused multi-
sensor ensemble to an untrained sensing device within the
system in a real-world setup. Main contribution of the paper
is the evaluation of the approach by describing an experi-
mental setup and presenting results in terms of accuracy and
recognition rate from the machine-learning perspective as well
as from the framework and system perspective by comparing
predicted classes from the teaching sensor set and the newly
trained sensor to obtain QoS parameters.

Keywords-Activity and Context Recognition; Opportunistic
Sensing; Senor Networks.

I. INTRODUCTION

Activity and context recognition systems utilize sensing
devices that are available in the environment, on objects, or
on persons to sense the world in terms of inferring activities.
Traditionally, machine learning technologies that interpret
the sensor datastreams are trained in an offline mode, at
the design time of the system [1]. In contrast to that, an
opportunistic system does not specify the set of required
sensor systems a priori, instead it utilizes sensor nodes
that just happen to be available to recognize the person’s
activities. Another major characteristic of an opportunistic
system is the fact that recognition goals are defined dy-
namically at runtime by an application or a user, and the
available sensing devices are configured to an ensemble,
which is the set of accessible sensors that are best suited to
execute this goal [2]. The type and modality of the involved
sensor systems that are utilized to execute a recognition goal
cannot be pre-defined as sensors are used that just happen to
be available. Therefore, the system has to handle physical,
logical, and other types of sensors [3] in order to execute a
recognition goal. Given these definitions, some characteristic
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features and application cases of an opportunistic activity
recognition system can be identified, like: (i) sensor appears,
(ii) sensor disappears, (iii) sensor reappears, (iv) sensor
delivers reduced-quality data and (v) sensors are trained
for an active recognition goal at runtime [4].

This paper presents the feature that a newly appeared
sensor (Learner) can be trained with the existing ones that
are executing a recognition goal (Teacher(s)) by providing
the predicted activity class to incrementally train the new
sensor and calculate QoS parameters [5S] on the fly to
estimate to what extent the learner will be able to contribute
to a future, similar recognition goal. Therefore, we use the
OPPORTUNITY Framework, a reference implementation of
an opportunistic activity recognition system (see [3] [4] [5]).
By utilizing a system-supervised learning approach on the
new sensor node [6] we compare the predicted label of the
teacher to the label predicted by the learner to calculate
a degree of fulfillment (DoF) [5] metric that indicates to
what extent a sensor can fulfill a certain recognition goal.
This information together with the dynamically obtained
machine learning parameters (e.g., classifier model) is stored
persistently in the sensor’s self-description. We present and
evaluate the approach by operating the OPPORTUNITY
Framework in a real-world scenario with four body-mounted
sensor devices that deliver triaxial accelerometer data. We
transfer the capability to recognize the locomotion of a
person (i.e., WALK, SIT, STAND, LIE) from a 3-sensor
ensemble to a single sensor and compare the teacher with
the learner output class to evaluate the approach. This
is radically different from standard settings using offline
training, since we cannot gather groundtruth labels here to
assess the performance of the learner. We instead have to
rely only on the teacher-learner comparison.

The remainder of the paper is structured as follows:
Section 2 provides an overview on related work. Section
3 presents a description of the technical details and the
realization of the sensor learning approach. Sections 4 and
5 describe an experimental setup with on-body sensors and
the results of the training. Section 5 closes with a conclusion
and an outlook.
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II. RELATED WORK

Traditional activity recognition systems have to define
the classes that shall be recognized, the sensors and their
operating characteristics at design time of the system. The
activity recognition chains that process sensor signals to
infer activities involve different steps: datastream prepro-
cessing, feature extraction, classification and multi-sensor
fusion. The classification step (mapping feature vectors to
a defined set of output classes) involves offline-trained
machine learning algorithms [1] [7] [8].

As opportunistic sensing and opportunistic activity recog-
nition draw from the characteristic to use sensor nodes that
just happen to be available to execute a dynamically-stated
recognition goal (see [2] [3] [4] [5]), an approach to make
sensors ready to recognize activities on the fly at runtime
of the system is necessary. This transferring of recognition
capabilities from one (or more) sensor(s) to another sensor
can be done on the classifier level, where the model is
transferred directly from one sensor node to another [6].
This approach suffers from the problem that both nodes
have to operate on the same feature space, which limits
the approach. Another way is to provide the feature space
independent classes to the learner, which can incrementally
train the baseline machine learning technologies [6]. In [9]
the authors showed the transfer of activity recognition capa-
bilities from one smart home to multiple different systems
operating in the same domain. Again, the transfer relies on
a common feature space. The transfer of capabilities across
multiple feature spaces is also shown in [10].

This paper takes on the approach that is presented in
[6] and shows that the transfer of recognition capabilities
in an opportunistic environment is possible in a real-world
scenario. As no ground truth is usually available, an estimate
of the QoS for the learner has to be calculated. This is
done in form of a DoF that is calculated by comparing the
predicted class from the teacher with the predicted class
from the learner and stored as part of the sensor self-
description. Details of these self-descriptions are presented
in [5]. This paper extends the system-supervised learning
approach that operates independently from the feature spaces
of the teachers and learners as described in [6]. There,
the approach is described and evaluated on a rich dataset
[11] and by using Nearest Class Center (NCC), k-Nearest
Neighbors and SVM classifiers with the advantage to have
a groundtruth available. Main contribution of this paper
is the application of the approach in the OPPORTUNITY
Framework, and the empirical calculation of the accuracy in
form of the DoF during the training phase at runtime.

III. TECHNICAL DETAILS AND REALIZATION

This Section provides technical details of the OPPOR-
TUNITY Framework, the applied sensor self-description
concept, and how the transfer learning approach is realized
within the framework.
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A. The OPPORTUNITY Framework

A reference implementation of an opportunistic activity
recognition system (the OPPORTUNITY Framework) was
developed and is used within this paper. The framework is
written in Java/OSGi and is a step towards a ready-to-use
middleware for building opportunistic activity recognition
applications in different domains [3] [4] [5]. An oppor-
tunistic system utilizes sensors in a way to configure the
best set of sensors according to a recognition goal. If we
assume that the set is not static, then our system needs
to react on changes in the sensing infrastructure (e.g., a
node might disconnect when running out of power). The
following more or less challenging features can be identified
that characterize such an opportunistic system in terms of
(self-) adaptation:

(i) Sensor appears: a new sensor joins the sensing in-
frastructure. If the sensor is already capable of con-
tributing to the recognition goal, the system has to
assess whether or not the sensor is able to increase the
overall ensemble’s contribution to the recognition goal.
If the sensor is still untrained, it can be trained by the
other sensor(s). The system gets the knowledge of the
sensor’s capabilities by parsing its self-description.
Sensor disappears: when a sensor disconnects, the
system reaction depends on whether the sensor was
or was not active in a configured ensemble. In case
the sensor was not active, the current sensor ensemble
does not have to be reconfigured. In the other case, a
reconfiguration could be needed.

Sensor reappears: same as sensor appears, but the
system already knows the sensor’s capabilities as it has
parsed its self-description on previous connections.
Sensor delivers faulty data: when a sensor is shifted or
broken it could be that it still delivers (reduced-quality)
data. The system has to recognize this and reduce the
trust indicator metric of the sensor [5] and - if necessary
- reconfigure the sensing ensemble.

Transfer of recognition capabilities to a sensor: this
is the main focus of this paper. A newly connected
sensor has to be trained by the other sensors in terms
of recognizing activities and an estimation needs to be
provided for the achieved accuracy.

Ensemble configuration at runtime: this is a key aspect
in an opportunistic system. Whenever a recognition
goal is stated to the system, the set of sensors that are
best suited to execute this goal are configured. This
process [5] has to be executed whenever something
happens in the sensing infrastructure.

(i)

(iii)

(iv)

)

(vi)

The next Section III-B explains the concept of sensor self-
description and how this can be used to perform real-time
transfer learning, and III-C describes how transfer learning
is implemented in the OPPORTUNITY Framework and how
its performance can be measured in an online setting.
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B. Sensor Self-Description

The sensor self-description is an important aspect in an
opportunistic activity and context recognition system. It
provides the technical details of the sensor to the system
and builds the connection point between the high-level
framework features and the machine learning technologies
on the lower levels. We have split the self-description into
two parts: (i) the technical description that holds the physical
characteristics as well as technical aspects of a sensor (e.g.,
power requirements, communication interface, update rate,
size, weight, ...), and (ii) the dynamic description that lists
the sensor’s capabilities according to recognition goals [5].
Both parts of the sensor self-description follow the OpenGIS
SensorML specification, an XML standard definition. The
concept of Experienceltems defines a complete recognition
chain of a sensor together with the required signal processing
and machine learning techniques (feature extraction, classifi-
cation, fusion) to recognize activity classes. Experienceltems
are part of the dynamic self-description and there can be
multiple items describing multiple activity classes or recog-
nition chains [5]. These Experienceltems and the defined
methodologies can be invoked and configured by the activity
recognition system at runtime on demand. The DoF defines
to what extent a sensor together with the recognition chain
can execute a recognition goal. Figure 1 shows a clipping
of an Experienceltem where the DoF is defined for the
activity class WALK. This means, that the sensor and the
corresponding machine learning techniques as defined in this
very Experienceltem can execute the recognition goal WALK
with a DoF of 0.75. This degree of fulfillment metric reflects
the expected accuracy in the recognition of a certain activity
and can be generally calculated in two ways:

(1) Statically by using a labeled groundtruth for learning:
normally a system is trained by using a groundtruth
that defines the sensor signal and patterns and the cor-
responding activity classes. The classification mecha-
nisms are therefore trained with the labeled groundtruth
data to autonomously detect significant and similar
patterns in the datastream. This approach presumes the
initial knowledge of the used sensors, their modalities,
the feature space, the exact position and location and
the activity classes that shall be recognized (and of
course a groundtruth of appropriate size/length).

(i) Dynamically by using transfer learning: this method is
the core contribution of the paper and will be described
in detail in the following Section III-C.

To avoid the need for a labeled groundtruth and thus the
training in offline mode, this paper presents and evaluates
the approach of training new sensor nodes at runtime of the
system and calculating the DoF by comparing the predicted
class from the teacher with the predicted class from the
learner. The next Section describes the approach of real-time
transfer learning and the calculation of the DoF in detail.
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<swe:field name="labellist">
<swe:DataRecord>
<swe:field name="WALK">
<swe:Text definition="dof">
<swe:value>0.75</swe:value>
</swe:Text>
</swe:field>
</swe:DataRecord>
</swe:field>

Figure 1. A clipping of an Experienceltem as part of a sensor self-
description together with the DoF metric [5].

C. Application of Transfer Learning

When a new sensor appears, the system parses its self-
description to check whether it can contribute to a running
execution of a recognition goal, or if not, whether it can
be regarded as a learner candidate for one of the goals that
are currently active. A learner candidate has to be defined
so by a human expert. For example, one could define an
accelerometer on the shoe as possible sensor to detect the
modes of locomotion. Learner candidates have in their self-
description a feature extraction and a classification method,
which form a default Experienceltem template. Their initial
DoF is set manually to ”0.0”. Thus, the system recognizes
a learner candidate for a recognition goal when a sensor
appears in the sensing environment with an initial zero DoF
value (for this very goal). This means that the sensor can
be picked for learning, and as soon as an ensemble that
executes the recognition goal is configured and active, the
learning process is initiated. The predicted classes from the
teacher are used by the learner to generate the classifier
model (persistently stored in form of a JSON file, see Figure
2 for an example) on the fly by assigning the activity class
to the extracted features from the datastream.

The calculation of the effective learner DoF is not a
trivial task, since groundtruth information is not available
at runtime. For the calculation of the DoF, we can only
rely on comparisons between teacher and learner, taking
into account that the teacher does not provide a perfect
groundtruth. We calculate the agreement rate using the
cumulative moving average, which is a statistical method to
analyze time series data [12]. In detail, the following values
and variables are used to calculate the DoF of the learner at
runtime:

e DoFr = DoF from the teacher (known from its Expe-
rienceltem).

e DoF, = DoF from the learner that has to be calculated
on the fly.

« n = count of predicted and compared activity classes.

o ¥ = degree of teacher-learner agreement during the
training phase, defined as the percentage of instances
where teacher and learner output the same activity class
label among the total number of examined instances.

e [0]1] = false and true, indicates the match (true) or
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mismatch (false) between the class labels predicted by
Teacher and Learner.

DoF7y, is calculated as follows as soon as the learning
process ends:

DoF, = DoFr %19, (D

which means that as soon as the learning process and
the comparison of the classes predicted by the learner and
teacher are over, the DoF of the learner is calculated by
multiplying the DoF of the teacher with the cumulative
average of the agreement rate. This multiplication has the
goal to rescale the calculated DoF in cases where we have
a high agreement between teacher and learner (J close to
1) and an imperfect teacher. In these cases, in fact, we
have high agreement between a learner and a wrong teacher,
which does not mean at all that the learner is fulfilling the
recognition goal properly. As a side effect, the estimated
DoFy, will always be smaller or equal to the DoFr, which
is indeed often the case, but the opposite can also happen, as
can be seen in a few cases in [6]. By the above calculation
we are then accepting the condition DoF, < DoFrp and
we are making a pessimistic estimate, which leaves us on
the safe side when using the learner in following missions
(the learner could perform even better than foreseen by the
system).

The end of the learning process in our version of the
framework is reached when either the teacher (or sensors
within the teacher ensemble) or the learner is disconnected.
Alternative approaches based on a time lapse or upon
convergence of the DoF will be investigated in future work.
The cumulative moving average of the agreement rate is
calculated at runtime as follows:

Py xn + [0]1]

nrl @)

ﬁn-i—l -

where n is incremented by one after each iteration. The
number that has to be added to the numerator, after having
multiplied ¥ with n, depends whether the class predicted
by the teacher agrees or disagrees with the one predicted
by the learner. In this way, the cumulative moving average
of agreeing labels can be calculated over time, building the
running accuracy for the learner measured with respect to
the teacher. When the training phase is finished, this relative
accuracy () is multiplied by the DoF of the teacher to get
an estimation for the DoF. This value and the newly built
classifier models (in form of a JSON file) are written back to
the sensor’s self-description, where they complete the usual
information about the used feature extraction and classifier.

IV. EXPERIMENT AND EVALUATION

We have set up a real-time scenario with body-worn
sensors to test and evaluate the transfer of recognition capa-
bilities for the modes of locomotion (WALK, SIT, STAND,
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"centroids" : [
[-8.4965,-2.2945,2.5368,0.29659],
[-9.2508,-2.3725,1.7388,1.3654],
[-9.3933,-1.9461,1.0396,0.13042],
[-4.4928,7.9204,-2.242,0.13042]

1,

"centroid_labels" : [3,1,5,4],

"number_of_instances" : [1310,433,476,95],

"cloud_size" : [
[1.0241,0.89795,1.8205,0.2136],
[0.32604,0.56007,0.71504,0.55195],
[0.26634,0.57792,1.1387,0.11843],
[1.1746,0.56141,1.5778,0.2331]

]

}

Figure 2. An example of a JSON file, which provides the configuration
of a classifier used for activity recognition (the classifier model) [5].

LIE). We have picked a rather easy activity set that has
to be recognized as the goal is not to work with sophis-
ticated and highly complex activity classes, but to test to
what extent rather simple and easy to recognize activities
are transferrable. We used 4 sensors that delivered triaxial
acceleration data. Two Intersense InertiaCube3 sensors were
mounted on the right upper-/lower-arm (motionjacket_RUA
and motionjacket_RLA, see Figure 3-1 and 3-2), one blue-
tooth accelerometer was mounted on the right knee of the
subject (btaccel RKN, see Figure 3-1 and 3-3), and one
SunSPOT accelerometer sensor was attached to the right
shoe (sunspot_shoetoebox, see Figure 3-1 and 3-3). The
ensemble that was trained and configured to recognize the
mode of locomotion activity classes consisted of the motion-
Jjacket_RUA, the sunspot_shoetoebox, and the btaccel RKN
sensors. The untrained sensor that was trained with the
predicted classes from the teacher ensemble in our test setup
was the motionjacket RLA sensor. The setup of the three
sensors in the ensemble was defined in an Experienceltem:

o Feature Extraction: Mean/Variance for each sen-
sor/recognition chain.

o Classification: NCC
sensor/recognition chain.

o Fusion: Majority-Voting Fusion to combine the classi-
fication results for each sensor/recognition chain.

e DoF: 0.792 for WALK, STAND, SIT, LIE for the com-

plete ensemble.

Classifier for each

Below the picture of the test subject in Figure 3, also some
sensor datastreams are shown. The motionjacket_RLA sensor
was picked as learner as we set its DoF to detect modes of
locomotion to zero. The predicted class from the ensemble
was not only presented as system result, but also to the
learner to incrementally train the classifier (NCC) model.
The following Section V summarizes the results that were
achieved within the experiment.

V. RESULTS

The learning phase in the experiment was 15 minutes
long. So the teacher-ensemble presented its predicted label to
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Figure 3.  Experimental setup of the on-body sensors together with
snapshots of the corresponding datastreams.

the learner for executing the incremental training for 15 min-
utes, whereas the four activity classes (WALK, STAND, SIT,
LIE) were executed by the subject approximately equally
long but in a random way. That means the subject did not ex-
ecute WALK for 3.75 min, followed by STAND sequentially.
The activities occurred randomly but (approx.) equally long
to ensure enough training samples per activity class. The o
value (which is the accuracy of the learner compared to the
teacher during the training phase) over time during the real-
time training process is shown in Figure 4. During the first
few seconds, the value varied substantially (between 1 and
0.2), which can be explained by considering that the value
has to settle over time until (i) the learner classifier model
is well enough trained, and (ii) enough predicted classes are
compared. Therefore, it is important to have a training phase
that is long enough to have a good classifier model and a
stable DoF calculation for the learner. In our experiment,
the ¢ value settled to 0.65. This value cannot be seen as
permanently stable and fixed, since it highly depends on (i)
the number of observed activity classes, and (ii) the duration
of the training phase. By multiplying the DoFr value with
¥ we get a DoF for the learner of 0.515.

In Figure 5 the confusion matrix is shown that compares
the predicted activity classes from the teacher with the
predicted classes from the learner. There, the calculated
DoF value from the learner is reflected, as we can notice
a high occurrence of the false interpretation of the WALK
and STAND/SIT activity classes. Altogether, during the
15 minutes training phase, we had approximately 350.000
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Figure 4. Evolution of ¥ of the motionjacket_RLA sensor during the
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Figure 5. Visualization of the confusion matrix from the learner compared
to the teacher (as groundtruth estimation).

Table T
SUMMARIZATION OF RESULTS

Duration of Training 15 minutes
Number of activity classes 4 (WALK, STAND, SIT, LIE)
DoFr 0.792
Number of comparisons approx. 350.000
¥ (i.e., cumulative moving average) 0.65
DoFr, 0.792 % 0.65 = 0.515

comparisons from the teacher with the learner predicted
class, which are contained in the confusion matrix. Table I
summarizes the results that were achieved in the experiment.

Our approach of real-time training to realize self-adaption
by online training new sensors and the persistent storage
of this newly acquired knowledge at runtime works. The
calculation of 0.515 as DoF is realistic and reflects the self-
adaptation according to real-time transfer of recognition ca-
pabilities as not only correct predicted labels are transferred
from the teacher to the learner but also wrongly classified
activities.
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VI. CONCLUSION AND FUTURE WORK

We have presented the capability of an opportunistic activ-
ity and context recognition system to self-adapt in a way that
untrained and newly appeared sensors can be trained by the
existing ones. The recognition capabilities of the configured
(teaching) ensemble are transferred in real-time to the learner
candidates. During the learning process, the quality of the
transferred recognition capabilities is quantified to get a
stable and reasonable measurement of how good the learner
can recognize the activity class. After DoF7, is estimated,
this value is stored with the corresponding classifier model
in the Experienceltem of the sensor, to ensure persistency
of the newly acquired knowledge. Our approach enables
the autonomous transfer of recognition capabilities without
relying on a labeled ground-truth to newly appeared sensors
and therefore self-adapt to open-ended environments where
sensors presumably not known at design time can be trained
and used afterwards to extend the system.

There are many interesting aspects for future research. On
one side, a probabilistic framework can be set up in order to
provide a more accurate estimation of the learner accuracy
given the rate of agreement between teacher and learner and
by introducing all the possible knowledge about the teacher
(like the confusion matrix). Different estimation techniques
can be evaluated on existing datasets, where the groundtruth
is not made available to the algorithms, but is used to assess
how well the DoF can be estimated. Another interesting
aspect is to investigate how to overcome the need for an
expert to manually define learner candidates. This can be
tackled by evaluating the suitability of a certain sensor due
to other elements of its self-description, like the measured
quantity (e.g., acceleration), and the placement. The end goal
will be to design a planner, which will be able to select
learner candidates, operate the transfer of capabilities only
where it is meaningful and finally assess as precisely as
possible what the learner achieved accuracy is.
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