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Abstract—The growing complexity of software systems, as
well as, changing conditions in their operating environment
demand systems that are more flexible, adaptable and depend-
able. In many domains, adaptations may occur dynamically
and in real time. In addition, services from heterogeneous,
possibly unknown sources may be used. This motivates a
need to ensure the correct behaviour of the adapted systems,
and its continuing compliance to time bounds and other
Quality of Service properties. The complexity of Dynamic
Adaptation is significant, but currently not well understood
or formally specified. This paper elaborates a well-founded
model of dynamic adaptation, introducing formalisms written
using the process algebra COWS. The model provides the
foundation for exploring dynamic adaptation and assessing it
against predefined specifications. We consider it a contribution
for the design of new models and methodologies for system
adaptability.

Keywords-Dynamic Adaptation; Formal Languages; Formal
Methods.

I. INTRODUCTION

Modern software systems typically operate in dynamic
environments and are required to deal with changing op-
erational conditions, while remaining compliant with the
contracted level of service. The execution context of modern
distributed systems environments is not static but fluctuates
dynamically, and to provide the expected functional service
with the desired qualities, systems need to be adaptable.
Software service adaptation supports modification of ex-
isting services or inclusion of new ones, in response to
inputs from the operating environment. Inputs or triggers
for adaptation include changes in the running environment
and availability of new services.

When dynamic adaptation (DA) occurs at runtime, it has
to be performed within given time bounds, and the resulting
system must comply with the execution time established for
the system.

Moreover, the resulting system must comply with the exe-
cution time established for the system as a whole. Each one
of these requirements has to be addressed accordingly. For
instance, preservation of data integrity requires a mechanism
to verify that the integrity of the data is kept during and
after the adaptation. Moreover, timeliness and performance
related requirements can be addressed by maintaining the
execution times within the desired time bounds.

While the possibility of dynamic service deployment and
evolution offers an exciting range of application develop-
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ment opportunities, it also poses a number of complex
engineering challenges. These challenges include detecting
adaptation triggers, facilitating timely, dynamic service com-
position, predicting the temporal behaviour of unplanned ser-
vice assemblies and preventing adverse feature interactions
following dynamic service composition. Therefore, a dy-
namically adaptable service has to be able to identify triggers
for adaptation, select and direct an adaptation strategy, and
preserve desired QoS properties, while avoiding undesired
behaviours during or after the adaptation.

A promising approach to achieving the required properties
in Dynamically Adaptable (DA) services is the use of
formal methods and techniques, which have been success-
fully applied for managing complexity and system devel-
opment to ensure implementations of high quality. Formal
methods provide the foundation to verify and validate the
behaviour of adaptive programs, as well as, the architecture
engineering processes that validate a program against de-
sired functional properties. However, most previous efforts
to validate dynamically adaptable services against desired
functional properties impose high-verification costs as each
adaptation must be separately modelled and verified, making
these approaches extremely expensive (See Section II). The
result is that building DA services is either expensive or
limited to predefined adaptation scenarios. Even more, these
approaches focus their analysis on the resulting program
neglecting the analysis of the adaptation mechanism itself,
that is, the Adaptation Manager (AM). We consider the
adaptation mechanism to be of capital importance in the
development of DA services, since it is responsible for
monitoring compliance of adaptation to desired properties
and functionalities. Consequently, this work endeavours to
provide a formal model of the AM.

Current approaches to DA offer various mechanisms for
handling adaptation, such as Generic Interceptors [1], DA
with Aspect-Orientation [2], Dynamic Reconfiguration [3],
Dynamic Linking of Components [4], and Model-Driven
Development of DA Software [5]. However, a more generic
framework to verify the adaptation mechanism against com-
monly accepted service properties is still needed.

Formal languages provide the underpinnings to describe
and model software systems in a precise manner, and are
fundamental for the level of analysis, validation and proof
required for assuring adaptation compliance to specifica-
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tions. In this paper, we propose a concrete model for
the AM, which provides the groundwork for a conceptual
model. Moreover, the mathematical foundation selected for
this study facilitates its validation against predefined QoS
properties, such as, availability and responsiveness.

This article is organized as follows: Section II discusses
related work. Later on, Section III provides an overview
of the language chosen to describe the model. Section IV
introduces our formal model and Section V discusses its
properties.

Finally, in Section VI we draw some conclusions and
introduce future work.

II. STATE OF THE ART

We introduce related work in two groups. First, those
approaches specifically related to DA, second, formal ap-
proaches that are applied to analyse similar families of
problems as the ones presented here.

Dynamic Adaptation

Mckinley and Geihs ([6], [7] and [8]) present an overview
of DA and its constituents, however they do not advance
a formal model or proposal to explore DA, which is the
aims of our work. Similarly to the elements of DA we
identified, Segarra and André describe a similar model to
ours with components that can be customized for differ-
ent applications, a component in their framework can be
provided with a controller which performs the adaptation
depending on execution conditions [9]. In our proposal we
define one controller, the adaptation manager, that gathers
information from supporting services such as timing and
execution evaluation in order to perform adaptations. Work
has also been carried out to map BPEL to Process Algebras
as Ferrara [10], to Pi-calculus as Abouzaid [11], and to Petri
Nets as Ouyang et al. [12].

Formal approaches to DA

The work of Laneve and Zavattaro [13] on web services
advances an extension to the m-calculus with a transaction
construct, the calculus webz. This model supports time and
asynchrony. However it remains at a more abstract level and
is not applied to dynamic adaptation. Ferrara [10] relies on
process algebra to design and verify web services, this work
also allows to verify temporal logic properties as well as
behavioural equivalence between services. Compared to this
work, our attempt is more general and is directed at the
study of dynamic adaptation. Finally our proposal is aimed at
identifying a formal service-oriented language for modelling
dynamic adaptation, rather than advancing techniques for
formal verification of web services or services as in the
work of Ferrara. Mori and Kita [14] explore the use of
genetic algorithms to dynamic environments and offer a
survey on problems of adaptation to dynamic environments.
The work of ter Beek at al. [15] reviews service composition
approaches with respect to a selection of service composition
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characteristics and helps to underscore the value of formal
methods for service analysis at design, specially service
composition. The authors present a valuable analysis of
formal approaches to service composition and elaborate
a useful comparison. Amano and Watanabe [16] explore
mechanisms to check consistency.

This work ventures at providing a concrete model of an
AM on top of which a more abstract one can be built.
Furthermore, the streamlined relation between Cows and the
model checker CMC permits us to realize a formal analysis
of the concrete model we introduce in Section IV.

III. THE SERVICE-ORIENTED LANGUAGE COWS

As a first step towards developing a model of dynamic
adaptation, we explored a number of languages in [17].
Current service-oriented formal languages like PiDuce [18],
SOCK/JOLIE[19], COWS[20], KLAIM [21], and SCC [22]
offer each a different range of possibilities to model DA.
Each of these languages has an underlying process algebra
and constructs that support definition of services and ex-
pressing substitution and deactivation processes. The main
method in PiDuce to model service substitution is through
virtual machines while, in the case of COWS, it is modelled
by delimited receiving and killing activities handled with its
process calculus. JOLIE and PiDuce offer no deactivation
process. After reviewing these languages, we concluded that
the best fit language for modeling the runtime dynamic
adaptation problem is COWS. Comparing the characteristics
of the languages selected only COWS provides constructs
for timing analysis. Timeliness was not the only deciding
criteria, considering thatO0 adaptation of services only via
channel renaming is sufficient to achieve DA is questionable,
as is the case of PiDUce. In this regards, the composition
mechanisms of SOCK/JOLIE are more adequate, yet again
with no possibility to evaluate timeliness. The choice is clear
and well founded.

The calculus for orchestration of web services (COWS)
[23] is a new process calculus similar to the Business Process
Execution Language (WS-BPEL) [24]. However, contrary to
WS-BPEL, COWS provides a formally specified distributed
machine. COWS is a process calculus that allows to specify
service-oriented applications, as well as, modelling dynamic
behaviour. COWS also provides support for the development
of tools to check that a given service composition follows
desired correctness properties and unexpected behaviours are
avoided.

COWS has been extended with timing elements [20]
which facilitate adoption of the language for modelling
services with timing requirements. Therefore, this language
represents an important line of research in service-oriented
computing (SOC). The motivation of the authors to develop
COWS is that most formalisms “do not model the different
aspects of currently available SOC technologies in their
completeness” [20].
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Services are structured activities built from basic activi-
ties, such as the empty, kill, invoke, receive, and wait. Ser-
vices are composed by means of prefixing, choice, and par-
allel composition. Constructs as protection, delimitation, and
replication are also provided. The language is parameterised
by a set of expressions. Partner names and operation names
can be combined to designate communication endpoints,
written “p e 0”, where p is a partner and o an operation.
These represent activities of type receive “p e 07” or invoke
peol”

Timed activities are frequently exploited in service-
oriented computing and are needed to model time outs.
Passing of time is modelled synchronously for services
deployed on the same ’service engine’ and asynchronously
otherwise. In this language, time passes synchronously for
all services in parallel, given that services run on the same
service engine. An important aspect in dynamic adaptation
is represented by timing constraints for either the execution
of a new service or the execution of the system as a whole,
therefore, elements for modelling time are needed

COWS [25] provides a proxy mechanism to add com-
pensation handling in existing services. This means that it
may add behaviour to existing services in the system by
appending a compensatory service. A compensatory service
is one that adds to the base service and achieves some
corrective or compensatory functionality. We can also avail
of sequential composition for adapting an existing protocol
to the new one.

In COWS basic actions are durationless and the passing
of time is modelled by explicit actions. Imperative and
orchestration constructs support specification of assignment
in variables, conditional choice and sequential composition.
Conditional choice and sequential composition of services
can be used to achieve dynamic adaptation by composing
services with existing ones. The language also defines the
concept of service engines, where each engine has its own
clock which is synchronised with the clock of other parallel
engines. All instances of a service run within the same
engine. Moreover, time elapses between each evaluation of
expressions and these evaluations are instantaneous. Only
the time construct ©qrgument cOnsumes time units. Time
elapses while waiting for invoke or receive activities and
the argument for wait-activities “@” is set to the current
stand. Parallel composition of engines in this language is
given by sequential composition. Moreover, COWS pro-
vides a deactivation activity that forces termination of all
unprotected parallel activities. Sensitive code can be pro-
tected from killing by placing it into a “protection”. COWS
computational entities are called services [23]. Services
in COWS do not have interfaces since communication is
realised through message passing among services, which are
structured activities built from basic activities.

Finally, COWS can model several typical aspects of web
services technologies, for instance, multiple start activities,
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receive conflicts, routing of correlated messages, service
instances and interactions among them [20].

IV. A MODEL FOR DYNAMIC ADAPTATION

In previous work [26], we identify several techniques to
achieve DA. Most of the current DA techniques are static,
and more importantly, the flexibility of adaptation or the
level at which adaptations are achieved, is in most cases
limited. An area of opportunity we identified, is the need
for a formal approach in DA. A more formal approach to
DA allows system designers and architects to perform an
analysis of the adaptive elements in the system. This is the
motivation behind our work.

This section presents a two-step process for establishing
our DA model.

1) A scenario explaining a dynamic adaptation problem
2) Design of the model in a formal language suitable for
verification

Scenario

We assume an all-electronic toll system where tolls are
collected with the use of a transponder mounted on the
windscreen of each vehicle. This is a straightforward case,
however, we further assume that the car travels along a
number of borders and jurisdictions. In each jurisdiction the
toll system may actually differ from the previous one. We
propose an adaptable electronic toll collection system on
the client (vehicle) side. This system would allow the owner
to install only one toll system that interacts with the toll
booth at each contact point. In this scenario we assume the
car receives a welcoming signal every time it approaches a
tollbooth. This is illustrated in Figure 1. In this diagram we
restrict the representation to the sequence of events in the
interaction between three interacting roles Toll booth,
Vechicle Communication, and Toll booth ETS
service. As we can see, the Toll booth sends a welcome
signal to every vehicle approaching it. On receipt of the
signal, the vehicle’s communication service requests the
type of payment protocol from the toll booth. The Vehicle
identifies the protocol and evaluates its compatibility to the
one currently installed. In case it is not compatible, the Toll
booth is notified and requests a new protocol for the car to
be sent together with an estimate of the car’s arrival time to
the toll collection area. This estimate is used as the upper
time bound for the subsequent adaptation of the vehicle’s
Electronic Toll Payment Service.

In the following we present a model for DA suitable for
validation against desirable attributes of services and service-
oriented computing applications. According to this, a service
should be: Available, Reliable, and Responsive.

Model

The model of DA is introduced in Figure 2. Here we
assume a runtime monitor in the software composite
that activates the AM based on predefined triggers.
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Figure 2. Sequence Diagram Adaptation Process

The adaptation process initiates by sending a signal
(adaptreq (sname, repsvc) !) from the Requestor
to the AM. This is represented in Listing 1 line 11.
The AM further sends the timeliness parameters to
evaluate the plausibility of the adaptation in view of the
time constraints, as illustrated by the second message
adaptime (sname, repsvc,deadline, s, r). Once
the object “amcheck” receives this signal, the timeliness
conditions are evaluated and the result returned to the AM.
The flow for the adaptation proceeds, when the service
amcheck is called with the time estimations in Listing 1
line 7. In this point, a procedure to compare the estimated
time of the adaptation against the predefined upper bound
is called as expressed in Listing 2 lines 12 to 18. Next, in
case the adaptation can be fulfilled within the defined time
bounds, a second condition is evaluated. This is represented
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let
adaptManager(service) =
* [XTIYTZTIXX][YY]
service . create?<X,Y,Z,XX>.p.adaptime!<X,Y,Z,XX>
| [XIIYTZ][XX]
ser .checkOK?<X,Y,Z,XX>.q.exectime!<Z,XX>
| ser.checkFail?<>. ser.launchFail!<repsvc>
| ser.checkFail2?<>. ser.launchFail!<repsvc>
requestor () =
serv.create !<0,4,10,60>
| ser.checkOK2?<>.amadapt.launchOK!<> |
(amadapt.launchOK?<>.s . signal OK!<>
+ ser.launchFail?<repsvc >.s.signalFaill<>
+ ser.launchFailx?<>.s.signalFaill<>)
in
adaptManager(serv)
| requestor ()
| % amcheck ()
| amcheck2 ()
| s.signalFail?<>.nil
| s.signalOK?<>.nil
end
Listing 1
ADAPTATION MANAGER, REQUESTOR AND MAIN SERVICE

Amcheck_gt_deadline (X) =
(ser.checkFail!<>)
Amcheck_le_deadline (X,Y,Z,XX) =
(ser.checkOK!<X,Y,Z,XX>)
Amcheck_gt_deadline2 (X) =
(ser.checkFail2!<>)
| memory. assert?<X>.nil
Amcheck_le_deadline2 (X) =
(ser.checkOK2!<>)
amcheck ()=
[XTTYIZ][XX]
p.adaptime?<X,Y,Z,XX>.
[i#]
(i.selectgreater!<X gt Y> |
(i.selectgreater?<true >.
Amcheck_gt_deadline (X) +
i.selectgreater?<false >.
Amcheck_le_deadline (X,Y,Z,XX)
)
)
Listing 2
ADAPTATION-TIME CHECK

in Listing 3 lines 3 to 10. This evaluation verifies that
the adaptation preserves the overall execution time of the
service. In case both conditions are uphold, the service
amadapt is executed. After execution, this service sends
the signal cheqOK2! (Listing 1 line 12) to the requestor,
which in turn notifies the user on a successful adaptation
by sending the signal launchOK. Otherwise, the AM
responds signalFail.

The model focuses on two timeliness conditions, adapta-
tion time and execution time. However, other conditions can
be analyzed by the AM in the same manner. For instance,
verifying that the reconfigured service is in a quiescent state
before performing any changes in order to avoid interaction
and coordination conflicts. In the following section, we
describe the verification process that the model grants.
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amcheck2 ()=
[X]1Y]
q.exectime?<X,Y>.
[i#]
[K]
(i.selectgreater!<X gt Y> |
(i.selectgreater?<true >.
Amcheck_gt_deadline2 (X) +
i.selectgreater?<false >.
Amcheck_le_deadline2 (X)
)
)
Listing 3
EXECUTION-TIME CHECK

V. ANALYSIS OF THE MODEL

Dynamic software architectures allow us to build dynam-
ically adaptable systems by supporting the modification of
a system’s architecture at runtime. Possible modifications
include structural adaptations that change the system con-
figuration graph, for example, the creation of new and the
deletion of existing components and connectors, as well as
functional adaptations where components are replaced. Fur-
ther, even more challenging changes are those that modify
the behaviour of components and ultimately services.

To achieve reliable dynamic adaptable services we need to
evaluate service modifications against a number of quality of
service properties. Services must comply as a minimum with
the following three properties. The first one, Responsiveness,
means that the service always guarantees an answer to every
received service request, unless the user cancels. The second
property, Availability, requires that the service is always
capable to accept a request. Finally, the third property, Re-
liability means that the service request can always succeed.

In order to evaluate a system against the properties men-
tioned above, we first express these properties and the model
in a language that supports a formal analysis. This analysis
should be performed preferably in an automated manner.
Cows, the language we selected, possesses this quality. In
the following we introduce the selected model checker,
which is CMC. Cows grants straightforward coupling with
CMC. Afterwards, we explore the model for reliability and
responsiveness properties with the model checker.

For reasons of space, we present only the model checking
results for Responsiveness and Reliability. To explore the
first property, Responsiveness, we define a formula with a
universal quantifier on the execution of amcheck following
a call to the AM specified as an existential quantifier to the
AM, as shown in Listing 4. A run of the model checker
on this condition returns true and no counter-example
as shown in Figure 3(a). Verification of the model against
Availability follows a similar pattern. In general terms, the
User identifies the service name of interest, in this case the
AM and specifies the related logical condition as a universal
quantifier over the request for the adaptation manager. The
AM initial call is found in Listing 1, which is input to the
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Figure 3. CMC Runs

AG[request (adaptManager)]true
EG[accepting_request (adaptManager)] AF[
true

response (amcheck) ]

Listing 4
RESPONSIVENESS

model checker and the conditions is tested.

EG[request(requestor)] EG[response (launchOK)] EG[response (
launchFail) ] true
Listing 5
RELIABILITY

The formula for Reliability is built by the combination
of existential quantifiers over the services requestor,
launchOK and launchFail in Listing 5. The model-
checker renders no counter-example, but True as shown in
Figure 3(b).

VI. CONCLUSIONS

Real time DA is an area of research that poses new
challenges to software development, where the goal is to
produce a system capable of adapting to changing conditions
in the operational environment. Additional demanding goals
related to DA are the integration of new services as these be-
come available, or coping with reconfiguration issues, all this

2
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at runtime and under time constraints. DA has been proposed
to provide solutions for these challenges. A methodology for
the study of DA is still an open question. Formal methods
have been in use for a long time in the computer science
community and a number of new approaches and formal
languages are available. We suggest that modelling DA with
a formal language can provide precise answers to most
of the existing questions and grant a better understanding.
As a consequence, in this work, we recommend the use
of the formal language COWS to model DA, introduced
a first formal model, and assessed it by checking against
three widely accepted service properties: Responsiveness,
Auvailability and Reliability, with the model checker CMC.
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