
Facilitating Context-Awareness in
Composite Mashup Applications

Stefan Pietschmann, Carsten Radeck, and Klaus Meißner
Technische Universität Dresden, Germany

{Stefan.Pietschmann,Carsten.Radeck,Klaus.Meissner}@tu-dresden.de

Abstract—Dynamic adaptation and adaptivity of web ap-
plications have been subject to research for over a decade.
With the shift from document-centered hypermedia to rich
web applications, i. e., software as a service solutions, the
applicability of traditional adaptation methods and techniques
is in question. We first investigate what it means to facilitate
adaptation within composite service-oriented applications and
deduce adequate adaptation techniques. Then, we introduce
a generic adaptation system which can be integrated with
existing composition platforms to facility runtime adaptivity
on a component and composition level, based on a platform-
independent definition of adaptive behavior. With the help of
a comprehensive sample application we eventually show the
suitability and practicability of our approach.

Keywords-mashups; composite applications; context-
awareness; adaptation; CRUISe.

I. INTRODUCTION

The Internet has become an open application platform
and is not anymore a static, document-centered source of
information. Based on the service-oriented paradigm, mash-
ups, i. e., applications composing distributed web resources,
have gained momentum. While initially their use was limited
to the integration of data and business logic based on
proprietary platforms, recently the need for presentation
integration has been underlined [1]. Several research projects
have since addressed this problem resulting in lightweight
component and composition models that even allow for a
universal composition [2], [3] of applications. This entails
the uniform description and integration of resources covering
different application layers, ranging from services encapsu-
lating data and business logic, to user interface parts.

Alongside this development, the context of web ap-
plications has become increasingly complex and diverse.
Developers are facing a growing heterogeneity of users,
devices, and usage situations. Applications can no longer be
developed for specific platforms or environments: they shall
be available and usable both in the office with a desktop
computer and in the tram using an iPad or the like. Users of
different skills should be able to interact with them, taking
into account specific user abilities and preferences, and also
their current situations.

Context-awareness, especially in the web application do-
main as addressed by our work, has been subject to research
for a long time. Yet, most of this research has been targeted

at “traditional” and closed-corpus hypermedia systems [4].
Alternative approaches from service computing have studied
adaptive service composition at the data and business logic
levels, primarily with regard to QoS measures. However,
presentation-oriented, universal compositions pose new chal-
lenges regarding the dynamic configuration and composition,
which have not been addressed by prevalent concepts [5].

The adaptation of composite applications can be looked at
from different angles. On the one hand – since we propose
a model-driven development [3] – design time concepts for
the authoring, reuse, and maintenance of adaptive behavior
are needed and discussed in [6]. On the other hand, runtime
adaptation involves both the initial context-aware service
selection and the adaptation of a composition. This paper
focuses on the latter, i. e., the system architecture and
mechanisms necessary to monitor, manage, and use context
information to dynamically adapt composite mashups.

Starting from traditional adaptation methods and tech-
niques, we investigate into techniques facilitating adaptation
and adaptability within mashups. We then present a generic
adaptation system designed to be used in conjunction with
existing composition environments. It addresses the short-
comings of available concepts and combines context moni-
toring and management, the platform-independent modeling
of adaptive behavior, its evaluation and finally the realization
of dynamic adaptations at the component and composition
level at runtime. Thereby, adaptive behavior and adaptation
techniques are decoupled from concrete platforms and appli-
cations, catering reusability, maintenance and extensibility.

In the next section we define the conceptual foundations
for our system, present exemplary adaptation scenarios, and
deduce corresponding adaptation techniques. Afterwards,
we discuss related efforts to enable context-awareness in
application and service compositions. After giving a brief
overview of our concept, the following section presents the
application-independent definition of adaptive behavior, con-
text management facilities, and the realization of dynamic
adaptation techniques including component exchange. We
then provide details on the implementation of our system,
its integration with the CRUISe composition environment
[3], and its validation with the help of a sample application.
Finally, we conclude this paper and outline future work.

1

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

II. ADAPTATION IN MASHUP APPLICATIONS

To facilitate adaptive behavior in mashups, we first need
to clarify the relation between traditional Adaptive Hyperme-
dia and modern applications “mashed up” from distributed
web resources. To this end, this section provides a brief
characterization of the type of applications addressed by our
work, presents exemplary adaptation use cases and deduces
corresponding techniques.

A. Composite Mashup Applications

Mashups indicate a way to create new applications by
combining existing web resources utilizing data and web
APIs [5]. While originally restricted to data and application
logic, there are ongoing efforts to enable compositions
including user interfaces. In contrast to most programmatic
mashups, we focus on universal composition efforts [3], [2]
which imply certain component and composition models.
Thus, we call them composite mashup applications (CMA)
to denote their component-based nature.

While Adaptive Hypermedia stipulates closed-corpus sys-
tems [4] for data-driven, document-centered applications,
CMAs are composed from black-box software components.
Those can be integrated, used and adapted only via their
interfaces, described by WSDL in the case of web services.
Most importantly, these “building blocks” are distributed and
strongly decoupled by definition. Despite this, the resulting
applications are highly interactive, so components must
by tightly integrated. Finally, unlike traditional applications
using a hypernet of web pages, CMAs are usually single-
page solutions offering different views on an application.

It becomes evident that techniques like page variants,
sorting fragments, or link annotation can not be applied to
CMAs directly, as they are based on different metaphors.
While pages can be considered views in our vocabulary of
concepts, and fragments may correlate with components, the
techniques still imply hypertext documents and are rather
located within components in our concept space.

Next we present a number of exemplary adaptation use
cases, which allow us to deduce higher-level adaptation
techniques specific to CMAs.

B. Adaptation Use Cases

To illustrate the set of adaptation possibilities, it is nec-
essary to identify the adaptation triggers, i. e., the context
information available. Generally, four context categories can
be taken into account [7]: First, the delivery context defines
the technical environment of the application at runtime, e. g.,
the capabilities of the device, web browser and network
connection. The second category includes the user, his
identity, roles, characteristics, preferences, etc. Third, the
physical environment is characterized by information such
as the location, noise level, and brightness. The last aspect
includes situation and time, e. g., being at home or at
work, the current weather, or the season. Since CMAs are

composed from distributed services, the quality of service is
an additional trigger which has been intensively studied in
the context of web service compositions (cf. [8]).

This wide range of context information implies a variety
of adaptation scenarios. A special field that has gained lots
of popularity are location-based services, such as adaptive
route planners. The following use cases give a practical
insight into the possibilities and challenges of context-
awareness: Imagine, you are on vacation and use the services
provided by a travel guide application: it shows locations
of nearby restaurants and hotels, or sights on a map. For
each of them, you can check further details in the form of
videos, images, and text, calculate a route. The suitability
and usability of the application in this rather simple scenario
largely depends on the reasonable integration and use of
context knowledge. Examples including the type of context
(in parentheses) are:

• The application including all components use your
native language (user).

• The map initially centers at the your current position
by default (physical).

• All components are constantly synchronized with your
location: the route planner adapts the route calculation
once you move (physical).

• The selection of locations matches your interests and
preferences: a vegetarian user is offered special restau-
rants that cater his needs (user).

• Route planning considers your mobility (foot/car) and
whether you have any disabilities that might impact on
transfer times (user and situation).

• The layout changes with respect to the available screen
real estate, and big images are replaced with textual
descriptions on mobile devices (delivery).

• You can minimize, remove, and exchange components,
e. g., to choose your preferred map provider – a choice
that is monitored and stored to select the correct com-
ponent for you in the future (user).

• A low battery level on your mobile device triggers the
exchange of resource-intensive components, e. g., of a
video player with an image slide show (delivery).

• Once a component or service becomes unavailable, it
is automatically replaced with an alternative (QoS).

C. Adaptation Techniques for CMAs

While the abstract adaptation methods as presented in
[9] and the like remain valid, the corresponding techniques
must be updated and applied to the notion of CMAs.
We regard adaptation techniques as any alteration of an
application composition subject to context changes. Hence,
adaptation forms an additional aspect that can be applied
to a composition model. The reasons therefore range from
adaptive, corrective, perfective, to extensive adaptations
[10]. Consequently, runtime adaptation for CMAs can be
realized with the following techniques:

2

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

Component Adaptation

• Adding Components to the composition supports per-
fective and extensive adaptations: New components
may provide additional data and information to support
a user in his task.

• Removing Components which are not used or not
necessary anymore facilitates perfective adaptations. It
must be ensured that removals don’t affect application
operability and stability, and that data loss is prevented.

• Exchanging Components combines the above tech-
niques for corrective and adaptive reasons. Challenges
include the state transfer and concurrency problems
during the exchange.

• Reconfiguring Components basically changes config-
uration properties, which can result in internal state
changes, the use of different algorithms, data sources,
etc. This technique is limited to adaptation scenarios
foreseen by component developers.

• Adapting Component Interfaces implies a change
of a component’s external interface for interoperability
reasons, e. g., when exchanging one component with
another. This technique involves both the adaptation of
operations, events or the like using adapters, and the
mapping or mediation of data.

• Migrating Components between different devices, or
between client and server, can be seen as a combination
of addition and removal along the lines of component
exchange (see above).

Composition Adaptation

• Adapting Communication between components is a
powerful technique to adapt control and data flow to
the context.

• Adapting Layout of the application means to rearrange
frontend components on the canvas. This can also in-
volve changes to dimensions of individual components
within the layout.

• Adapting Screenflow changes the order of views, i. e.,
which UI component is visible at a certain application
state, and the transition between those views.

As stated in [11], both parameter adaptation (recon-
figuration) and architectural adaptation (addition, removal,
exchange) are needed and sufficient to support all scenarios
of dynamic adaptation. Thus, with the help of the above-
mentioned techniques, all adaptation examples sketched out
before are supported.

An additional dimension of adaptation includes the dy-
namic reconfiguration and migration of the runtime envi-
ronment, e. g., the dynamic redistribution between client
and server depending on the server load. In this paper,
though, we focus on the adaptation of the component-based
application within a fixed composition environment.

III. RELATED WORK

Several concepts for runtime adaptation have been pro-
posed. A typical representative from Adaptive Hypermedia
is AMACONT [12], which offers an extensible context
framework – similar to our solution – and realizes adaptation
with the help context-dependent variants being part of its
document model. In contrast to our work, the concepts are
based on dynamically generated documents, and adaptation
takes place only when a new document is requested.

Schmidt et al. [13] introduce an event-based adaptation
system for RIAs, which employs an ontology-based user
model and Event-Condition-Action adaptation rules, both of
which served as inspiration for our approach. The solution
does not imply the use of any component or composition
models, though, and concentrates on event detection and
condition evaluation. Consequently, techniques like compo-
nent exchange are not supported.

ACCADA [14] uses architectural models and an external
control loop for context monitoring and dynamic adaptation.
Thus, adaptation logic is strictly separated from the applica-
tion. However, it is used to satisfy functional constraints only
– components and adaptation techniques at the presentation
layer are not considered. Similarly, the extensive body of
research in the field of dynamic service composition fails in
this regard. The joint effort here is to enforce composition
plans and utility functions. While initially, this involved
service exchange with regard to functional and QoS require-
ments [8], more complex service adaptations [15] and more
diverse context information [16] have been used, lately.

Only few academic works have addressed context-
awareness for mashup systems, most of which again fo-
cus on the initial composition [17] as discussed above.
Most importantly, the Mixup framework [18] comes with
a component model and an event-based runtime similar to
our concepts. Context components resemble sensors which
publish events upon context changes. A sophisticated context
management is not included, though, and the adaptation
techniques are quite limited, e. g., adaptive layout and screen
flow as well as component exchange are not supported.
Further, context components (resembling monitors) are first
class concepts of an application, while we strive for decou-
pling adaptive behavior from application, i. e., composition
logic.

In summary, none of the approaches to date provides a
generic solution which covers both context management and
dynamic adaptation for interactive CMAs. In the next section
we introduce our solution to this end.

IV. ADAPTING COMPOSITE MASHUPS

In this section we present a concept for the runtime adap-
tation of component-based mashup applications. Therefore,
we propose an adaptation system which can be used with
existing composition environments – in our case the CRUISe
platform [3]. The latter facilitates context-aware component

3

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

selection and integration at application initialization time.
Based on an abstract composition model, suitable compo-
nents are dynamically chosen with regard to the particular
context. The concept presented here focuses on adaptation at
run time, once the application has been initially composed.
Following a brief overview of the conceptual architecture,
we discuss the definition of adaptive behavior, the strategy to
monitor and manage context data, the realization of adapta-
tion techniques, and the adaptation workflow, subsequently.

A. Architectural Overview

As Figure 1 shows, our adaptation infrastructure is divided
into two parts responsible for the adaptation and context
management, which are coupled with a composition envi-
ronment.

 Adaption Infrastructure

Adaption Management Context Management

Context Service
Adapter Context Service

Adaptation
Manager

Rule
Engine

Composition Environment

Action

Context
Provider
Context
Provider
Context
Provider

Rule

 Context
 Manager Monitor

Adaptivity
Model

Action Implementations

Figure 1. Overview of the adaptation system

Adaptation Management carries out adaptations based
on generic Event-Condition-Action (ECA) rules. Those
adaptation rules address specific parts of a composite ap-
plication (component properties and instances, layouts, etc.)
to be modified by adaptation actions subject to (optional)
conditions. The evaluation of adaptation rules is carried out
by the Rule Engine, which subsequently calls the Adaptation
Manager to execute adaptation actions as specified.

Context Management comprises both context monitoring
and modeling. Monitoring within our architecture is carried
out by Monitor components. Context modeling, reasoning
and consistency checking is done by a dedicated system. We
argue that this complex task is best externalized, e. g., to a
Context Service like discussed later. To increase performance
and decrease network load, the Context Manager holds a
local representation of a part of the remote context model
and is updated whenever the latter changes. To keep the
system flexible and extensible, the Context Service Adapter
concept hides service specifics and thus makes it easily
exchangeable.

The application-specific configuration of the adaptation
infrastructure is deduced from platform-specific composition
models. They include adaptive behavior, but may also define
the supported levels of adaptability and the configuration
of context monitors, e. g., update thresholds. Optionally,

the context service can provide a structural description of
the context model to allow the service adapter to do the
necessary mappings.

B. Description of Adaptive Behavior

The definition of adaptive behavior is usually intertwined
with application code and heavily depends on the composi-
tion platform used. For the adaptation system presented here,
we use a platform-independent representation in the form of
declarative XML-based ECA rules. They come with certain
implications regarding the composition environment, such
as event-based communication and a uniform component
model. Yet, those are concepts found with the majority of
existing mashup systems, ranging from industrial solutions
like Yahoo! Pipes to academic approaches such as mashArt
[2]. Generally, the rules remain independent from specific
composition platforms and languages. They are either writ-
ten manually, but can also – as in our case – be generated
from corresponding information in the composition model
[6]. Each of these Adaptation Rules consists of three parts:
event specifies triggers for the adaptation, conditions need
to be fulfilled to carry out the adaptation, and action defines
the adaptation techniques to be applied. Additionally, every
rule has a unique id and a priority to define the processing
order.

Events define the triggers for adaptation, which may
not only be published by application components, but by
arbitrary parts of the composition environment, as well.
Application events are actuated by components of a CMA
and usually signalize state changes. Context events are issued
by the Context Manager and contain updates of context
parameters. Runtime events are published by the composition
environment, e. g., upon successful component integration.
Thus, they can be used to realize error handling with the
help of adaptation rules instead of imperative programming.
Finally, complex events describe non-atomic event patterns,
such as causal dependencies. This way, a certain sequence
of events can be defined to trigger an adaptation.

Listing 1 shows an exemplary event part of an adaptation
rule. The latter is evaluated whenever a change of the user’s
device’s battery level is detected and propagated.

1 <contextEvent contextParam="/user:currentDevice/dev
:state/dev:batteryLevel" />

Listing 1. Definition of a rule’s trigger event

The execution of adaptation rules is subject to Condi-
tions. These consist of terms that can be combined with the
help of logic operators (AND, OR) and use binary comparison
operators (>,>=,!=, etc.). Further operators are supported,
such as CONTAINS or such useful for semantic context
representations (TYPE, ISA). Terms contain literal values
or refer to context or event parameters. A typical case for
using the latter is the extraction of a menu item’s name

4

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

from a corresponding itemSelected event. In case of more
complex conditions, SPARQL [19] can be used.

Listing 2 shows a condition, which restricts the adaptation
to mobile devices (lines 7–10) with a battery level below
30% (lines 3–6).

1 <condition>
2 <and>
3 <term operator="lt">
4 <contextParam>/user:currentDevice/dev:state/dev

:batteryLevel</contextParam>
5 <literal> 0.3 </literal>
6 </term>
7 <term operator="eq">
8 <contextParam>/user:currentDevice/dev:isMobile

</contextParam>
9 <literal> true </literal>

10 </term>
11 </and>
12 </condition>

Listing 2. Exemplary condition for a rule

Finally, rules contain Actions representing concrete adap-
tation techniques, which are processed following their pri-
ority in a descending order. We use a generic vocabulary
for these actions, which is derived from the techniques
presented in Section II and easily extensible. It includes
component actions addressing one or multiple components
(e. g., removeComponent, reconfigure, setVisibility), channel
actions adapting communication relationships (e. g., sub-
scribe, unsubscribe, removeChannel, fireEvent), and complex
actions changing application-wide concepts (e. g., change-
Layout, updateContext).

Listing 3 shows an exemplary component reconfiguration
– in this case the property map city is set to the user’s
current location (a city) referenced from the context model.

1 <componentAction priority="9" pointcut="sightmap">
2 <reconfigureComponent property="map_city">
3 <contextParam>/user:currentLocation/space:name</

contextParam>
4 </reconfigureComponent>
5 </componentAction>

Listing 3. Adaptation action to reconfigure a component property

The availability and consistency of context data is ensured
by several components forming the context management
subsystem, which are discussed in the next section.

C. Context Monitoring and Management

In this section we discuss how context is monitored,
stored, and made available to adaptation system.

1) Remote Context Management – CroCo: Due to
its complexity, we externalize context management to a
dedicated Context Service. Therefore, we use the ontology-
based service CROCO [20], which allows arbitrary con-
text providers to submit, and context consumers to request
context data via specific service interfaces. Thus, it serves
as a general context supplier for external context-aware
applications and platforms, such as ours.

Within CROCO context data is represented by a generic
ontology-based context model, which uses several sub-
ontologies describing aspects like time, place, the user, and
his device. With the help of domain profiles, this model
can be extended with additional concepts and relationships
particular for specific domains. For the scenario mentioned
before, we use concepts such as UserProfile (related
to a Person), WebBrowserConfiguration (related
to a WebBrowser being part of a UserProfile), and
UserLocation (a type of City).

By using CROCO, our adaptation architecture highly
benefits from its sophisticated means to check the consis-
tency of the context model, to detect conflicts, and to infer
additional knowledge with the help of semantic reasoning.
These mechanisms guarantee, that we can rely on a valid and
comprehensive model at minimal cost. Context information
can either by requested synchronously, or consumers register
for specific data, so that they are notified once it changes.

More detailed information on its architecture, inner work-
ings, and the ontology-based model can be found in [20],
including several examples of use.

2) Local Context Management: Our concept entails a
local (client-side) context management to stay independent
from the context service used, and to improve performance.
A slice of the context model relevant for the application
is cached by the adaptation system. That way, not every
context request must be sent to the remote service, but can
be evaluated with the local model which is continuously
synchronized in the background. The following components
are responsible for context management within our system.

Context Monitors are software components of the adap-
tation system that sense context data. Once it changes,
monitors publish context updates to the Context Manager.
Internally, they process raw context data to comply with
the context model used, e. g., by mapping it to semantic
concepts of an ontology. In addition to the actual data, they
can provide a confidence value as discussed in [20].

The behavior of monitors can be configured as part of the
application model, e. g., to set the minimal time threshold
between context updates, or to request user confirmation
before context updates are published to CROCO. Monitors
provided by our system itself need not cover all context
parameters used by the application as arbitrary external
context providers may as well contribute to the model.
Further, by implementing a dedicated monitor interface, new
sensors can easily be added.

The Context Manager provides a uniform interface to
the context model, using the local and remote context store,
transparently. Its central responsibility is the local man-
agement of context information to minimize synchronous
requests to the Context Service for every single parameter
needed. Therefore, it initially downloads all parameters
required for component configurations and rule evaluations
from CROCO and registers there to be notified in case of

5

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

CroCo

Adaptation
ManagerRule Engine Action

RDF triple

callback

context
event

call actions
delegate

execution
 of actions

8

update context
representation

convert internal
format into RDFMonitor

Context Service
Adapter

select rule and
evaluate conditions

SPARQL result

send context
update

11
12

13

6

3

send context

request user
permission

Context
Manager

5

4

10

9

1
2

convert result
into internal format

7

Figure 2. Workflow of the adaptation mechanism

model updates. Upon notification, the local model represen-
tation is synchronized with the remote model and context
update events are issued, which trigger processing of the
corresponding adaptation rules. Only on special occasions,
e. g., when complex SPARQL requests need to be evaluated,
requests are forwarded to CROCO.

Additionally, the Context Manager manages all local
monitors and offers methods for (un)registering and (de)ac-
tivating them. Their data is passed to CROCO for validation,
consolidation, merging with the model and reasoning.

Communication with the external context management
facility is handled by Context Service Adapters (CSA),
which hide implementation and interface specifics of the
context service used behind a uniform interface. Hence, it
can be exchanged with an arbitrary local or remote solution,
as long as a proper adapter exists. With regard to CROCO,
the corresponding adapter transforms the context query and
update events into RDF. Thereby, the implicit creation of
instances and relations may be necessary. To accomplish
this task, structural knowledge about the context model is
needed, which can either be hard-coded into the adapter, or
be provided dynamically by the context service, as is the
case with our system.

D. Dynamic Adaptation Management

Figure 1 illustrates the modules involved in the dynamic
adaptation process and their relation.

The Adaptation Manager’s main responsibility lies in
providing and managing adaptation techniques. Whenever
the evaluation of a rule implies a certain adaptation, the
manager delegates its execution to the corresponding action
implementation. It is also the central management entity
within the adaptation system. Externally it offers a facade,
i. e., an interface to request context parameters and process
adaptation rules. Internally it is responsible for initializing
and managing the other adaptation components. Before the
application initialization, it loads configuration data and
rules and subsequently initializes the Rule Engine, Context
Service Adapter and Context Manager. The Rule Engine is
provided with the necessary rules, and context parameter

references from component configurations are replaced with
the actual values requested from the Context Manager.

The Rule Engine is designed to evaluate adaptation rules.
Therefore, it is automatically registered to be notified with
all application and runtime events that are referenced by
rules. Upon notification, the engine identifies all affected
rules and sorts them with respect to their priority. Subse-
quently, their conditions are evaluated and the Adaptation
Manager is called to execute the resulting actions.

Actions are platform-specific implementations of adap-
tation techniques as discussed above. For every abstract
action there exists a corresponding implementation, which
is naturally specific to the composition environment.

E. Adaptation Process

Figure 2 illustrates the steps of a dynamic adaptation and
the components taking part in this process. Basically two
very similar scenarios can be distinguished: In the simple
case, context updates are sent from the external context
service and result in an adaptation. In the extended case,
updates result from data sensed by local monitors. Figure 2
presents the second case – the simple one is included starting
with step six.

1. A monitor instructs the Context Manager to publish a
detected context change.

2 /3. The Context Manager checks, whether a user confir-
mation is required to publish such (possibly sensitive)
data to the external context service. As discussed
before, this can be configured as part of the adaptivity
model. If a confirmation is needed, the data is pre-
sented to the user to be approved. Upon confirmation,
the updated context data is handed to the CSA.

4 /5. The latter parses the data, generates a representation
particular to the context service and sends it there.
Since we use CROCO, RDF triples are built to conform
with its service interface.

6. CROCO carries out consistency checks, validation, and
reasoning of context data. Then, context consumers
registered with the affected data are notified. Conse-
quently, the CSA is informed that parameters relevant
for the evaluation of adaptation rules have changed.

6

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

7 /8. After parsing and transforming the updated context
data into the internal representation, the CSA forwards
it to the Context Manager.

9 /10. The latter updates its local representation of the
context model and informs the Rule Engine about
model changes using the corresponding context events.

11. The Rule Engine analyzes the events, searches for
adaptation rules that apply to the updated context pa-
rameters, and evaluates their conditions. If additional
context parameters are referenced, those are obtained
with the help of the Context Manager.

12. Finally, the Rule Engine returns a list of adaptation
actions to be executed to the Adaptation Manager.

13. The latter then chooses a suitable action implementa-
tion, triggers and coordinates its execution.

Even though the context information coming from mon-
itors could be directly merged into the local model, it is
instead first sent to the context service. This is for the
obvious reason that CROCO employs mechanisms for vali-
dation, consistency checking and reasoning which determine
whether the information are merged into the model or not.
Furthermore, this round trip ensures that only the context
data needed is processed by the Context Manager.

V. IMPLEMENTATION AND USAGE

Based on the concepts discussed we implemented a pro-
totype of the adaptation system and integrated it with our
composition platform CRUISe. In the following, we outline
relevant parts of our implementation including an exemplary
application realizing the travel guide scenario.

A. Integration of the adaptation system in CRUISe

The adaptation system was integrated with the CRUISe
Thin Server Runtime (TSR), a browser-based composition
environment. Its event-based communication allows for an
easy integration by adding the Adaptation Manager as a
publisher and subscriber to the global event bus. Several
JavaScript-based monitors were implemented, e. g., to detect
browser settings and the approximate location by means of
the Geolocation API (http://dev.w3.org/geo/api/). The local
context model is a JSON representation of CROCO’s OWL-
based model. Communication with CROCO is realized via
SOAP using a dedicated adapter that generates SPARQL
queries for synchronous requests. Asynchronous context
notifications rely on CometD (http://cometd.org/).

The adaptation rules are derived from the composition
model and dynamically evaluated by the Rule Engine. The
corresponding actions are realized in JavaScript, extending a
universal interface. Adaptability is offered by a component
panel (see Figure 3) with options to minimize, close, and
exchange components with alternatives. The latter proved to
be the most challenging due to the dynamic integration of
new code and the state transfer realized using proxies and
the memento pattern.

B. Sample Application TravelGuide
To validate our concept and implementation, we built the

TravelGuide application (Fig. 3) based on the use cases
discussed at the beginning of this paper. To realize the de-
sired behavior, a number of components were implemented,
including a Google Map (on the right, indicating sights
around the user and calculating routes there), a details form
(bottom left), and an image gallery for the sight (top left). As
an alternative to the latter, a video viewer was built which
fetches videos of the sight from YouTube and has the same
interface as the gallery, hence both are exchangeable. All
visible components can be removed, restored, and explicitly
exchanged with alternatives using a drop down menu.

The adaptivity modeled includes context-sensitive config-
urations, e. g., with user’s native language, and the following
behavior: 1) The map is continuously synchronized with the
user’s location; 2) His interest in cultural activities leads to
the display of optional sights, e. g., museums, on the map; 3)
The overall layout depends on the available screen estate and
dynamically switches between a single- and multi-column
layout; 4) When the battery power of the user’s device falls
below 30%, the video player component is exchanged with
the image gallery in case the device is mobile.

Figure 3. Adaptive composite TravelGuide application

Overall, our prototype proved to be stable and sufficiently
supported all of the adaptation techniques defined, including
the adaptation of components, their properties and the layout
– both implicitly and explicitly by the user – as well
as the dynamic adaptation of the control and data flow.
Adaptation of component interfaces, i. e., mediation, was
not explicitely modeled, as it is inherentely provided by the
CRUISe platform.

VI. CONCLUSION AND FUTURE WORK

In this paper we present an adaptation concept which
successfully transfers the principles of traditional Adaptive
Hypermedia techniques to composite mashup applications.
The definition of adaptive behavior is based on platform-
and application-independent rules. They define dynamic
adaptation techniques, such as component reconfiguration
and exchange, data and control flow as well as adaptive

7

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

layout and screen flow at run time. To this end, the system
provides context monitoring as well as context management
entities. For the latter, a dedicated, ontology-based context
management service is used, which can be transparently
exchanged. A prototypical implementation of our solution
and its integration with the CRUISe composition platform
proved the feasibility and practicability of our concept.

In summary, we provide a valuable approach for the
adaptation of presentation-oriented mashup applications. It
combines a sophisticated context management with an effi-
cient adaptation runtime, while keeping all means of context-
awareness separated from the application. Thus, adaptation
can be handled as an additional aspect. Our system can be
integrated with other composition environments, provided
that platform-specific adaptation actions are implemented.

One aspect that proved challenging was the definition of
adaptive behavior. Even though the rules are easy to un-
derstand, the interactions between rules and the interactions
with component-internal adaptivity are hard to overlook
at design-time. Therefore, we are currently investigating
on how to improve modeling and authoring of adaptive
behavior. As part of this effort, we strive for a simplification
and abstraction of the adaptivity model including higher-
level adaptation aspects which take into consideration the
semantics and self-adaptation capabilities of components.
Furthermore, we are working on improving context manage-
ment, by 1) letting CROCO autonomously learn and gather
knowledge with the help of other services and 2) incorpo-
rating a better deduction of context from user interactions.

VII. ACKNOWLEDGEMENTS

The CRUISe project was funded by the BMBF under
promotional reference number 01IS08034-C. The work of
Carsten Radeck is funded by the ESF and Free State Saxony
(Germany) under reference number ESF-080951805.

REFERENCES

[1] S. Pietschmann, T. Nestler, and F. Daniel, “Application Com-
position at the Presentation Layer: Alternatives and Open
Issues,” in Proc. of the Intl. Conf. on Information Integration
and Web-based Applications & Services, 2010.

[2] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, “Hosted
Universal Composition: Models, Languages and Infrastruc-
ture in mashArt,” in Proc. of the 28th Intl. Conf. on Concep-
tual Modeling, November 2009.

[3] S. Pietschmann, “A Model-Driven Development Process and
Runtime Platform for Adaptive Composite Web Applica-
tions,” Intl. Journal on Advances in Internet Technology,
vol. 4, 2010.

[4] P. Brusilovsky and N. Henze, “Open Corpus Adaptive Educa-
tional Hypermedia,” in Adaptive Web: Methods and Strategies
of Web Personalization, vol. 4321, 2007, pp. 671–696.

[5] D. Benslimane, S. Dustdar, and A. Sheth, “Service Mashups,”
Internet Computing, vol. 12, no. 5, pp. 13–15, 2008.

[6] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle,
and K. Meißner, “A Metamodel for Context- Aware
Component-Based Mashup Applications,” in Proc. of the Intl.
Conf. on Information Integration and Web-based Applications
& Services, 2010.

[7] D. Lizcano, J. Soriano, M. Reyes, and J. J. Hierro, “EzWe-
b/FAST: Reporting on a successful mashup-based solution
for developing and deploying composite applications in the
upcoming web of services,” in Proc. of the 10th Intl. Conf.
on Information Integration and Web-based Applications &
Services. New York, NY, USA: ACM, 2008, pp. 15–24.

[8] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-Driven Mid-
dleware for Self-adaptation of Web Services Compositions,”
in Proc. of the Intl. Conf. on Middleware, 2006, pp. 62–80.

[9] P. Brusilovsky, “Adaptive Hypermedia,” User Modeling and
User-Adapted Interaction, vol. 11, no. 1-2, pp. 87–110, 2001.

[10] A. Ketfi, N. Belkhatir, and P.-Y. Cunin, “Automatic Adapta-
tion of Component-based Software: Issues and Experiences,”
in Proc. of the Intl. Conf. on Parallel and Distributed Pro-
cessing Techniques and Applications, 2002, pp. 1365–1371.

[11] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjor-
ven, S. Hallsteinsen, G. Horn, M. U. Khan, A. Mamelli,
G. A. Papadopoulos, N. Paspallis, R. Reichle, and E. Stav,
“A comprehensive solution for application-level adaptation,”
Software – Practice & Experience, vol. 39, no. 4, 2009.

[12] M. Hinz, “Kontextsensitive Generierung adaptiver multimedi-
aler Webanwendungen,” Ph.D. dissertation, Technische Uni-
versität Dresden, 2008.

[13] K.-U. Schmidt, R. Stühmer, and L. Stojanovic, “Gaining Re-
activity for Rich Internet Applications by Introducing Client-
side Complex Event Processing and Declarative Rules,” in
Proc. of the AAAI Spring Symposium on Intelligent Event
Processing, 2009, pp. 67–72.

[14] N. Gui, V. Florio, H. Sun, and C. Blondia, “ACCADA:
A Framework for Continuous Context-Aware Deployment
and Adaptation,” in Proc. of the 11th Intl. Symposium on
Stabilization, Safety, and Security of Distributed Systems,
2009, pp. 325–340.

[15] F. André, E. Daubert, and G. Gauvrit, “Towards a Generic
Context-Aware Framework for Self- Adaptation of Service-
Oriented Architectures,” in Prof. of the 5th Intl. Conf. on
Internet and Web Applications and Services, 2010.

[16] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. Ngu,
“Configurable Composition and Adaptive Provisioning of
Web Services,” IEEE Transactions on Services Computing
(TSC), vol. 2, no. 1, pp. 34–49, 2009.

[17] T. Fischer, F. Bakalov, and A. Nauerz, “Towards an Auto-
matic Service Composition for Generation of User-Sensitive
Mashups,” 2008.

[18] F. Daniel and M. Matera, “Mashing Up Context-Aware Web
Applications: A Component-Based Development Approach,”
in Proc. of the Intl. Conf. on Web Informa- tion Systems
Engineering, 2008, pp. 250–263.

[19] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” 2008, http://www.w3.org/TR/rdf-sparql-
query/.

[20] A. Mitschick, S. Pietschmann, and K. Meißner, “An
Ontology-Based, Cross-Application Context Modeling and
Management Service,” Intl. Journal on Semantic Web and
Information Systems, Feb. 2010.

8

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

	Introduction
	Adaptation in Mashup Applications
	Composite Mashup Applications
	Adaptation Use Cases
	Adaptation Techniques for CMAs

	Related Work
	Adapting Composite Mashups
	Architectural Overview
	Description of Adaptive Behavior
	Context Monitoring and Management
	Remote Context Management – CroCo
	Local Context Management

	Dynamic Adaptation Management
	Adaptation Process

	Implementation and Usage
	Integration of the adaptation system in CRUISe
	Sample Application TravelGuide

	Conclusion and Future Work
	Acknowledgements
	References

