ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Efficiency Testing of Self-adapting Systems by Learning of Event Sequences

Jonathan Hudsonpdy Denzinger Holger Kasinger, Bernhard Bauer
Department of Computer Science, University of Calgafpepartment of Computer Science, University of Augsburg
Calgary, Canada Augsburg, Germany
Email: {hudsonj, denzinde@cpsc.ucalgary.ca Email: {kasinger, baugr@informatik.uni-augsburg.de

Abstract—Adding self-adaptation as a property to systems the environment. Our testing approach is based on learning
aims at improving the efficiency of this system. But there is sequences of events for the tested system to encounter and
always the possibility for adaptations going too far, which is ya5c1 t0. More precisely, we extend the evolutionary learning
very detrimental to the trust of users into a self-adapting '
system. In this paper, we present a method for testing the approach of [2] to search for two sequences of events that
efficiency of a self-adapting system, more precisely the poten- represent tasks and when they are announced to the tested
tial for inefficiencies after adaptation has taken place. Our system. One sequence, the set-up, is aimed at having the
approach is based on learning sequences of events that set system adapt itself to it by exposing the system repeatedly
the system up so that a second following learned sequence of to this sequence. After the system is optimally adapted, the

events is reacted to very inefficiently by the system. We used break L to it and the ai f our learning test
this approach to evaluate a self-adapting system for solving reax sequence Is given to it an € aim of our lea gles

dynamic pickup and delivery problems and our experiments ~ System is to find two such sequences so that the efficiency
show that the potential inefficiencies due to self-adaptation achieved by the tested system for the break sequence is much

are smaller than the inefficiencies that the non-adapting base worse after adaptation than without adaptation, providing

variant of the system is creating. users with a practical example of how bad a temporary loss
Keywordstesting; learning; dynamic optimization of efficiency can get.

We applied our approach to the self-adapting improvement

l. INTRODUCTION of a system for dynamic pickup and delivery problems based

Quality and thoroughness of testing are important factor®n digital infochemical coordination (see [4]). The self-
for the trust of users into any kind of system, be it physicaladaptation is achieved by a so-called advisor that identifies
systems like power plants or cars or pure software systemsecurring task sequences that are not well handled by the
Naturally, what constitutes thorough and high quality testingbase system, determines how the tasks should be handled
depends very much on the system that is tested and thend creates exception rules for the transportation agents that
properties it is tested for. While testing “conventional” achieve the intended solution (see [9]). We used our testing
systems for their intended behavior essentially boils dowrapproach also to find problem instances for which the base
to having the time to go through all these behaviors, testingystem of [4] is not very efficient. Our test system found
them for “negative” properties, like under no circumstancesvent sequences where the base system’s efficiency was on
showing a certain behavior, already is a difficult task and theaverage 3.5 times worse than the optimal solution, whereas
quality of the testing heavily depends on the human testethe self-adapting variant was only two times worse for the
and his abilities. For self-adapting systems, this becomes doreak sequence than without self-adaptation. This is, in our
even more difficult task, since unwanted or bad behavioopinion, a rather good result for the self-adapting variant,
might only emerge after a series of adaptations of thesince for many instances this variant improves the behavior
system. And if such a system consists of several interactingubstantially (as documented in [4]).
components ggent3, then a tester faces additionally the After this introduction, in Section Il we present the
danger of unwanted emergent behavior, also caledrgent general idea of learning of event sequences for testing. Sec-
misbehavior(see [6]). Expecting every human tester to findtion Ill introduces our application area and Section IV the
crucial problems with self-adapting systems with the potensystem to be tested. Section V instantiates the general idea
tial for emergent behavior is a highly doubtful assumptionfor the system and Section VI reports on our experimental
and does not instill trust in such systems in general. evaluation. After a view on the related work in Section VII,

In this paper, we present an automated approach to testSection VIII concludes with some ideas for future work.
self-adapting, self-organizing multi-agent system that solves
dynamic pickup and delivery problems. A key property for
such a system is the efficiency of the delivery behavior and, In this section, we present our general scheme for testing
with regard to its self-adaptation, the potential for (tempo-a self-adapting system for potential loss of efficiency due
rary) loss of efficiency due to self-adaptation and change ofo self-adaptation using learning of event sequences. While

Il. TESTING USINGLEARNING OF EVENT SEQUENCES

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 200

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

a self-adapting system naturally does not have to consisgtystem to improve efficiency. There are also several variants
of several agents, the system we present in Section IV foof the PDP, for example PDP with time windows, that
instantiating our approach does, so that we assume thatdld additional constraints to the problem. While our testing
our self-adapting system to be tested is a detycq = method can be used for systems for all of these variants,
{Agtested,1s - AGtestea,m } Of agents. Our systeml;csieq in our experiments we used a system solving the following
will work within an environment=nv. There might be other variant.
systems acting irEnv, either single agents or groups, that As the name suggests, a PDP consists of a sequence
interact with A;...q and the environment itself might also of pickup and delivery tasks and in a dynamic PDP these
change. We see the actions of other systems as well aasks are announced not all at the beginning but over a
all environmental changes as events that may or may nqieriod of time. The tasks are performed by one or several
influence A;.s:.q. In order to allow for events caused by transportation agents. The variant of PDP we are interested
other systems, for our testing we add a new group of ageni$ requires repeatedly solving such sequences of tasks, where
Acvgen = {AGevgen,1, -+, Agevgen,n } that are controlled by a sequence is called rain instance and, in order to have
a learner and that are generating events in the environmeat chance for self-adaptation, we require that run instances
for A:esteq 10 react to. This general setting is depicted inhave at least several recurring tasks.
Figure 1. More formally, a run instance for a dynamic PDP is a se-
quence of task-time pair§ta1,t1), (tas,t2), ..., (tak, tx)),

‘ Y. ‘ g, where eachta; consists of a pickup locatior,;.x ;, a
i : delivery locationl,; ;, and a required capacitycap; and
t; € Time, t; < t;11, with Time being the time interval
Env in which the run instance is to be performegdis the time

at which ta; is announced to the transportation agents. A
___i _________ I___1 transportation agemlg has a transport capacity;p., and
:‘545 ‘ 2 ! has to perform both the pickup and the subsequent delivery
i 1‘ il R ‘P ! to complete a task.
! ‘ Lx‘a‘r:wr ‘ i The SO|utlon§ol produced by a set of transportation agents
P — 1. {Ag1,... Agn, } is represented as

Figure 1. General setting of our approach sol = ((tal, Agy, th), (tah, Agy,15), ..., (ta,, Agy, t}))

whereta; € {tay,...,tax}, ta; # ta; for all i # j, Ag; €

Formally, each agentlge.ge, i Creates a sequence of f4q, . “Ag Y ¢/ <t ., t; € Time. Atuple (ta}, Ag), ;)
events ((evy, 1), (evy, t5), ..., (evj, 1)), which along with means that the pickup af; was done byAg! at time ..
the reaction of the agents Of;csca produce a sequence There gre many possibilities how to measure the efficiency
of environmental sta.teso,.cfl, ey €z. This sequence of en- ef f(sol) of the agents when producingl. Examples are
vironmental states is utilized by the machine leamer (Ogigiance covered by the agents, time needed to fulfill all
evaluate the associated sequence of events to find bettgsks, balance among the agents and many more, especially
event sequences. , _ , all kinds of combinations. For our variant, we use as

While several different machine learning techniques canyiciency measure the total distance traveled by all agents.
be used to learn event sequences, we will use an evolutionaf,are are also many different environments in which agents

learning approach as suggested in [2]. Starting with a set of5, work on the tasks. In our variant, we use a simple grid,
randomly created event sequences for edgh.gen,i, €aCh \\here each node represents a possible location.
element individual) is evaluated by running the events in

the environment and analyzing the resulting sequence ok, 5o ying PDPUSING DIGITAL INFOCHEMICALS AND
environmental states usingfiness functionThen the best AN ADVISOR
individuals are used to create new individuals usiegetic
operators The best individuals together with the new ones Solving all kinds of dynamic PDP variants is rather
form a new set (generation) and this process is repeated fdalifficult, sSimply because of the dynamic nature that requires
a given number of rounds. to make decisions without really knowing what additional
tasks might come up later. Usually, the time frames for a
lHI. DYNAMIC PICKUP AND DELIVERY PROBLEMS run instance do not allow to create an optimal plan every
The general pickup and delivery problem (PDP, see [7]time a new task is announced (the static PDP problem is
is a well-known problem class. Many of its instantiations already in NP for most variants). As a consequence, many of
require solving dynamic instances of this problem and manyhe systems used to solve dynamic problems mostly ignore
of those have many instances that allow for a self-adaptinghe efficiency aspect and concentrate on other useful system

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 201

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

properties, like robustness against failure, graceful degraddras as condition the task (its pickup location and the needed
tion, easy extendibility and general openness of the systentapacity) and as action the advice to the agemiaido this
Digital infochemical coordination (see [4]) is a coordination task. Since the base system is self-organizing, another agent
concept for self-organizing multi-agent systems that showsvill pick up the task now ignored by the previous (and from
these properties and it has been used as the coordinatitine perspective of efficiency wrong) agent. After an ignore
concept for a system solving the variant of PDP presentedule was given to an agent, the advisor waits until after the
in the last section. Essentially, each location in each task igext run instance to see if now the produced solution is
represented by an agent emitting infochemicals that lead theear enough to the efficiency of the optimal one. If not, the
transportation agents to them when a task is announced. Theoduction step for an ignore rule is repeated.
transportation agents also emit infochemicals to coordinate By repeating the clustering every time new data is avail-
and avoid having all of them moving to the same pickupable allows for dealing with a change of recurring tasks over
location. If a location agent has been served, it, again, useéime. Theoretically a big change of tasks between two run
specific infochemicals to inform the transports that they ara@nstances could result in a big (temporary) loss of efficiency
not needed by it anymore. Due to lack of space and becauder the second run instance. Getting some practical idea how
a deeper understanding of this base system is not necessdrgd this potential loss can get can improve a user’s trust into
for understanding our instantiation of the testing idea fromthe system dramatically, which is what our testing system
Section Il, we will not go into any more detail of this base in the next section is aimed at producing.

system. The interested reader should consult [4].

From a practical application perspective, efficiency of a
pickup and delivery system cannot be ignored! Therefore, There are several potential sources for a system as de-
[9] extended the system from [4] to improve efficiency scribed in the last section to produce rather inefficient
using an additional agent, afficiency improvement advisor solutions to run instances and thus several sources for
Aggra, that essentially adds to the base system the abilitglistrust in the system. We are interested in the effects of the
to reflect on the behavior shown by the transportationadvisor and especially the potential for overadaptation and
agents and to adapt this behavior after having seen reallhe consequent loss of efficiency when the system encounters
inefficient behavior that is likely to happen again in future a run instance with a unique set of tasks after adapting to a
run instances. Sincdgg; 4 is part of the system, the system different recurring set of tasks.
as a whole is self-adapting. When instantiating the general idea from Section Il to

The advisor works as follows: when the agents have dealtreate a test system for the self-adapting system presented in
with a run instance, they go back to their depot at whichSection IV, we followed the usual approach of human testers
the advisor is located and report their local history to it.to concentrate on the test goal and to eliminate influences
The advisor uses this data to compile a global history foithat are not in the test goal. So, in order to speed up
the whole system over a given number of run instancesadaptation in our test system, there are no non-recurring
Using this global history,Agg;4 identifies a sequence tasks in the setup run instance. The test system concentrates
(tat®, ..., taj*®) of recurring tasks by clustering all tasks of finding a setup sequence of tasks (events), that the systems
from the run instances using Sequential Leader Clusteringepeatedly encounters and adapts to, along with a second
(see [3]). Every cluster with a size slightly smaller or equalsequence, which is encountered after the setup adaptations.
to the number of run instances indicates a recurring task. Thand the test goal is to find such a pair of sequences for
clustering makes use of a similarity measure for tasks, buthich the efficiency for the second sequence after adaptation
for our testing this measure is not of interest. Théfrr 4 is much worse than without adaptation taking place. The
computes an optimal (or at least very good) solution fortransportation agents (and the advisor) form theel;.q.
the sequence of recurring tasks according to the efficiencin [4] and [9], agents at the appropriate locations for a task
measuresf f using an optimization algorithm for the static announce the tasks to the tested agents, so that we have
variant of our PDP (in our case, we used a genetic algorithnindeed a set of event generating agents. But for the number
that uses or-trees as basis for the genetic operators). df tasks we use in our experiments, we have a lot of locations
the optimal solution is much better than what the agentshat are not used by them. Therefore we use run instances
generated in the last run instancéggra starts creating in our individuals and create them centrally in our learner.
advice for the agents. More precisely, an individual of our evolutionary learner

The advice consists of so-callédnore rulesthat are is a pair (essetup, €Sirea), Where each of the two run
iteratively produced bydggra. It compares the produced instances is a sequence of task-time pairs. As evolution-
solution with the optimal one and identifies the first positionary operators we use the usual single point mutation and
where the two solutions are not identical (with regard to taskcrossover on lists by first selecting a positionin either
or agent). It then creates an ignore rule for the agent thatsgcty, Or espreqr. A Mutation then takes the run instance
performed the task in the produced solution that essentially(taq,t;), ..., (ta;, t;)) and creates

V. INSTANTIATING OUR TESTING APPROACH

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 202

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

((tar,t1), ..., (tale® trew), .., (tag, t)) a parametetv,,.... We also take account of the difference
between the emergent solution fesy,.... after adaptation
and the optimal solution weighted by a parametsy,.,
measuring how far the solution is from the theoretical opti-
mum, along with taking account of the difference between
((tafe, t7e"), .., (ta? ", t7*")) the solution produced foes,.;,, before and after advice,
where each(ta™, ¢"v) is either equal to(tal,t!) or to usingwadapt_as pargmeter for its importance. _
d The learning testing system for the self-adapting system

(ta2,t?). Then the new individual copies the not selecte ; described ab b | dified for ofh
run instance from the first parent pair and adds the newlyOr PDP as described above can be easily modified for other

created run instance as the other element of the new pair.tesnng, 9°a'5 around eff|0|e'ncy of a systgm. For example,

We also added a so-called targeted operator, which is H'€ efficiency of the underlying self-organizing base system
twin point mutation operator that attempts to create similac@" b€ teésted using only one run instance as individual
tasks between the two run instances of the individual td€Ssentially just havings,ax), not using the targeted twin
allow the ignore rules created for adaptation to the setu;?o'nt mutation operator and using as a fitness function
instance to negatively impact the break instance. This is Fitpase (€Strea) = LLisol=aalestrear)

achieved by aligning a task-time pair between the mstance?. th ¢ i i efft(so I’Jt(esb kt)) .
If the individual (¢5,erup, €Spreat) IS n the next section, we will not only report on our experi-

ments testing the self-adapting system for PDP, we will also
(((tar,1,t1,1)s - (tar i, t10)), ((tag,1,t2,1), -, (tazi,t21))) provide results on how bad the efficiency of the base system

then the targeted twin point mutation operator selects £2n P& compared to an optimal solution, to put our results

where eithera*" is a different task thama,, or t2°" # ¢,.
Crossover takes two run instancésa}, 1), ..., (ta}, t}))
and ((ta?,t?), ..., (ta?,t?)), and creates a new instance

positioni and creates the new individual for the self-adapting system into perspective.
VI. EXPERIMENTAL RESULTS
(((tal,l,tlyl),...,(ta{lfiw,t?fiw),...,(talyl,tl,l)),
((tagy,tan), .., (La3<® t2<), . (tag,, tay))) In this section, we describe several experiments performed

using our test system to evaluate the self-adapting system for
PDP from Section IV. First we present the general settings

for the experiments and then the results of our test system for
numberse; ande. the settings. To put these results in perspective, we also used

While an obviousld fti)tness_ mTasure for sn d??fdi"idualthe variant of the test system described in the last section
(eSsetups ESbrear:) WOUID be to simply compute the difference for the base system for PDP.

in efficiency between the created solution faf,...x With _)
adaptation €f f(solea(esprear)) and without adaptation A Experimental Settings
((ef f(sol_qa(esprear)), OUr initial experiments showed that ~ Each experiment usedld x 10 grid with a depot in the
the learner needed some more “advice” to create the indimiddle. We used the settings for the various parameters of
viduals we wanted quickly. More precisely, the learner hadhe base system and advised variant reported in [9]. Our
problems due to many early individuals where no adaptatiotesting used the following percentages for a new population
took place and due to individuals whet@ , ,q4(espreqr) Was to be created by the evolutionary operators: 10 percent
too near to the optimal solution. Both types of individuals best survived, 30 percent generated using crossover and 60
clearly are not of interest for our test goal and therefore wepercent via mutation, 30 for each kind of mutation.
created a fitness measure punishing them: Every experimental series consisted of 5 runs of the
. testing system due to the random effects of the evolutionary
f2t+ad((essetup7 esbreak)) = learnin [I : _
pract(csprenn)Ftheo(eomenn)b adapt(€ssetun) g process. In all experiments we used two transporta
ef f(solopt(esbrear)) tion agents,Ag; and Ags, and 2, 4, 6, 8 and 10 tasks. This
with limitation to two agents is because within the chosen range
of task sizes the addition of other agents was unnecessary so
that also self-adaptation would not be necessary. Also, from
a testing perspective we are interested in small examples that
show a problemT'ime was an integer interval df), 50] for
2 tasks,[0,100] for 4 tasks,[0, 150] for 6 tasks,[0,200] for
adapt(essetup) = maz{(ef f(sol_qa(€Ssetup)) — 8 tasks and0, 250] for 10 tasks. For each number of tasks
ef f(s0l+aa(€ssetup))) * Wadapt, 0] we performed one run to get an idea after what generation
andsol,p: (eswreqr;) being the optimal solution for the break no improvement seemed to occur anymore and we used this
run instance. number to limit the run length of the other test runs. For the
We account for the difference of the solution quality provided results we indicate both the average efficiency loss
produced fores;,...1 before and after adaption weighted by and the maximal loss among the 5 runs.

whereta7” andta3 " are identical tasks ang " = t+e¢;
andtggw = t+ ¢, for randomly chosem € Time and small

pract(esprear) = maz((ef f(soliaa(eStreak)) —
eff(SOZfad(esbreak))) * Wpract, O]

theo(esprear) = maz|(ef f(soltad(€Shreak)) —
eff(SOlopt(esbreak))) * Wtheos 0]

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 203

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Tasks || Generations| Average | Maximum

B. Quantitative Results > 0 56 58
Table | summarizes our experimental results for testing 4 80 3.4 4.9

the self-adapting system for the PDP as set up in the last g 128 g:g 431:;

subsection. For the fitness function we used weights of 10 200 3.6 25

Wpract = 25, Wadapt = O, and wepeo = 1. This means Table Il

that the primary component is how much worse the break EFFICIENCY PROBLEMS OF BASE SYSTEM fitpqse)

run instance is solved after adaptation, compared to the

efficiency the system shows for the break instance without

the adaptation. The other components are there to make sULe 4 the break instance is
that the setup instance really leads to an adaptation and that

the break instances are solved badly, as described in the last ((D,E),18),((F,1),38),((B,D),55),((J,F),78).
section. Without the advisor, the system solves the setup instance
Tasks Generations Average Maximum by haV'ng Agl (|nd|cated by the dashed |IneS) fulfill task
2 35 17 19 ((F,K),19), starting to respond to task ((C,G),74) but then
4 70 18 19 switching to task ((J,A),75)Ag, does ((L,H),35), starts
6 105 2.0 2.1 ;
8 140 19 51 to respond to ((C,G),74), switches to start to respond to
10 175 2.0 2.0 ((3,A),75) and then switches back to fulfilling ((C,G),74).
Table | The advisor realizes that one agent should do all tasks and
EFFICIENCY LOSS RESULTS FOR SELADAPTING SYSTEM creates exception rules fotg, to ignore tasks starting at

F after time 19, L after time 35, C after time 74 and J

Table | shows the average efficiency loss due to th&fter time 75. As the bottom left part of Figure 2 shows,

adaptation is around a factor of 2 and the worst foundhis does not result in a perfect solution after the advice,
examples are also very near to that faktoFhis means Since-Ag. fulfills ((F.K),19) then ((L,H),35), then starts to

that in the rather extreme situation where a total changd!lfill (C,G),74), but switches to ((J,A),75) and then comes
of the tasks to fulfill can happen (which is usually not the Pack to fulfilling ((C,G),74). This shows a limitation of the
case in the scenarios for which the advisor was developed_?x'sung ignore exceptlon rules provided by the advisor since
the system result is only two times worse than without thet ¢@nnot enforce a time for the agents to complete tasks in.
advisor. With regard to the efficiency of our test system Without having the advisor, the break run instance is
itself, the 5 runs accounted for in the 10 task entry of theSClved by the system by havingg, fulfill ((D,E),18), then
table took 19.4 hours to complete. ((F,1),38) and the_n ((3,F), 78 g- fulfills ((B,D),SS). As with
Before we look more closely at one of the runs from so many of the instances for a system with two agents, the
Table | to see what causes the loss of efficiency, we willPPtimal solution would be to have one agent do all tasks.
first look at the results of our testing system when modified™\fté" having adapted to the setup instance, the system solves
to evaluate the efficiency of the base self-organizing systeni€ break instance in the following mannél, fulfills task
Table Il presents the results of our test system for the sam@D:E),18), ignores ((F,1),38) because of the exception rule,
numbers of tasks and the same grid setting as for Table Partially responds to ((B,D),55), discards this task and then
As can be seen, the worst event sequences found by our tdgfores ((J,F),78) due to the other exception rule. This means
system are clearly worse than the efficiency loss potentidifat Agz fulfills first ((F,1),38), then does ((B,D),55), and
found for the self-adapting system. One of the goals of théhen performs ((J,F),78).
particular self-adapting system we are testing was to keep them___________!
strengths of the base system, especially the self-organizatior_.
ability, so that big changes in events from one run instance
to the next would have no big impact. Tables | and Il show |
that this goal was indeed achieved.

.
.
.
L]
L]
=]

C. A "bad” problem instance

Figures 2 and 3 visualize one of the examples with 4
tasks. The setup run instance is

((FK),19),((L,H),35),((C,G),74),((3,A),75)

[]
."{'
{Lf

Figure 2. Setup without Advice (Right) vs. Setup with Advice (Left)

1As already stated, the efficiency loss is computed as the efficiency of Thi | h the i t f havi t ted
the solution foresy,.., after adaptation divided by the efficiency of the IS example shows the iImportance of having targete

base system without adaptation fef,.cq. operators to bring knowledge about the tested system into the

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 204

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

sequences for the self-adapting system that were around 2
times worse than what the system without the self-adaptation
would have achieved, for this base system without adaptation
a variant of our test system was able to find on average event
sequences that it solved around 3.5 times worse than would

" s owomomomom oo s s e omomomomowowom be the optimum solution. In our opinion, this strengthens
T R the claim of the self-adapting system developers that their
KB = O = = = = = = = K = D = = = = = = = adaptation approach is very targeted to situations in which
L LR R I R L LR the base system is bad and represents only a minimal

intrusion into the base mechanism.
Naturally, like all testing, our method cannot guarantee

to find the worst event sequence there is for the tested

Iearning process. The twin point mqtation operator connectgystem' But, compared to a human tester, it has no bad days
tasks in the setup and the break instance to create eventq \orks always on a consistent level, especially if a test
that trigger the exception rules, which may then result incongists of several runs of the system as in our experiments.
unwanted behavior. These unintended consequences are tReq our system does not retire and leave a company with
danger of an advisor and our test system gives us an ideg, ice testers.
of the potential inefficiencies produced. There are several directions for future research. The
developers of the self-adapting system we used have ideas
for additional types of exception rules that are more invasive
The use of learning/self-adapting systems to test systengto the base system than the ignore rules (see [5]). Testing
for certain properties/test goals has become a very activthese new rules should provide an idea if this increases
research area over the past years, although not under tiige potential for inefficiency. Along the development and
terms “learning” or “self-adaptation” (many use “searchintegration of these new exception rules, our test system can
based” instead). Many of the evolutionary approaches foalso be used to realize some kind of test-driven development
testing reported at [8] are, in fact, learning systems. Fofor self-adapting systems. Finally, we plan to use our method
example, [1] evolves a schedule of given events for ao develop test systems for other self-adapting systems for
scheduler (resp. an executable model of it) with the goal tather applications.
find times for the announcement of the given events that lead
to infeasible schedules. [1] comes nearest to our approach,

but the tasks have to be given, not learned, and the testedl] L. Briand, Y. Labiche, and M. Shousha: Using Genetic Algo-
system is a single agent, not a group. rithms for Early Schedulability Analysis and Stress Testing

. . h . in Real-Time Systems, Genetic Programming and Evolvable
With regard to testing self-adapting or even just self- Machines 7(2), 2006, pp. 145-170.

orga'mlzmg systems, this topic has not drawn a lot Qf at- [2] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan:
tention, so far. Naturally, for_testmg the wanted behavior of Evolutionary behavior testing of commercial computer games,
such systems, standard testing methods can be and are used. proc. CEC 2004, Portland, 2004, pp. 125-132.
But the added difficulty to “negative” testing has not been [3] j.A. Hartigan: Clustering Algorithms, John Wiley and Sons,
the focus of research beyond the already mentioned works. 1975.
[4] H. Kasinger, B. Bauer, and J. Denzinger: Design Pattern for
VIII. CONCLUSION AND FUTURE WORK Self-Organizing Emergent Systems Based on Digital Info-
We presented a method to test self-adapting systems for chemicals, Proc. EASe 2009, San Francisco, 2009, pp. 45-55.
adaptations that result in a loss of efficiency and for the [5] H. Kasinger, B. Bauer, J. Denzinger, and T. Holvoet: Adapting
tasks that are solved less efficiently. By learning sequences Environment-Mediated Self-Organizing Emergent Systems by
of events that set up the system so that a follow-up sequence =XCePtion Bmes' Proc. SOAR 2010, Washington, 2010.
is badly solved, our method provides users of self-adapting[6] J-C. Mogul: Emergent (mis)behavior vs. complex software

systems with an idea what can go wrong and allows them ;%?tggngs_’ggfops Operating Systems Review 40(4), 2006,

to evaluglte this_ r@sk Com_par(?d to the gains_ the self-adapting[7] M.W.P. Savelsbergh and M. Sol: The General Pickup and
system is providing. This aims at increasing the trust into Delivery Problem, Transp. Science 30, 1995, pp. 17-29.

the system. Naturally, the developers of the system also Calg] SEBASE: Software Engineering By Automated SEarch
use the found sequences to improve their system. Repository, http://iwww.sebase.org/sbse/publications/, as seen

We used a system based on our method to test a self- on Jun. 18, 2010.

adapting, self-organizing multi-agent system for one variant [9] J.P. Stegbfer, J. Denzinger, H. Kasinger, and B. Bauer: Im-
of dynamic pickup and delivery problems. Our experiments proving the Efficiency of Self-Organizing Emergent Systems
showed that while our system was only able to find event Py an Advisor, Proc. EASe 2010, Oxford, 2010, pp. 63-72.

Figure 3. Break without Advice (Right) vs. Break with Advice (Left)

VIl. RELATED WORK

REFERENCES

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0 205

