
Platform Adaptation of Mashup UI Components

Andreas Rümpel, Ken Baumgärtel, and Klaus Meißner
Chair of Multimedia Technology
Technische Universität Dresden

01062 Dresden, Germany
{andreas.ruempel,ken.baumgaertel,klaus.meissner}@tu-dresden.de

Abstract—Modern user interface mashups combine web-
based backend services and a composite user interface. While
the former can be used in different runtime platforms without
further ado, user interface components are rendered platform-
dependently. Creating and maintaining multiple implementa-
tion variants for different technologies and communication in-
terfaces implies high development costs. This paper introduces
a generic platform adaptation concept of such visual mashup
components. The practicability of the proposed concept is
demonstrated by implementing the adapter for a subsistent
integration infrastructure and component model.

Keywords-user interface integration; platform adaptation;
mashup components; composite web applications

I. INTRODUCTION AND MOTIVATION

Old-fashioned ways to create web applications presup-
posed a specific execution platform or framework. This
includes server-centric ones, like portal servers, those run-
ning completely on the web client, e. g., following the
Thin Server Architecture [1], and hybrid ones like Eclipse
Rich Ajax Platform (RAP) [2]. When building composite
web applications for those platforms, the availability of
compatible UI components is essential. Such UI components
cannot be reused in other runtime environments easily,
because different web platforms and runtime frameworks
have specific technology-induced requirements and behavior
concerning their structure, language and deployment mode
and thus impede a cost-efficient and fast development pro-
cess. This platform heterogeneity implies a tedious manual
adjustment and migration process of existing components
to be executed in alternative environments. We understand
these runtime platforms as one special kind of context called
integration context. Supporting various integration contexts
can be regarded as a new quality of adaptivity of such
applications, driven by their components.

In most composite systems, component interface de-
scriptions represent the formal realization of a component
model. They are used to facilitate the application’s internal
communication. The existence of such component interface
descriptions is an essential precondition of our adaptation
concept. In contrast to conventional web-based services,
user interface building parts apparently cannot be platform-
independent per se, because they are always rendered based
on concrete code, i. e., they mostly contain or generate

HTML code in conjunction with JavaScript. We define plat-
forms including web runtime architectures and UI toolkits
as well, which are already present in a great diversity. This
indicates that a platform adaptation mechanism is inevitable
against the background of using UI components in a multi-
platform context. Fortunately, the major part of one UI
component can be generated automatically, e. g., through
derivation from an interface description during platform
adaptation.

This paper provides a novel concept introducing a plat-
form adapter for UI components of composite web appli-
cations. It takes existing user interface components con-
forming to a specific component model and developed for a
specific runtime environment as adaptation input. Based on
templates, it performs platform adaptation by wrapping and
generating the parts relevant to the target runtime platform.

The remaining paper is structured as follows. Section II
analyzes and defines prerequisites regarding the component
model in distributed web UI scenarios. Section III presents
our concept of platform adaptation for UI components.
Afterwards, in Section IV, the proposed concept is applied
to the CRUISe UI composition infrastructure [3], which was
developed in parallel. Implementation details are given in
Section V. In Section VI, related work is outlined. Finally,
Section VII concludes this paper.

II. COMPONENT MODEL AND PREREQUISITES

We consider UI components in the scope of web-based
composite applications, causing the need for a client-side
part to be rendered by a web browser engine. This client-
side part, generically created or not, consists either of HTML
and JavaScript, or employs a browser plug-in technology
like Adobe Flash or Microsoft Silverlight. To specify an
adaptation concept, a discussion of valid combinations of
source UI component implementation architectures and tar-
get platforms is necessary. The following comparison eluci-
dates different commonly used UI component implementa-
tion techniques and derived consequences for the adaptation
process with special focus on client-server distribution.

Client-side JavaScript: Components using only plain
HTML and JavaScript frameworks are well-suited to be
adapted to other JavaScript frameworks, hybrid or server-
side technologies because of their easy to handle declarative

164

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

<interface xmlns:dt="http://uis.dyndns.org/datatypes">
<event name="singleSelection">

<parameter type="dt:Address" name="Address"/>
</event>
<event name="multiSelection">

<parameter type="dt:AddressList" name="AddressList"/>
</event>
<event name="exportSelected">

<parameter type="dt:AddressList" name="AddressList"/>
</event>
<operation name="addRecord">

<parameter type="dt:Address" name="Address"/>
</operation>
<operation name="updateRecord">

<parameter type="dt:Address" name="Address"/>
</operation>

</interface>

Listing 1. Interface description of an address list UI component

and scripted nature. In the latter two cases, additional
component parts on the server side have to be generated.

Browser plug-in: Adobe Flash, Microsoft Silverlight
and other browser plug-in technologies are also client-side
approaches. They are scriptable using a JavaScript bridge
and then can be adapted to the same as above.

Hybrid techniques: They are suitable to be adapted
under certain conditions, if the UI-relevant part can be
extracted like in owner-drawn RAP widgets [4]. In this case,
the output format range is like the above.

Server-side (binary and scripted): Server-centric com-
ponent implementations require a code analysis of source
components, if technologies like portlets are used and an ex-
traction technique for server-side scripting approaches, like
Java Server Pages. Possibilities supporting server-side input
components are very limited, because binary components or
component parts would have to be provided as source code.

Obviously, the ability of handling implementations of
available source components is a crucial factor when per-
forming component adaptation. An important cornerstone of
our adaptation concept is the use of a component model,
formally describing the communication interfaces of com-
ponents. To exemplarily illustrate the contents of such a
model, a snippet of a mashup component description used
in CRUISe (cf. Section IV) is shown in Listing 1. It
describes the interface of an AddressList UI component.
The interface model used here comprises events and op-
erations to establish an event-based communication within
the application. Three events (singleSelection, multiSelection
and exportSelected) and two operations (addRecord and
updateRecord) with corresponding data types are provided
by this component. Using those interface parts, the addresses
can be read out or manipulated.

In Figure 1, the explained component is shown in a simple
real estate management application context. New addresses
can be added to AddressList (middle, same interface as
outlined before) by another component, e. g., a Building-
Database (left), providing new address entries using the
operation addRecord. Once an address entry is selected in
the list (singleSelection), the building corresponding to the
selected address is visualized by an ImageViewer compo-

Communication
Interfaces:

Event
Operation

Figure 1. User interface components in a mashup application

BB XXAA

Component Interface Description

Implementations
(Bindings)

Figure 2. Adaptation as derivation of new UI component binding

nent (right). The whole communication (arrows) is realized
by an event-based interface in a publish-subscribe fashion.

We conceive component implementations as bindings for
an abstract component interface description. Accordingly,
different bindings of the same interface are exchangeable
against each other within an application. Thus, the proposed
platform adapter can be regarded as a generator for new
bindings, matching the previously unsupported integration
context to adapt to. As illustrated in Figure 2, an existing
binding (e. g., A) for another integration context is taken as
a source of adaptation to derive the new one (X) utilizing
platform-specific creation rules (arrows). These creation
rules have to be specified once per platform to be supported.

III. UI COMPONENT PLATFORM ADAPTER

Based on the previously stated prerequisites and condi-
tions, we now present our concept of platform adaptation of
UI components proposing a multi-staged platform adapter to
be used within web integration architectures. The adaptation
workflow is executed for one UI component at a time. Start-
ing point and input for the adapter are the component’s ab-
stract interface description and one of its bindings. As shown
in Figure 3, an abstraction stage precedes the template-based
generation of the target implementation to transform non-
matching input bindings into a platform-compatible one. The
service, the platform adapter offers to the UI integration
system, can be summarized as the provision of a previously
unavailable binding for a specified UI component. Beside
a list of source bindings and the component’s interface
description, the adapter requires an identifier of the desired
target platform as input. While the support of different
platforms mainly affects the second adaptation stage, the
used abstract component interface model has to be specified
for the whole adapter. Hence, different component models
employing alternative communication paradigms are fine,
as long as they conform to the outlined prerequisites (cf.
Section II). The two stages are now described in detail.

165

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Platform-Specific AdapterPlatform-Specific Adapter

Platform Adaptation ManagerPlatform Adaptation Manager

Abstraction and Parsing

Platform-Specific Adaptation

ParserParser

Binding WrapperBinding Wrapper

PackerPacker

GeneratorGeneratorGeneratorGenerator

CompilerCompiler

select

selected
binding

wrapped implementation

component
data

CompilerCompilernew component parts

interface description
+ source bindings

adapted component
as new binding PackerPacker

Figure 3. Platform adapter architecture

A. Abstraction and Parsing

In this stage, the analysis of the components’ interface
description and the derivation of an internal data model
of the input UI component binding are performed. The
Platform Adaptation Manager (PAM) controls the whole
adaptation process. In doing so, it selects one of a list
of available source bindings to proceed further steps. As
shown in Listing 2, bindings are represented by an XML
description for a specific platform, referencing needed
dependencies and containing the mapping to language-
specific constructs, as the JavaScript snippets illustrate. The
depicted binding conforms to the AddressList component
(cf. Listing 1), telling how the implementation should
be addressed through invocation of operations and
eventsinks for publishing events.

The binding is analyzed by a parser to create an internal
interface model, which is forwarded to the binding wrap-
per. Its task includes the resolution and download of the
component’s dependencies. This step is necessary, because
components differ in their style of referencing and including
resources, such as images, styling information or script
files. Based on the collected component data, a common
representation for further processing in the second adaptation
stage is gained.

B. Platform-Specific Adaptation

The wrapped component implementation represents the
input for a Platform-Specific Adapter (PSA), which is se-
lected by the PAM depending on the target platform identifier
specified. A concrete PSA controls the template-based cre-
ation of all parts of the new UI component implementation.
Different generators and compilers are invoked by the PSA
to perform this task. The complexity of implementation
artifacts to be generated depends on the target platform (cf.
Section II). Having all parts generated, a packer brings them
into a deliverable format, creates an XML file describing
the binding declaratively (cf. Listing 2) and links resources
within the binding document.

<binding platform="javascript-client-runtime-platform">
<interface>http://uis.dyndns.org/uic?class=addresslist</interface>
<dependencies>

<dependency uri="http://uis.dyndns.org/addresslist.js" language="js"/>
</dependencies>
<constructor>@:instance@ = new ui.component.AddressList()</constructor>
<destructor>@:instance@.remove()</destructor>

<eventsink event="event.singleSelection">
<register>@:instance@.on(’singleSelection’,

@event:event.singleSelection@)</register>
</eventsink>
<eventsink event="event.multiSelection">

<register>@:instance@.on(’multiSelection’,
@event:event.multiSelection@)</register>

</eventsink>
<eventsink event="event.exportSelected">

<register>@:instance@.on(’exportSelected’,
@event:event.exportSelected@)</register>

</eventsink>
<invocation operation="op.addRecord">

@:instance@.addRecord(@parameter:Address@)</invocation>
<invocation operation="op.updateRecord">

@:instance@.updateRecord(@parameter:Address@)</invocation>
</binding>

Listing 2. Binding for a JavaScript AddressList component

For supporting a large range of platforms, a flexible
internal component handling is required. The adaptation to
a client-side platform considers inter-component commu-
nication and integration on the client, while a server-side
platform performs this on the server. Hence, the adapted UI
component is divided into different parts along the lines of
a design pattern called Half-Object plus Protocol (HOPP)
[5]. This division enables the partitioning of provided func-
tionality of the UI component depending on the target plat-
form and introduces the principle of Model View Controller
(MVC) meeting the demands of adaptable UI components.
With this conceptual division, each part of the component
can be adapted effectively, so that it will fit best into the
target platform. If, e. g., a component for a client-server dis-
tributed integration context with server-side communication
is targeted, HOPP helps to build a compatible server-side
interface and to connect it with the corresponding client-side
part of the component. Figure 4 shows the distributed nature
of the AddressList component outlined in Listings 1 and 2
for a client-server distributed integration context. The server-
side part represents the model, the client-side part the view
and another part, called Synchronization Controller, adopts
the implementation of the used protocol and represents
the controller, or bridge, between both other parts. This
distribution causes the server-side part holding a reference
to the wrapped, previously client-side UI component and is
therefore a proxy. The input (green) and output (red) access
points enable component communication. This communica-
tion can also be parallel, on client and server, yielding UI
components enabled to communicate offline, synchronizing
their corresponding parts and persisting their states when a
network connection is established.

The splitting, i. e., distribution of the component, is not
mandatory. It depends on the given component technology
and the architecture of the target platform. Thus, it is possi-
ble to have only a client-side wrapper (e. g., for a thin server
runtime) without the other parts. Assuming a distributed

166

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Wrapper
UI Component (Model)

operations

events

configuration

Address = '' '';

Server-side Client-side

addRecord(Address)

Synchronization Controller

operations

properties

Client = UICView;
Server = UICModel;

updateServerState() {
 if(Client.singleSelection){
 Server.Address = Client.Address;
 } else ...
}

updateRecord(Address)

AddressList = [];

UI Component (View)

operations

events

configuration

Address = '' '';

addRecord(Address)

updateRecord(Address)

AddressList = [];

updateClientState(Address) {
 Client.Address = Address;
}
...

= Input Data

= Output Data

singleSelection : Address

multiSelection : AddressList

exportSelected : AddressList

singleSelection : Address

multiSelection : AddressList

exportSelected : AddressList

Figure 4. Distributed adapted UI component for a thin client platform

integration context, like Eclipse RAP [2], a distributed
component is generated. It consists of a package containing
the server-side model, the client-side JavaScript component
and the so called Life Cycle Adapter to synchronize both. In
other situations, e. g., a JavaScript-based integration context,
it is sufficient to create a JavaScript wrapper. Thus, a suitable
workflow is achieved, that covers many platform-specific
possibilities.

C. Adapter Usage and Integration

At least one proper PSA per target platform has to be
provided to make use of this adapter. Therefore, it is the
PAM’s responsibility to choose the right PSA at runtime.
To develop Platform-Specific Adapters, adaptation experts
require a high knowledge of the integration contexts to
cover. If there is no adequate PSA available, the adaptation
is aborted and the PAM cannot deliver a new binding.
Runtime platform providers are in charge of creating and
maintaining their PSAs. The adaptation process can be
called at application runtime, at UI integration time (cf. Sec-
tion IV), or at component deployment time in a component
registry, which denotes a higher performance. Moreover, the
adapter itself could be outsourced and act as an external
service, the integration system could use. A similar way
of modularization could be applied to the PSA to yield
Platform Adapation as a Service. This would achieve the
total separation from an explicit integration infrastructure.

IV. SERVICE-BASED UI INTEGRATION SYSTEM

The CRUISe system [3] facilitates the integration of
service-based user interface building parts, called User Inter-
face Services (UIS), to create user interface mashups. This
section describes how CRUISe is utilized to provide a UI
integration infrastructure hosting the platform adapter.

A. Architectural Overview

As shown in Figure 5, using a platform-independent
composition model and a model-to-code transformation,
one application can be executed on different kinds of
distributed runtime platforms. The composition model is
transformed into a platform-specific composite CRUISe ap-
plication (green arrow). Within this model, UI component

Integration Service Integration Service

W
eb

-b
as

ed
 S

er
vi

ce
s

User Interface Services

CRUISe Runtime Platform

Authoring ToolAuthoring Tool

Composite Application

Composition Model

Modeling

Composition and Execution

find

Context
Service

Context
Service

Component
Registry

Component
Registry

Platform AdapterPlatform Adapter

Figure 5. CRUISe infrastructure

interfaces and their communication relations are specified.
The generated platform-specific application contains binding
points for UI components, enabling binding and exchange
at runtime. Thus, it is called application skeleton. The
interface descriptions of the components to be integrated
are organized in classes to modularize them and facilitate
the implementation of multiple bindings. Referencing such
interface classes (cf. interface description in Listing 1), all
information needed to integrate UI components in a service-
oriented fashion is provided. Taking those descriptions and
a platform identifier, an integration request is created and
sent from the runtime platform to the Integration Service,
which performs further steps of retrieval, selection and adap-
tation, utilizing the Component Registry and external Con-
text Services. The ready-to-integrate UI component is then
returned to the runtime environment. A crucial condition
for this workflow is the availability of platform-compatible
component implementations, i. e., bindings, to be delivered.
Hence, only existing bindings can be provided at this point
without a platform adapter. Since the binding selection and
ranking process is executed with the Integration Service in
charge, our adapter is realized there as a module.

B. Integration Workflow

An integration request is sent from the runtime environ-
ment to the Integration Service carrying component interface
descriptions and a platform identifier. Interface descriptions
are extracted from the application skeleton, the platform
is determined by the runtime platform itself based on a
defined set of identifiers. By executing an Integration Task,
this request is forwarded to the Component Registry, i. e.,
it is asked for matching UI component implementations of
the UI component, that is subject to integration. The further
workflow can be divided into two cases.

Platform binding available: The registry discovers
bindings matching the component interface and the platform.
Then a list of compatible bindings is returned to the Integra-
tion Service and no platform adaptation is needed. Next, a
ranking module performs a context-based ranking process,
yielding the most appropriate UI component in respect of
the given requirements.

Platform binding unavailable: The registry can find
bindings matching the interface description, but not the

167

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

platform parameter. As a consequence, the registry sends
back an empty list. Next, the integration service sends a new
request, but without restricting the platform. A list of bind-
ings is returned, which are not matching the initially desired
platform. Afterwards, the Integration Service, knowing that
these bindings are not platform-compatible, can continue to
forward this list to the platform adapter. There, the Platform
Adaptation Manager receives the list and performs further
operations described in Section III. The employment of a
ranking module is obviously not needed in that case.

Thus, platform adaptation is added as a further step to
the CRUISe integration task. Its invocation is depending
on the output bindings of the Component Registry. In
both cases, the finally selected binding is returned to the
runtime environment, which performs its integration into
the composite application. The new binding may comprise
different new files, that were created during adaptation. To
allow the runtime environment to access them, they have
to be hosted under a specific address, which is referenced
within the binding XML document. This kind of hosting is
provided by the Integration Service.

While processing this integration workflow, some excep-
tional situations could occur. It is possible that the registry
cannot find any bindings, even when neglecting the platform
parameter, but then a UI component without implementa-
tions would exist. This situation should be avoided by the
component developers. Incorporating the proposed concept,
the model-based development and UI integration approach in
CRUISe facilitates the execution of one mashup application
in different runtime platforms.

V. IMPLEMENTATION

Since a concrete component model is required to imple-
ment the platform adapter, the CRUISe-specific model was
chosen to fit into the integration infrastructure described in
Section IV. For the template-based component part genera-
tion we used Apache Velocity [6] as a template engine. Tem-
plates are provided with the selected PSA for each supported
target platform. Each template contains place holders, using
Velocity Template Language. They are filled by a template
engine with information from the extracted component data
(Figure 6). A place holder defines a variable part in the
template. It is expressed by the $-symbol for accessing data
objects and optionally embedded in statements given by the
#-symbol, e. g., to handle loops. With both constructs, each
template can be described effectively. In Figure 6, a new
instance of the AddressList component and the definition of
the component’s operations are represented by place holders
(cf. Listing 2).

The step of generating the component’s parts includes the
download of and reference to source component artifacts,
gained from the binding description, and the optional com-
pilation of created source code after template processing. If,
e. g., a component part based on Java should be created, the

var instance = new
${data.construct}(${data.config});
#foreach($op in ${data.ops})
function $op(${op.params}){
 instance.$op(${op.params});
};
#end

var instance = new
${data.construct}(${data.config});
#foreach($op in ${data.ops})
function $op(${op.params}){
 instance.$op(${op.params});
};
#end

Component Binding Model

var instance = new AddressList();
function addRecord(Address){
 instance.addRecord(Address);
};
function updateRecord(Address){
 instance.updateRecord(Address)
};

var instance = new AddressList();
function addRecord(Address){
 instance.addRecord(Address);
};
function updateRecord(Address){
 instance.updateRecord(Address)
};

Template Generated Component Artifact

Template Engine

Figure 6. Template-based component artifact generation

PSA would call a Java compiler to generate bytecode out
of the Java source code. For such typed programming lan-
guages, the right communication data types in the templates
have to be defined. The used component model defines data
types with XML Schema. Finally, an additional generation
step of the target component structure and packaging to
the target format is executed. In the case of RAP, it is
packed as a Java Archive to provide an OSGi bundle. An
RAP-based runtime can load those bundled components and
integrate them into an RAP application. Hence, the package
contains artifacts of the original UI component, its resource
dependencies, like optional CSS, Flash or JavaScript files,
wrapping code and the new XML binding description,
generated by a special template. Finally, the new binding
is returned and can be committed to the hosting integration
infrastructure.

VI. RELATED WORK

While the attention for mashup development has been
overwhelming, only few preliminary work has been done
in the field of mashup component adaptation. Often, a
sufficiently large pool of perfectly matching UI components
is assumed, but compatibility issues initiated by different
component models and runtime platforms are neglected.

In [7], a wrapping mechanism of generic web applications
is described by using a predefined component model to
provide them for further composition. The transformation
of web applications is done using event annotations to
yield mashup components conforming to the component
model. A generic wrapper structure enables the support
of componentization at runtime. An API is created, which
generates events, enacts operations, allows the instantiation
and renders the component’s UI. In contrast to our approach,
they propose the engineering of new components by using
existing web pages. No source component model is pre-
sumed. The goal is to create new mashup components for
further composition. This process is performed by a compo-
nent developer with a special tool, while our adapter creates
new component implementations automatically, showing the
huge relevance of a predefined component model.

A similar approach of adapting existing UI building parts
is also used in the CAMELEON project [8]. It identifies three
steps to re-engineer a UI to other contexts. Multiple levels
of abstraction provide the step-wise process of generation
[9]. First of all, UI interaction objects of a web page are
detected, while a user provides feedback on the objects he

168

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

is interested in. Next, a presentation model is created out
of them. After that, the model is transformed into another
presentation model of the new context. It can be manually
modified before creating the final user interface. In contrast
to CAMELEON, we strive for an automatic process without
any user feedback at runtime. Furthermore, it is hardly
applicable to analyze a UI without the knowledge of its com-
ponent model. Thus, the kind of component introspection
and re-engineering like in CAMELEON is not suitable in
our case. Further, to support a service-oriented UI provision,
parsing is only applicable at the level of component interface
description.

Mixup elaborates the usage of component adapters for
the integration of presentation components [10]. They aim
for the support of heterogeneous components with different
underlying technologies. A lightweight middleware is used
to instantiate these adapters to allow the communication of
UI components at runtime. The adapter locates the right
implementation and instantiates the component. It identifies
and allows access to events, operations and properties and
performs data type mapping. To apply this adapter concept, a
meta-language facility like reflection is needed. If this is not
satisfied, a generic adapter cannot be built. In that case, the
implementation of individual wrappers for each component
is needed. We also use a component wrapper, which is part
of the adapted UI component itself. For creating this wrapper
we use an abstract interface description of the component
as an input. This is very important for encouraging the
independence of possible runtime systems as the adapter
does not need to be part of them.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a platform adaptation concept
for UI components, which are used within web mashup
applications. Therefore, we took the existence of a com-
ponent model as a starting point and treated component
implementations as bindings to their interface descriptions
realizing this model. We regarded the platform adaptation
process as a template-based generation of further bindings
to a given component interface supporting different runtime
platforms. By transferring the platform adapter to an existing
user interface integration infrastructure, we showed the op-
erational capability of our concept, implementing Platform-
Specific Adapters, e. g., for a runtime environment based on
Eclipse Rich Ajax Platform. All in all, we are able to employ
web UI components in a multi-platform scope.

The current approach does not automatically involve
similarities between different integration contexts. To this
end, a classification of integration contexts could help to
derive PSA implementations covering new platforms. Thus,
a semi-automatic adaptation workflow for unknown plat-
forms similar to known ones would be possible, being a very
useful tooling support for platform refactoring and version
management. We further plan to investigate how generated

bindings, i. e., adapted components, can be saved and then
made available to a component repository to be used in
further integration tasks. An additional research subject
will cover the extension of the UI component adaptation
concept to a general mashup component adaptation concept.
Prerequisites are a uniform mashup component model and
analyses of the adaptation and exchangeability needs of
components such as data type converters or service proxies.

ACKNOWLEDGEMENTS

The authors wish to thank CAS Software AG for provid-
ing support by developing a prototypical RAP-based runtime
platform to be used as an integration context.

REFERENCES

[1] S. Pietschmann, J. Waltsgott, and K. Meißner, “A thin-
server runtime platform for composite web applications,” in
Proceedings of the 5th International Conference on Internet
and Web Applications and Services (ICIW 2010). IEEE CPS,
May 2010.

[2] B. Muskalla and R. Sternberg, “RCP goes web 2.0,” Eclipse
Magazin, vol. 12, Oct. 2007.

[3] S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner,
“CRUISe: Composition of rich user interface services,” in
Web Engineering, ser. Lecture Notes in Computer Science,
vol. 5648/2009. Springer, Jun. 2009, pp. 473–476.

[4] F. Lange, Eclipse Rich Ajax Platform: Bringing Rich Clients
to the Web. Apress, Dec. 2008.

[5] G. Meszaros, “Pattern: Half-object plus protocol (HOPP),”
in Pattern languages of program design, J. O. Coplien and
D. Schmidt, Eds. Addison-Wesley Longman, May 1995, pp.
129–132.

[6] Apache Software Foundation, “The apache velocity project,”
accessed: 2010-08-26. [Online]. Available: http://velocity.
apache.org

[7] F. Daniel and M. Matera, “Turning web applications into
mashup components: Issues, models, and solutions,” in Web
Engineering, ser. Lecture Notes in Computer Science, vol.
5648/2009. Springer, Jun. 2009, pp. 45–60.

[8] L. Bouillon, J. Vanderdonckt, and K. C. Chow, “Flexible re-
engineering of web sites,” in Proceedings of the 9th inter-
national conference on Intelligent user interfaces (IUI ’04).
ACM, Jan. 2004, pp. 132–139.

[9] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouil-
lon, and J. Vanderdonckt, “A unifying reference framework
for multi-target user interfaces,” Interacting with Computers,
vol. 15, no. 3, pp. 289–308, Jun. 2003.

[10] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and
M. Matera, “A framework for rapid integration of presenta-
tion components,” in Proceedings of the 16th international
conference on World Wide Web (WWW ’07). ACM, May
2007, pp. 923–932.

169

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

http://velocity.apache.org
http://velocity.apache.org

	Introduction and Motivation
	Component Model and Prerequisites
	UI Component Platform Adapter
	Abstraction and Parsing
	Platform-Specific Adaptation
	Adapter Usage and Integration

	Service-Based UI Integration System
	Architectural Overview
	Integration Workflow

	Implementation
	Related Work
	Conclusion and Future Work
	References

