
A QoI-aware Framework for Adaptive Monitoring

Bao Le Duc∗, Philippe Collet‡, Jacques Malenfant† and Nicolas Rivierre∗
∗Orange Labs, Issy les Moulineaux, France

Email: {bao.leduc, nicolas.rivierre}@orange-ftgroup.com
‡Université de Nice Sophia Antipolis, CNRS, UMR 6070 I3S, Sophia Antipolis, France

Email: Philippe.Collet@unice.fr
†Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7606 LIP6, Paris, France

Email: Jacques.Malenfant@lip6.fr

Abstract—Monitoring application services becomes more
and more a transverse key activity in information systems.
Beyond traditional system administration and load control, new
activities such as autonomic management and decision making
systems raise the stakes over monitoring requirements. In this
paper, we present ADAMO, an adaptive monitoring framework
that tackles different quality of information (QoI)-aware data
queries over dynamic data streams and transform them into
probe configuration settings under resource constraints. The
framework relies on a constraint-solving approach as well as
on a component-based approach in order to provide static and
dynamic mechanisms with flexible data access for multiple
clients with different QoI needs, as well as generation and
configuration of QoS and QoI handling components. The
monitoring framework also adapts to resource constraints.

Keywords-Monitoring, Adaptive systems, Quality of informa-
tion, Component framework

I. INTRODUCTION

As distributed and pervasive systems are now deployed
everywhere with 24/7 availability constraints, monitoring be-
comes more and more a transverse key activity in enterprise
computing. Beyond traditional system administration and
load control, new activities increasingly require automated
management of the systems, raising the stakes over monitor-
ing requirements. Specific tasks such as scheduling, resource
allocation and problem diagnosis make their decisions upon
the online and continuous monitoring of the services, sys-
tems and infrastructures. Besides, autonomic management
and decision making systems are now organized around
Service Level Agreements referring to some Quality of
Service (QoS) criteria. As large QoS variations are easily
observable by clients when calling distant applications and
services, there is also a large variation in the monitoring
requirements, in terms of the types of monitoring data to
be acquired, their lifespan, precision and granularity. This
is generally referred as Quality of Information (QoI), i.e.,
an expression of the properties required from the monitored
QoS data [1].

Moreover, deployment contexts have evolved in size and
complexity, from intra-enterprise Service-Oriented Architec-
tures (SOA) principles with low-latency network to large-
scale inter-enterprise infrastructures with high latency, and

finally to pervasive systems with dynamic contexts. Moni-
toring a distributed system involves extracting information
among the deployed processes and their interactions, collect-
ing it efficiently and making them available to the interested
users in an appropriate format. The distributed context makes
the monitoring activity inherently more complex than the
more traditional centralized one, as it forces to handle
several control flows, communication delays between nodes,
nondeterministic event ordering and an extensive behavioral
alteration on the observed system [2].

These challenges are hardly addressed by current mon-
itoring systems. In a SOA context, prior works show that
behavioral and basic QoS constraints can be expressed and
monitored at runtime [3], [4], but with no QoI or only
some implicit ones like statistics on QoS [5]. A monitoring
system must currently provide several information flows
to multiple clients, with different QoI requests, everything
being dynamically reconfigurable. Finally, the monitoring
system, being constantly operational, is itself subject to con-
straints on the resources it consumes to provide its services.
Consequently, designing and deploying monitoring systems
that are well-adapted to such requirements now become a
complex and tedious activity for software architects and
system administrators. Automation of this process is clearly
needed. Recent works focus on QoI and adaptive monitoring
for context-aware computing, data stream processing or
transactional systems [6], [7], [8], but no monitoring system
is currently adapted to all (changing) requirements together.

In this paper, we present ADAMO, an adaptive monitoring
framework that tackles different QoI-aware data queries over
dynamic data streams, transform them into probe config-
urations settings under resource constraints. This process
relies on a constraint-solving approach. The framework also
factors out the common structure and behavior of monitoring
systems so that they can be reusable and extensible. To do so,
it leverages component-based techniques so that a common
base architecture is provided as an assembly of interacting
components. Different parts of the architecture are then
configurable, or can be partly generated from high-level
descriptions of the monitoring requirements. ADAMO thus
aims at providing solutions for i) flexible access to dynamic

133

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

data streams for multiple clients with different QoI needs, ii)
capability to take into account QoI constraints to generate
and configure appropriate elements in the monitoring sys-
tem, iii) making the monitoring system adaptable to resource
constraints, and iv) ability to manage data queries in a static
or incremental way. The rest of the paper is organized as
follows. Section 2 motivates our work. The underlying QoI
model and the base capabilities of the ADAMO framework
are described in Section 3. Section 4 presents the ADAMO
framework through its architecture and some illustration of
its usage, as work in progress. Section 5 concludes this paper
and discusses future work.

II. MOTIVATION

This section motivates our work by introducing a running
example and surveying related work on adaptive monitoring.

A. Motivating example

As a running example throughout the paper, we introduce
a flood management system (inspired from the French ANR
SemEUsE research project1). Such systems, known as C3

(Control, Command and Communication), are mediators
between commanders and their teams on the field. In flood
management, organizing optimally rescue teams, transporta-
tion (boats to take people away from the dangerous zone),
aerial means (helicopters) and medical teams require a lot of
information, much of which coming from automatic sensors:
• GPS devices put on mobiles (boats, helicopters, person-

nel) sending positioning but also other data (fuel level,
unused transportation capacity, ...) at some frequency;

• field sensors, measuring environmental data like water
levels and their degree of variation, humidity indexes,
rain levels, temperature, wind, etc.

They typically use data connections over GSM to transmit
data at a frequency that can be set by instructions sent to
them as messages. GSM networks tend to be overloaded
in crisis situations, so the bandwidth is a scarce resource
to be optimally used and bounded by some limit (e.g.,
10% of the total bandwidth). When building situation re-
ports, upon which commanders will decide, for example,
which helicopter or which rescue team to send towards an
emergency, it is crucial that the information presented be
coherent, i.e., illustrative of a coherent situation within some
time interval, and not to old, i.e., the age of the data does
not pass some limit. As not all the data have the same
importance, these parameters and the frequencies of their
transmission they imply must be configured accordingly. For
example, commanders may require a situation for helicopters
(positions, remaining autonomy) coherent within 30 seconds
and not older than 2 minutes, while for rescue teams these
can be loosen to 2 minutes and 5 minutes respectively and
for transportation teams, down to 5 and 10 minutes.

1http://www.semeuse.org

Moreover, as the authority structure is typically hier-
archical, different commanding officers may require data
with different QoI, depending upon their rank or their
relation to the monitored entity. Higher rank officer have less
stringent requirements, typically an order of magnitude less,
when building aggregated global situation reports, while
occasional requesters of a particular mean may be satisfied
with less up-to-date data.

The overall goal of a monitoring framework as ADAMO
is to build, configure and deploy the necessary components
between the application and the sensors, and configure these
so to match the required QoI while respecting resource
and deployment constraints. If the problem appears to be
overconstrained, utilities can be assigned to the different data
so to guide the tradeoffs between them when computing their
transmission frequencies (see Figure 1).

Query on rescue teams and
transportation teams

Get data source dimensions:
- rescue teams.positions
-transportation teams.positions
-transportation teams.remaining capacity

With QoI (utility-based)

age
coherency

1

102 20 min8

utility

0

Monitoring bandwidth ≦
10% of total bandwidth

Monitoring:
-QoI control

-QoI vs. resource tradeoffs
-Flexibility in data access

Query on transportation teams

Query on rescue teams

2 miles
3 km

Get data source dimensions:
- helicopters.positions
- helicopters.remaining autonomy
With QoI (utility-based)

Query on helicopters

1

0.5 5 min2

utility

0

3

age

coherency

Figure 1. Query examples. In the left, a higher rank officer queries rescue
and transportation team positions with less stringent QoI requirements;
whereas in the right, lower rank officers query on resources they command
with strict QoI requirements.

B. On Adaptive Monitoring

Distributed monitoring is intrinsically a complex activity
and current large scale architectures of distributed sys-
tems impose new requirements and strong constraints on
monitoring. Consumers of the monitoring system are now
applications and not only human users. Applications act
as multiple clients, requesting for very different QoS data
with specific QoI constraints on each of them. Moreover
these applications make and change their queries dynami-
cally, adding a new stringent requirement on the monitoring
system. On the other side, data sources are also very varied
and may be at different locations of the distributed system,
thus impacting bandwidth consumption when data are larger

134

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

or transmission rate higher. Finally, system administrators
needs to deploy the monitoring system under resource
constraints, so that the overall resource consumption of the
monitoring system itself is mastered during execution. Many
research approaches have been proposed, to handle data
collection from sources in context-aware computing, to add
QoI capabilities on existing QoS monitoring systems, to
provide adaptive monitoring infrastructures or also to build
full adaptive systems.

To the best of our knowledge, no monitoring system is
currently adapted to all these requirements. Nevertheless
some systems provide really powerful solutions to one or
several specific features of a monitoring system, from adap-
tive capabilities to QoI awareness or consumption regulation.
We thus advocate a framework approach so that generic
parts of a monitoring system can be more easily reused and
extended and that well-adapted monitoring systems can be
instantiated for specific needs. Consequently the framework
must be able to deal with multiple clients needing flexible
and dynamically reconfigurable access to dynamic data
streams with different QoI needs, and to provide automatic
configuration of all monitoring entities and data sources so
that QoI and resource constraints are taken into account.

C. Related Work

This section presents an overview of the research area on
adaptive monitoring and QoI control in software systems.

Context-aware systems are concerned with QoI to per-
ceive situations and adapt applications based on the rec-
ognized context. Quality of Context is well studied in [1],
[9], [10] where many dimensions are proposed, including
precision, freshness and consistency of the monitored data.
These works, however, do not address the architecture of
context-aware systems or the problem of maximizing QoI
over a set of constraints.

Among the different works on context-aware management
systems, Conan et al. [11] propose an architecture based on
components (called context nodes) that are responsible to
produce higher level context information from data gathered
at lower architectural layers. The authors describe several
patterns to compose the individual context nodes in order to
implement the desired logic of a context-aware application.
In [6], they show how to extend their approach to support
Quality of Context (QoC) by using a specialized component
to filter and evaluate QoC from collected information. Al-
though they do not address the problem of maximizing QoI
in overloaded situations their architecture is highly modular
and extensible, and allows to introduce controlled tradeoffs
between QoI requirements and resource consumption.

Poladian et al. [12], [13] focus on adaptive systems based
on multiple concurrent applications running on local com-
puting devices with limited memory, CPU and bandwidth.
They propose an analytical model and an efficient algorithm
to decide how to allocate scarce resources to applications,

and how to set the quality parameters of each application to
best satisfy user and supplier preferences. Their approach
fits well into the framework proposed here to adjust the
monitoring to the current conditions, given QoI objectives.

Data stream processing systems such as sensor networks
or financial services are concerned with the problem of
saving network or compute resource to deliver accurate in-
formation. Babcock et al. [14] propose a load shedding tech-
nique for continuous monitoring queries over data streams.
The key idea is to carefully drop some tuples in order to
reduce bandwidth and processing in overloaded situations.
The authors formalize load shedding as an optimization
problem with the goal of minimizing query inaccuracy
within the limits imposed by resource constraints. Tatbul et
al. [15] extend this approach for distributed stream process-
ing systems. These works propose sophisticated algorithms
and optimization techniques. However they do not address
the design of the monitoring framework to implement them
in a modular and flexible way, or focus on scalability issues
in large-scale distributed stream processing systems [7].

Among the different works on predicting runtime mal-
functions in software systems, Munawar et al. [8], [16]
propose a new approach to monitor multi-tier transaction
systems at a minimal level in normal condition and adap-
tively increase monitoring if a health problem is suspected.
Their approach uses relationships between the monitored
data in the form of regression models to determine normal
operation and areas that need more monitoring in the event
of anomalies. Their work fits well in presence of multiple
metrics to dynamically adjust monitoring to the current con-
dition but focuses on health prediction and doesn’t consider
QoI requirements such as age of the monitoring data.

III. A QOI MODEL FOR ADAPTIVE MONITORING

This section presents ADAMO’s QoI model, formalizing
data sources, monitoring queries and system resources. The
model leverages constraint solving to find appropriate fre-
quencies to configure data sources according to clients needs
and resource constraints.

A. A Model for Adaptive Monitoring

Consumers send ADAMO QoI-aware monitoring queries
and receive data streams as result. ADAMO hence addresses
QoI by processing queries in such a way to automatically
translate the requested QoI and resource constraints into data
source configurations.

Definition (Data source). A data source s is a triple
(ιs,Φs,Πs) where ιs is a data source identifier, Φs =
(φs,1, ..., φs,n) is a data stream generated by s, and Πs is a
set of constraints on data source properties.

In this model, monitored values are defined as indepen-
dent data sources, even though some may report to the
same physical entity. The data stream consists of sequences

135

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

of data produced in temporal order by some measurement
unit or probe. Each element φi contains a data value and a
time-stamp representing when the value is generated to en-
force QoI constraints. Constraints on data source properties
express possible configuration settings, e.g., interrogation
mode (push/pull), sampling frequency... The latter are also
used to regulate the monitoring and can be assigned a
configuration value among the admissible ones for each
data source through a configuration Cs imposed at run-time.
Sampling frequencies act as filters on the raw data stream
to pick the values that will be transmitted to clients by the
monitoring framework. It should be noted that πs denotes
below the set of properties constrained by a data source.

Example. The data source for the remaining autonomy of
helicopter 1 is ha1 = (h1 aut, ((120, t0), (118, t1), ...),
{fha1 ∈ {0.5, 1, 2}, msgSizeha1 = 1}), where the re-
maining autonomy in the stream is expressed in minutes
timestamped with t0, t1, ... (unspecified here), and where
the frequency fha1 and message size properties are con-
strained to be 0.5, 1 or 2 data per minute and exactly
1kb respectively. The set of data source properties πha1 =
{fha1 ,msgSizeha1}. 2

Definition (QoI-aware monitoring query). A query q is a
couple (ιq,Πq) where ιq = (ιq,1, ..., ιq,n) is a set of sources
from which the consumer wants to get data, and Πq is a set
of QoI constraints imposed by the consumer on all of the
data sources in ιq .

A query specifies the need of a consumer in the reception
of tuples of data (required data sources) under the given QoI
constraints. πq denotes below the set of QoI properties con-
strained by Πq . Currently, ADAMO addresses two different
QoI properties: age and coherency.

Definition (Age and coherency constraints). An age con-
straint imposes a maximal delay between the production of
a data by a source and its reception by the consumer. A
coherency constraint imposes a maximal delay between any
pair of data for the requested tuple to be considered as valid.

Example. The aerial means officer needs helicopter 1
and 2 position and remaining autonomy not older
than 2 minutes and a coherency of 30 seconds.
The query is ((h1 pos, h1 aut, h2 pos, h2 aut), {age ≤
2, coherency ≤ 0.5}). The set πq of monitoring properties
constrained by the query is {age, coherency}. 2

Definition (Resource). A resource r is a tuple (ιr,Πr,
υr,⊕r) where
• ιr is a resource identifier,
• Πr is a list of data source properties impacting the

consumption of the resource r,
• υr is a function of the properties Πr giving the con-

sumption of the resource r by a data source s given the

settings of its properties Πr, and
• ⊕r is an aggregation function to combine the consump-

tions of data sources into an estimation of the global
resource consumption of the monitoring system.

Definition (Resource constraints). Let R be a set of
resources used by the monitoring, CR is a set of constraints
put on these resources.

System resources used by the monitoring encompass
bandwidth, CPU, memory... Each of the resources uses
available data source properties expressing the consumption
of that resource when delivering data to consumers to get the
overall estimation of their consumption by the monitoring
system in a given configuration of the data sources.

Example. Consider the case where the bandwidth used by
the delivery of monitoring data must be kept under 10% of
the total bandwidth of the network. The bandwidth resource
is defined by b = (bandwidth, {f,msgSize}, υb, sum)
where υb(f,msgSize) = f × msgSize and sum sim-
ply says that bandwidth consumptions of data sources are
summed to get the overall bandwidth consumption of the
monitoring. If the total bandwidth is TB, the constraint is
CR = {bandwidth ≤ 0.1TB}. 2

We denote Q a set of monitoring queries and S a set of
data sources. SQ is the subset of S used by Q. The principal
challenge for adaptive monitoring is to find a data source
configuration CSQ

satisfying a given set of queries Q under
the resource constraints CR.

B. QoI-aware Control Capability

The above model is generic and open to extend to new
data sources, properties, resource and constraints. As QoI
is concerned, ADAMO nevertheless considers age and co-
herency as primary properties. This section shows how the
constraints on these are dealt with in the current implemen-
tation of ADAMO. The first lesson learned is that each kind
of QoI requires a specific processing, hence extensibility of
the platform with regards to QoI and how it is handled is
mandatory. To put forward this extensibility requirement, we
now introduce an approach to the model resolution in two
contexts. First, we look at a resource unconstrained case,
and then we add the resource constraints.

In the first context, the system is assumed to have suf-
ficient resources in order to process all data queries. In
this case, for any s, CSQ

is a configuration that satisfies
highest QoI requirements among the set of queries Qs
using s. In the second context, resources are constrained,
computing CSQ

amounts to find a trade-off between QoI re-
quirements and resource constraints. This trade-off problem
varies upon usage contexts as well as how QoI impacts on
consumers. For example, when the system has not enough
resources, a simple approach is to reduce QoI equally for

136

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

all consumers. Whereas in utility-based systems [12], [17],
some requirements can have higher utility than others (e.g.,
rescuing people versus rescuing animals). Consequently,
utilities lead the monitoring to guarantee higher QoI for
certain consumers at the expense of reducing it for the rest.

In both cases, frequency fs of any source s is computed
in order to achieve the QoI required by the set of queries Q
(message size could also be assigned, but here all of these
constraints are equalities, so imposing a single value).
QoI Enforcement in a resource unconstrained system

When resource is not a concern for the monitoring, given
a set of queries Q, the problem is to find an assignment for
all the properties of each data source s ∈ SQ such that
the constraints Πs and Πq are satisfied for all s ∈ SQ
and all q ∈ Q. We model the problem as a constraint
satisfaction problem (CSP). CSP is particularly well-adapted
to ADAMO, as it provides a methodical approach to the
problem, paving the way to extensions, such as integrating
resource constraints (done next) but also to new types of
constraints like cross-constraints among the different criteria
and on other QoI when needed by the users. We now define
such a CSP from data sources and query constraints.

The variables in the CSP are the data source and the QoI
properties appearing in the data source and QoI constraints.
Constraints Πs put on data sources are simply imposing
restrictions on the domain of the configuration variables of
the data source. They can be used as is in the CSP. Con-
straints Πq on the QoI need to be related to the configuration
properties of data sources in order to enforce some values
for their configuration. Under the hypothesis that the data
sources cannot be synchronized in any way, one can see that
any frequency of the data source large enough to produce
data with a time interval between two values that exceeds
neither the age nor the coherency constraints is admissible
to configure the data source. This observation leads to the
following formulation of the resource unconstrained data
source configuration problem.

Definition (CSP formulation, unconstrained case). Let Q
be a set of monitoring queries and SQ the set of resources
required by Q, the CSP formulation of the problem is:

1) The set of variables of the problem is⋃
q∈Q

πq ∪
⋃
s∈SQ

πs

2) ∀s ∈ SQ, the constraints Πs are added to the CSP.
3) ∀q ∈ Q, let aq ≤ v ∈ Πq be the age constraint of q,

then the constraints aq ≤ v, and ∀s ∈ Sq , fs ≥ 1/aq
are added to the CSP.

4) ∀q ∈ Q, let cq ≤ v ∈ Πq be the coherency constraint
of q, then the constraints cq ≤ v, and ∀s ∈ Sq , fs ≥
1/cq are added to the CSP.

The CSP obtained using the above definition may not have
only one solution, as multiple frequencies for data source

may match the desired age and coherency constraints of the
queries. In this case, we choose the smallest frequencies in
the sets of values satisfying all of the constraints.

Example. Consider ten data sources and three queries from
the flood fighting scenario described above. Data sources are
position and remaining autonomy for helicopters (hp, ha),
position of rescue teams (rp), and position and remaining
capacity for transportation teams (tp, tc). Each query (q1, q2,
q3) specifies the sources from which the consumer wants to
get data and the QoI constraints on age (aqi) and coherency
(cqi) imposed by the consumer on all of these data sources.

hp1 = (h1 pos, (...), {fhp1 ∈ {1, 2, 5},msgSizehp1 = 1})
ha1 = (h1 aut, (...), {fha1 ∈ {1, 2, 5},msgSizeha1 = 1})
hp2 = (h2 pos, (...), {fhp2 ∈ {1, 2, 5},msgSizehp2 = 1})
ha2 = (h2 aut, (...), {fha2 ∈ {1, 2, 5},msgSizeha2 = 1})
rp1 = (r1 pos, (...), {frp1 ∈ {1/2, 1, 2},msgSizerp1 = 1})
rp2 = (r2 pos, (...), {frp2 ∈ {1/2, 1, 2},msgSizerp2 = 1})
tp1 = (t1 pos, (...), {ftp1 ∈ {1/5, 1/2, 1},msgSizetp1 = 1})
tc1 = (t1 cap, (...), {ftc1 ∈ {1/5, 1/2, 1},msgSizetc1 = 1})
tp2 = (t2 pos, (...), {ftp2 ∈ {1/5, 1/2, 1},msgSizetp1 = 1})
tc2 = (t2 cap, (...), {ftc2 ∈ {1/5, 1/2, 1},msgSizetc1 = 1})

q1 = ({rp1, rp2, tp1, tc1, tp2, tc2}, {aq1 ≤ 10, cq1 ≤ 2})
q2 = ({hp1, ha1, hp2, ha2}, {aq2 ≤ 2, cq2 ≤ 1/2})
q3 = ({hp1, ha1, hp2, ha2, rp1, rp2}, {aq3 ≤ 2, cq3 ≤ 1/2})

The set of constraints of the CSP includes all of the domain
constraints of the ten data sources as well as the QoI property
constraints of the three queries, to which are added the
following constraints linking QoI to data source properties:

q1 : frp1 ≥ 1/10 frp1 ≥ 1/2
q1 : frp2 ≥ 1/10 frp2 ≥ 1/2
q1 : ftp1 ≥ 1/10 ftp1 ≥ 1/2
q1 : ftc1 ≥ 1/10 ftc1 ≥ 1/2

...
q2 : fhp1 ≥ 1/2 fhp1 ≥ 2

...
q3 : fhp1 ≥ 1/2 fhp1 ≥ 2

...

which simplifies to:

fhp1 ≥ 2 fha1 ≥ 2
fhp2 ≥ 2 fha2 ≥ 2
frp1 ≥ 2 frp2 ≥ 2
ftp1 ≥ 1/2 ftc1 ≥ 1/2
ftp2 ≥ 1/2 ftc2 ≥ 1/2

Taking the minimal frequencies satisfying these constraints,
data sources of helicopters and rescue teams will have their
frequencies set to 2 data per minute, while transportation
teams will be set to 1 datum every 2 minutes. 2

QoI Enforcement in a resource constrained system
Given a resource r as defined in the section III-A, we

now consider an amount A of resource r is allocated to the

137

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

monitoring. At first sight, we just need to add the following
constraint (to simplify the notation, assume ⊕r is a sum) to
the constraint system elaborated for the unconstrained case:∑

s∈SQ

υr(Πr|s) ≤ A

where Πr|s are the properties that r depends upon for the
data source s. The problem is then to find a configuration
CSQ

that satisfies not only the age and coherency constraints,
but also this resource constraint.

Example. For the case of the bandwidth constrained not to
pass over 10% of the total bandwidth TB, we have Πr =
{f,msgSize}, υ(Πr) = f ×msgSize, and the aggregation
function is a sum, hence the resource constraint becomes:∑

s∈SQ

fs ×msgSizes ≤ 0.1× TB (1)

2

However, the system being constrained in a new way,
this can be considered to change the nature of QoI control
problem. Indeed, as the resource constraint may impair the
satisfaction of the age and coherency constraints of some
queries, the user should be able to express preferences
among its queries so to concentrate the resource on the most
important queries and lower, if necessary, the requirements
of the less important ones.

In order to allow the user to express his/her preferences
over QoI properties, the query definition is extended with a
set of utility functions Uq that contains one utility function
µq,p for each monitoring property p ∈ πq . µq,p maps
configurations Cιq of data sources used in q to a utility value
in R. These utilities are combined to get the total utility of
a configuration as follows:

UQ(CSQ
) =

∑
q∈Q

∏
p∈πq

µq,p(CSQ
) (2)

In this new setting, age and coherency constraints are now
seen as minimal requirements, and the problem becomes to
find a configuration CSQ

that maximizes the above utility
under the age, coherency and resource constraints.

Example. In the bandwidth example, all of the queries have
the same set of monitoring properties, {age, coherency}, so
the above global utility becomes for this example:

µq1,a(CSQ
)× µq1,c(CSQ

)+

µq2,a(CSQ
)× µq2,c(CSQ

)+

µq3,a(CSQ
)× µq3,c(CSQ

) (3)

These utility functions use the same computation to get
the age and the coherency of a query, i.e., the age of the
query q is given by the minimal frequency among its data

sources imposed by the configuration (it is the same for the
coherence):

aq =
1

mins∈ιq CSQ
(fs)

Adding utility functions µq,a and µq,c for each query q1, q2
and q3 provides for an optimization problem where the ob-
jective is to maximize the equation 3 under the previous age
and coherency constraints and the above resource constraint.

Consider the ten data sources and three queries of the
previous example, If the total bandwidth TB = 130kb/s,
the monitoring bandwidth should not to pass over 13kb/s,
from the resource constraint specified in equation (1). In
overloaded situation, the QoI requirements are now ex-
pressed as utility functions (see Figure 2) to concentrate the
resources on the most important queries. In this case, the
utility associated to query q1 expresses less stringent QoI
requirements on coherency and age than q2 and q3. The fol-
lowing configuration of frequencies maximizes2 the global
utility specified in equation (3), under the age, coherency
and resource constraints.

fhp1 = 2 fha1 = 2
fhp2 = 2 fha2 = 2
frp1 = 2 frp2 = 2
ftp1 = 1/5 ftc1 = 1/5
ftp2 = 1/5 ftc2 = 1/5

This result shows that the utility leads the monitoring to re-
duce the QoI for transportation teams, and hence bandwidth
for their data sources, since they are used only by the query
q1 which has less stringent QoI requirements. 2

1

102 20 min

cq ,1
µ aq ,1

µ

1

0.5 5 min

cq ,2
µ

2

1

cq ,3
µ

aq ,3
µ

5 min38

utilityutility utility

aq ,2
µ

0

0.5 2

0

3

0

Figure 2. QoI requirements on coherency (µqi,c) and age (µqi,a),
expressed as utility functions for queries q1, q2, q3.

IV. ADAMO COMPONENT-BASED ARCHITECTURE

We now use the model to present the ADAMO architec-
ture and introduce the various abstractions that enforce QoI
needs. We then describe how the framework is implemented
and discuss our ongoing work to support reusability and
extensibility, notably by using appropriate design patterns.

A. ADAMO principles
The main goal of ADAMO is to produce centralized

monitoring systems that can be located in given points of a
distributed architecture3. The basic operation supported by

2We use Gecode (http://www.gecode.org), a constraint programming
toolkit to solve this problem. In this example, 10 data sources and 3 possible
frequencies for each data sources generate 310 = 59049 configurations.

3Mastering the deployment of several distributed ADAMO entities is part
of future work (see Section V).

138

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

ADAMO is to gather data from distributed sources and store
them in a buffer system. These data are then processed prior
to being delivered to consumers so that different properties
are enforced on requested QoI while obeying to resource
constraints. In order to provide a reusable and extensible
adaptive monitoring framework, the ADAMO architecture
must factor out the common structure and behavior from
the monitoring specific parts. Doing so results in software
artifacts that can be reused with fewer efforts to design and
implement a specific monitoring service. ADAMO thus rests
on a component-based approach. We detail the resulting
design as well as the abstractions made by the framework
in the following paragraphs.

Data Buffer

control

data

QoI Control
Data

Inquiry

Query
Analyzer

Resource

setting

Data
Processing

"View"

Apply Data

Inquiry
properties

Query

Repository

Datasources

Admin

QoI-aware data query

Applications

Set propertiesData stream

Query results

Figure 3. Functional Architecture of ADAMO

At the highest level, the component-based approach al-
lows for structuring the overall architecture of a monitoring
system. Figure 3 outlines the main components with their in-
teractions among them and with the external roles described
in section II-B.

The application represents consumers of the monitoring
system, the query analyzer acts as the front-end to process
different kinds of QoI-aware data queries. For example,
applications may fire a batch of queries against the mon-
itoring component and then wait for streaming results, or
on the other hand they may submit a query on-demand
(in our illustration, before the displacement of inhabitants
process starts). The query analyzer thus handles queries,
initiates data inquiry which may derive from a composite
dimension and intersect between multiple consumers, iden-
tifies consumer’s QoI constraints, and stores them into query
repository for further reasoning. QoI control then finds an
appropriate configuration for any data inquiry. Based on the
configuration set, data inquiry establishes an inquiry strategy
to access remote data sources. The inquired data stream
is cached in local data buffers. Further data processing
view (called view for short) such as QoI filtering or data
transformation is realized before delivering final data to the
consuming applications, in push or pull mode.

B. Abstraction of the Framework

In ADAMO various abstraction points are available to
clarify domain intents and reduce implementation efforts.
This allows software architects to focus on solving a problem

without being concerned about less relevant lower level
details. In the framework, each component represents a level
of abstraction that can be extended to specific adaptive
monitoring requirements. For example, QoI control can be
extended in order to adopt a new trade-off algorithm taking
into account coherency and some resource constraints.

1) Query Analyzer: A query analyzer is in charge of
handling and processing data queries. As modeled in III-A,
a query consists of two specific parts in which (a) a list of
dimensions is used to identify data sources, configure data
buffers and views, (b) QoI constraints are used to configure
ADAMO, especially data inquiry properties. ADAMO then
supports two ways to submit a query: static and incremental.
In the static mode all queries are submitted to the monitoring
service once and for all. A set of data sources SQ is then
derived from the set of queries Q. The incremental mode is
obviously more complex as queries can be subscribed and
removed at runtime. This requires some specific support on
existing queries so that data inquiry processes are correctly
deactivated. A new set of data sources is then derived from
the pre-existent ones and the new query: SQ = f(S

′

Q, q).
In both cases, when multiple clients refer to the same data
source, the query analyzer makes the necessary adjustments
to converge to a single data inquiry, so that duplicated remote
data transmissions from data sources are avoided.

Due to the necessary knowledge on data queries for both
the query analyzer and the QoI control component, informa-
tion related to queries, data sources and their relationships
is indexed and stored in a query repository.

2) Data Inquiry: The data inquiry component establishes
a data inquiry protocol, based on a given configuration CSQ

assigned to data source properties. Data source properties
include frequency, message size, data transmission mode
(push/pull), but also inquiry mode (batching multiple sam-
ples, summary techniques). In practice, message size and
data transmission are usually chosen at design time while
inquiry frequency is used to regulate data transmission.

3) Data Processing: A data processing view produces
high-level abstract information from some low-level raw
data. It also provide the data to the consuming applications
according to the protocol of their choice (pull or push
mode). In most cases, raw data sensed from environment
may be meaningless for consuming applications or some
measurements are not good enough for a given QoI request.
ADAMO thus distinguishes two types of data processors.

An Aggregator aggregates data from different sources to
reproduce a new data dimension. A particular case is a
translator that transforms data from a unique source. For
example, the distance delivered by a data source measured
in mile can be converted into kilometer.

A QoI-based processor aims at filtering or evaluating
QoI for a given data set. In our motivating example, the

139

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

view representing query q2 (cf. III-B) should filter out
position and remaining autonomy of helicopter tuples if they
are not coherent in the timing window of 30s. Figure 4
depicts a temporal filter of <age, coherency>=<2 minutes,
1/2 minute> that uses a sliding window to select the first
coherent tuple of two sources.

In both cases, data processor is fed by data buffers. Mul-
tiple consumers hence can share their mutual data sources.

age = 2 min

now

time

d1

d2

coherency=30 sec

data tuple

sliding direction

Figure 4. Example - a temporal filter implements QoI based processor.

4) QoI Control: A QoI control component is used to
find a configuration of the monitoring service satisfying QoI
requirements and resource constraints. Three distinct tasks
are associated to this component. First, it gathers inputs to
feed the QoI control algorithms described in section III-B.
These inputs consist of knowledge from the query repository
(the current set of QoI-aware queries Q, the subset of data
sources SQ used by Q), and resource settings specified by
an administrator (the set of resource constraints CR). These
inputs may vary according to how the QoI control issue
is handled. Secondly, it executes the QoI control algorithm
to find the data source configuration CSQ

satisfying the
current set of queries Q under the resource constraints
CR. This algorithm can be changed at run-time thanks
to dynamic reconfiguration of components [18]. Finally,
it delivers CSQ

to the data inquiry component, in charge
of applying dynamically this new configuration into the
monitoring system.

The configuration of QoI control is typically executed
when a new query is submitted. But executing this on-
demand is potentially costly. To tackle this issue, ADAMO
proposes two strategies for the administrator. First, it pro-
poses two reconfigurations modes4: reconfigure all data
sources or reconfigure only inactive data sources. Secondly,
in ADAMO, it is possible to specify when the reconfigura-
tion are effectively run, based on time-interval (e.g., every 5
minutes) or query unit interval (e.g., every 3 query updates).

C. Implementation and Reuse of the Framework

The prototype of ADAMO has been implemented to a
large extent on top of COSMOS [11], a probe framework
for managing context data in ubiquitous applications. This
enables the framework to easily reuse many data sources
through dedicated wrappers, which are also easy to write or

4The design of other reconfiguration modes is part of future work.

to partly generate. As for its component model, ADAMO
relies on the Fractal [19] generic component model, which
notably provides hierarchical decomposition of components
at any level, explicit definitions of required and provided
interfaces, as well as full capabilities for dynamic recon-
figurations. Building on this rich component model enables
software architects to more easily reuse and/or tailor com-
ponents inside the framework.

Besides several design patterns are used to improve the
design, reuse and consistency of the ADAMO architecture.
A typical monitoring system instantiated from ADAMO
should implement components by extending the abstraction
mechanisms described in the previous section. At the highest
level, these components must be consistent with each other
and the Abstract Factory pattern is then used to ensure this
consistency constraint. For example, to tackle a new QoI
concept as first-class constraint such as data precision of
query results, one should ensure that the concept is taken
into account by every concerned monitoring entities, i.e.,
query analyzer, data inquiry, view and QoI control. Listing
1 shows an excerpt of Abstract Monitoring Factory interface.

Listing 1. Abstract Monitoring Factory
p u b l i c i n t e r f a c e A b s t r a c t M o n i t o r i n g F a c t o r y {

p u b l i c QueryAna lyzer c r e a t e Q u e r y A n a l y z e r () ;
p u b l i c D a t a I n q u i r y c r e a t D a t a I n q u i r y () ;
p u b l i c View c r e a t V i e w () ;
p u b l i c Q o I C o n t r o l c r e a t Q o I C o n t r o l () ;

}

As building a monitoring service implies creating a set
of ADAMO components, the Composite pattern is reused
in the architecture to support two specific compositions.
The composition capability of View extends the composition
provided by the COSMOS probe system so that a data
access point dedicated to a data query is assembled from
data inquiries, data buffers and data processors. ADAMO
composition adds query analyzer, query repository, and
QoI control into each ADAMO instance to enable the QoI
control capabilities. These compositions rely on Fractal ADL
[19]. Figure 5 illustrates this organization with three queries
described in III-B.

Query
Analyzer

QoI control

ADAMO

Data inquiryData bufferTemporal filter

Query
Repository

hp1 hp2ha1 ha2 rp1 tp1rp2 tc2 tp1 tc2

view q1view q2

view q3

Figure 5. Composition example.

As multiple consumers may be interested in the same
source, data transmission is improved by creating a single
transmission channel between ADAMO and every needed

140

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

data source. While the QoI Control component configures
the mutual data inquiry to satisfy different requests, the
Flyweight pattern enables the reification of the view com-
position so to data buffers are shared between consumers.
As illustrated in Figure 5, data buffers of rescue teams rp1
and rp2 are included in both views of queries q1 and q3.

Finally, the Singleton pattern ensures that each ADAMO
instance has only one query analyzer, query repository and
QoI control. The Query analyzer then provides a global point
of access to consumers (acting as Facade pattern), whereas
the latter two maintain coherency on monitoring constraints
and monitoring algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented ADAMO, an adaptive
monitoring framework that tackles different QoI-aware data
queries over dynamic data streams. The proposed system
relies on a constraint-solving approach and component-based
techniques so that common structures and behaviors of mon-
itoring systems can be more easily reusable and extensible.
We have shown how it provides solutions to handle multiple
clients with different QoI requirements, transformation of
QoI needs into probe configuration settings, control trade-
offs between QoI needs and resource constraints, and man-
agement of data queries in a static or incremental way.

Regarding future work, short term goals are to evaluate
the effectiveness of the proposed framework with stress/load
testing and to validate its genericity with different sce-
narios and more QoI dimensions, including precision and
significance as proposed in [1], [9]. In the long term, we
plan to tackle scalability issues by providing self-regulation
capabilities and by enabling several ADAMO monitoring
systems to be distributed.

ACKNOWLEDGMENT

The research was partly funded by the French National
Research Agency (ANR) through the SemEUsE research
project. See http://www.semeuse.org.

REFERENCES

[1] T. Buchholz, A. Kupper, and M. Schiffers, “Quality of context
information: What it is and why we need it,” in Proceeding
of the 10th HP-OVUA Workshop, Geneva, Switzerland, 2003.

[2] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring
distributed systems,” ACM Trans. Comput. Syst., vol. 5, no. 2,
pp. 121–150, 1987.

[3] L. Baresi, S. Guinea, and P. Plebani, “WS-Policy for service
monitoring,” in Technologies for E-Services, 6th International
Workshop, TES 2005, Trondheim, Norway, September 2-
3, 2005, Revised Selected Papers, ser. LNCS, vol. 3811.
Springer, 2006, pp. 72–83.

[4] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
time monitoring of instances and classes of web service com-
positions,” in Web Services, 2006. ICWS ’06. International
Conference on, Sept. 2006, pp. 63–71.

[5] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive
monitoring and service adaptation for ws-bpel,” in WWW ’08:

Proceeding of the 17th international conference on World
Wide Web. New York, USA: ACM, 2008, pp. 815–824.

[6] Z. Abid, S. Chabridon, and D. Conan, “A framework for
quality of context management,” in QuaCon, 2009, pp. 120–
131.

[7] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang,
“Self-tuning, bandwidth-aware monitoring for dynamic data
streams,” in ICDE ’09: Proceedings of the 2009 IEEE Inter-
national Conference on Data Engineering. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 114–125.

[8] M. A. Munawar and P. A. S. Ward, “Adaptive monitoring
in enterprise software systems,” in SIGMETRICS 2006 Work-
shop on Tackling Computer Systems Problems with Machine
Learning Techniques (SysML), 2006.

[9] A. Manzoor, H.-L. Truong, and S. Dustdar, “On the evaluation
of quality of context,” in EuroSSC ’08: Proceedings of the 3rd
European Conference on Smart Sensing and Context. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 140–153.

[10] M. Anwar Hossain, P. Atrey, and A. El Saddik, “Context-
aware qoi computation in multi-sensor systems,” in Mobile
Ad Hoc and Sensor Systems, 2008. MASS 2008. 5th IEEE
International Conference on, Oct 2008, pp. 736–741.

[11] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing
of context information with cosmos,” in DAIS, 2007, pp. 210–
224.

[12] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic
configuration of resource-aware services,” in ICSE ’04: Pro-
ceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, pp. 604–613.

[13] V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan,
B. Schmerl, and J. Sousa, “Leveraging resource prediction for
anticipatory dynamic configuration,” in SASO ’07: Proceed-
ings of the First International Conference on Self-Adaptive
and Self-Organizing Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 214–223.

[14] B. Babcock, M. Datar, and R. Motwani, “Load shedding
for aggregation queries over data streams,” in ICDE ’04:
Proceedings of the 20th International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Soci-
ety, 2004, p. 350.

[15] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying fit: efficient
load shedding techniques for distributed stream processing,”
in VLDB ’07: Proceedings of the 33rd international confer-
ence on Very large data bases. VLDB Endowment, 2007,
pp. 159–170.

[16] M. A. Munawar, M. Jiang, and P. A. S. Ward, “Monitoring
multi-tier clustered systems with invariant metric relation-
ships,” in SEAMS ’08: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-
managing systems. New York, USA: ACM, 2008, pp. 73–80.

[17] S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan, “Qmon:
Qos- and utility-aware monitoring in enterprise systems,” in
Autonomic Computing, 2006. ICAC ’06. IEEE International
Conference on, June 2006.

[18] P.-C. David and T. Ledoux, “Safe dynamic reconfigurations
of fractal architectures with FScript,” in the 5th Fractal
Workshop at ECOOP 2006, Nantes, France, Jul. 2006.

[19] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani, “The fractal component model and its support in java:
Experiences with auto-adaptive and reconfigurable systems,”
Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

141

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

