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Abstract — The accurate estimation and prediction of the 

trajectories of maneuvering vessels in ocean navigation are 

important tools to improve maritime safety and security. 

Therefore, many conventional ocean navigation systems and 

Vessel Traffic Management & Reporting Services are 

equipped with Radar facilities for this purpose. However, the 

accuracy of the predictions of maneuvering trajectories of 

vessels depends mainly on the goodness of estimation of vessel 

position, velocity and acceleration. Hence, this study presents a 

maneuvering ocean vessel model based on a curvilinear motion 

model with the measurements based on a linear position model 

for the same purpose. Furthermore, the system states and 

measurements models associated with a white Gaussian noise 

are also assumed. The Extended Kalman Filter is proposed as 

an adaptive filter algorithm for the estimation of position, 

velocity and acceleration that are used for prediction of 

maneuvering ocean vessel trajectory. Finally, the proposed 

models are implemented and successful computational results 

are obtained with respect to prediction of maneuvering 

trajectories of vessels in ocean navigation in this study. 

Keywords- Trajectory estimation; Trajectory prediction; 

Target tracking; Extended Kalman Filter; Curvilinear motion 

model. 

I.  INTRODUCTION 

The European Union (EU) is surrounded by a busy and 
complex set of sea routes. Furthermore, over 90% of EU 
external trade transports by the sea and over 3.7 billion tones 
of freight per year are transferred through the EU ports. In 
addition, passenger traffic in the seas around the regions of 
the EU is presently approximated to 350 million passenger 
journeys per year [1]. With the increased demand for 
maritime transportation of passengers and freight, the  
increase maritime safety and security issues are highlighted 
in this region. Therefore, the proposal for local community 
vessel traffic monitoring and information systems has been 
considered by the EU Directive 2002/59 [2] for highly dense 
maritime traffic regions to equip with the regional Vessel 
Traffic Monitoring & Reporting (VTMR) systems to 
improve the safety and security. 

The detection, tracking, trajectory estimation and 

trajectory prediction of maneuvering vessels are important 

facilities for navigation systems as well as the VTMR 

systems to improve safety, security and survivability in 

ocean navigation. However, conventional ocean navigation 

and VTMR systems are equipped with several marine 

instruments for the same purpose: Radar, Laser, Automatic 

Radar Plotting Aid (ARPA), and Automatic Identification 

System (AIS). Even though the first experimental Radar 

systems were envisioned, around 1920, for ship collisions 

avoidance [3], advanced Radar facilities were developed for 

the land and air navigation systems in later stages. 

Furthermore, Laser systems are proposed by recent studies 

[4] that will be important part of the target detection in close 

proximity.  
ARPA provides accurate information of range and 

bearing of nearby vessels. AIS is capable of giving all the 
information on vessel structural data, position, course, and 
speed. The AIS simulator and marine traffic simulator have 
been implemented on several experimental platforms to 
perform navigation safety and security studies [5]. However, 
there are many challenges faced by the ocean surveillance 
[6]: The larger surveillance volume, synchronization of 
targets and sensors, noisy signal propagation environment 
and multi-target situation observations. 

Furthermore, the effective estimation and prediction of 
trajectories of maneuvering ocean vessels have not been 
facilitated with the present navigation and VTMR systems. 
Therefore, main objective in this study is to propose a 
methodology for the navigation and VTMR system to 
estimate the present position, velocity, and acceleration of 
the vessels by observing or measuring only the noisy vessel 
positions. Furthermore, the estimated position, velocity, and 
acceleration can be used to predict the future navigation 
trajectories of the ocean vessel, which is another advantage 
of this proposed study.  

 However, the effective prediction of maneuvering 
trajectories of ocean vessels depends on the accuracy of data 
that are extracted from observations of the positions from the 
respective ocean vessels and the adaptive capabilities of the 
estimation algorithm. Therefore, accurate instruments with 
low sensor noise, as well as the capable optimal/sub-optimal 
adaptive estimation algorithm, should be formulated to 
archive accurate prediction in ocean vessel navigation. 
Several methods for the estimation and prediction of the 
maneuvering trajectories have been proposed by recent 
studies with respect to the land, air and ocean navigation 
systems. However, almost all the target tracking methods 
that are used for trajectory estimation and prediction are 
model based with respect to the recent studies [7].  
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The models that are used in the estimation and prediction 
of maneuvering target tracking models can be grouped into 
two general categories: Continuous-time and Discrete-time 
models. The continuous-time model in maneuvering target 
tracking that includes the dynamic system model as well as 
the measurement model can be formulated as [7]: 
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where x(t), u(t) and z(t) represent the system states, control 
inputs and measurements in continuous-time, respectively. 
Furthermore, wx(t) and wz(t)  are the process and 
measurement noise of the system in continuous-time, 
respectively. The discrete-time model in maneuvering target 
tracking that includes the dynamic system model as well as 
the measurement model can be formulated as [7]: 
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where x(k), u(k) and z(k) represent the system states, control 
inputs and measurements in discrete-time, respectively. 
Furthermore, wx(k) and wz(k) are the process and 
measurement noise of the system in discrete-time, 
respectively.  

However, combination of continuous-time and discrete-
time models in maneuvering target tracking approaches are 
also been used in recent studies. A nonlinear kinematic 
system model associated with a white Gaussian state noise 
for the ocean vessel in considered in this study as further 
described in Section III.  

Furthermore, a linear model for the measurement system 
associated with a white Gaussian measurement noise is also 
considered in this study. An estimation algorithm of the 
Extended Kalman Filter (EKF) is proposed for the prediction 
of the future navigational trajectories of ocean vessels. 
However, the EKF algorithm is working in this study as an 
adaptive filter that estimates the system states of position, 
velocity and acceleration.  

The work presented in this study is part of the on-going 
effort to formulate an intelligent collision avoidance system 
in ocean navigation, described in [8] and [9]. The 
organization of this paper is as follows: The recent 
developments in the Detection and Tracking of Moving 
Objects are discussed in Section II. The detail view of the 
Estimation and Prediction of Ocean Vessel Trajectories are 
presented in the Section III. Finally, the Computational 
Simulations and Conclusion are presented in Section IV and 
V, respectively. 

II. RECENT DEVELOPMENTS IN DETRECTION AND 

TRACKING  

 
The Detection and Tracking of Moving Objects (DTMO) 

and Simultaneous Localization and Mapping (SLAM) are 
important divisions that are developed under the autonomous 

navigation systems. Hence, the tools developed under the  
DTMO and SLAM can be adopted for the estimation and 
prediction of maneuvering trajectories of land, air and ocean 
navigation systems. However, the SLAM assumes that the 
unknown environment is static and the moving objects are as 
noise sources.  

The study of DTMO is the main part of the estimation 
and prediction of maneuvering trajectories in ocean 
navigation because moving targets are the major concern in 
its analysis. Even though the DTMO and SLAM are 
developed as two independent research directions, they can 
be complementary to each other in navigation systems [10]. 

The main functionalities of the DTMO systems are 
divided into three sections in recent studies [11]: Scan unit, 
Target Classification unit and Target Tracking & Behavior 
Prediction unit. The Scan unit consists of the 
instrumentations that are used for identification of the 
targets. The Target Classification unit consists of a 
classification of the targets with respect to the geometrical 
shapes and sizes. Finally, the Target Tracking & Behavior 
Prediction is used for estimation of the target current states 
and prediction of the target future states.  

Identification of an accurate mathematical model for the 
maneuvering target is an important step in estimation and 
prediction of future trajectories in ocean navigation. When a 
single model cannot capture the required behavior of the 
target, the multiple model approaches is also proposed in 
several studies [12]. In general, maneuvering target tracking 
models that are used in recent literature can be divided into 
three categories considering the dimensional space [7]: 1D, 
2D and 3D models. While 3D models are popular 
applications of the air and submersible navigation systems 
and 1D and 2D models are used in land and ocean navigation 
systems.  

Nevertheless, a formulation of an effective estimation 
algorithm for maneuvering target is also an important step in 
prediction of the future maneuvering trajectories in ocean 
navigation. However, the accuracy of trajectory prediction  
of a target depends on the adaptive capabilities in the 
estimation algorithm and there are several approaches can be 
indentified in recent literature.  

A multiple model approach, a constant velocity model 
and constant speed turn model, with the unscented Kalman 
filter for curvilinear motion for tracking of maneuvering 
vehicle is proposed in [13]. Further 2D Laser based obstacle 
motion tracking in unconstrained environments, with the 
Kalman Filter algorithm and predicting obstacles future 
motion, is presented in [14].  

The target tracking methods, in combination with the 
Particle filter and Kalman filters using the radar information 
is presented in [15]. Furthermore,  the Neural Kalman filter 
for target tracking is illustrated in the study of [16]. 

A people tracking system that is based on the Laser range 
data, a multi-hypothesis Leg-Tracker, using a Kalman filter 
with a constant velocity model, is proposed by [17]. The 2D 
Laser based obstacle motion tracking in dynamic 
unconstrained environments using the Kalman filter 
algorithm [18], and Particle Filters and Probabilistic Data 
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Figure 1. Curvilinear Motion Model 

 

Associations [19] to predict targets motions are presented in 
the respective studies. 

III. ESTIMATION AND PREDICTION OF OCEAN VESSEL 

TRAJECTORIES 

The main objective in this section is to develop 
mathematical tools for the estimation and prediction of 
navigation trajectories of ocean vessels. Therefore, this 
section is divided into three sections [20]:  Target Motion 
Model (TMM), Measurement Model and Associated 
Techniques (MAT) and  Trajectory Tracking and Estimation 
(TTE). 

 

A. Target Motion Model 

 

A suitable mathematical model for the vessel 
maneuvering in ocean navigation is considered in this 
section. The 2D kinematic model that can capture the 
navigation capabilities of an ocean vessel is considered 
during model selection process. In general, ocean vessels 
always follow parabolic shaped maneuvering trajectories 
rather than sudden motions as observed in the land and air 
navigation systems. Furthermore, a vessel maneuvering 
model is assumed to be a point target with negligible 
dimensions in this study. Considering the above 
requirements the continuous-time Curvilinear Motion Model 
[21] is proposed as the TMM.  

The continuous-time Curvilinear Motion Model that is 
formulated for ocean vessel navigation is presented in Figure 
1. The vessel is located in the point A. The vessel x and y 
positions are represented by x(t) and y(t) in continuous-time 
with respect to the XY coordinate system. Furthermore, the 
continuous-time velocity components along the x and y axis 
are represented by vx(t) and vy(t). The heading angle is 
presented by χa(t) and it is assumed that the vessel course and 
heading conditions are similar. The vessel total continuous 
velocity is presented by Va (t), (where V

2
a (t) = v

2
x(t)  + 

v
2

x(t))  as illustrated in the figure. 

 On should note that there are some important features 
that can be observed from the Curvilinear Motion Model. As 
presented in the figure, when the normal acceleration an(t)  is 
0 the model performs the straight line motion, when the 
tangential acceleration at(t) is 0 the model performs circular 
motions. Furthermore at(t) > 0 and at(t) < 0 the acceleration 
conditions that produce parabolic navigation trajectories are 
also presented in the figure.  

Therefore, the Curvilinear Motion Model capabilities of 
capturing the multi-model features are other advantages in 
this approach. The standard continuous-time Curvilinear 
Motion model can be written as: 
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The summarized TMM presented on Equation (3) can be  
formulated as a nonlinear dynamic system model: 
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and wx(t) is the process noise that is considered as a white 
Gaussian distributions with 0 mean value and Q(t) 
covariance.  
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where Qx(t), Qvx(t) , Qy(t) , Qvy(t) , Qat(t)  and Qan(t)  are 
respective system state covariance values. Furthermore, the 
tangential at(t)  and normal an(t)  accelerations are formulated 
as: 
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where at0 and  an0 are mean acceleration values that are 

constants, and wat(t)  and wnt(t)  are tangential and normal 
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acceleration derivatives that are modeled as white Gaussian 

distributions with 0 mean and, Qat(t) and Qan(t) covariance 

values, respectively. The Jacobian of f(x(k)) can be 

expressed as: 
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B. Measurement Models and Associated Technique 

 
The measurement model is formulated as a discrete-time 

linear model due to availability of the ocean vessel positions 
usually in discrete time instants. The position values of ocean 
vessels can be captured by Radar or Laser based 
measurement systems. It is assumed that the vessel position 
measurement sensor is located in the position O (0,0), as 
presented in Figure 1. Even though the Radar or Laser based 
measurement systems initially capture the Polar coordinates 
of ocean vessels, it is assumed that the Cartesian coordinates 
of the position coordinates can be derived and no correlation 
between the position measurements. The vessel position 
measurements in discrete-time can be written as: 
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and zx(k) and zy(k) are measurements of x and y positions of 
the target vessel, and wy(k) is a white Gaussian measurement 
noise with zero mean and covariance  R(k). The covariance 
R(k) can be written as: 
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where Rx(k) and Ry(k) are respective measurements 
covariance values. The Jacobian matrix of measurement 
model can be written as: 
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C. Trajectory Tracking and Estimation 

 
The development of the Trajectory Tracking and 

Estimation (TTE) can elaborate into several directions in 
recent studies [20]: The single model based Kalman Filter 
(KF), Extended Kalman Filter (EKF), Adaptive Kalman 
Filter (AKF), etc.. However, the Extended Kalman Filter is 
proposed as an adaptive algorithm for the TTE in this study, 
due to the EKF capabilities of capturing the nonlinear system 
states of the ocean vessel navigation. 

In 1960, R.E. Kalman formulated a method of 
minimization of a mean-least square error-filtering problem 
using a state space system model. The two main features of 
the Kalman formulation and solutions of systems are 
associated with, the Vector modeling of the random 
processes under consideration and recursive processing of 
the noisy measurements data [22]. However, these conditions 
are associated with most of the engineering problems.  

The general KF algorithm is limited for application to 
linear systems. Therefore, the Extended Kalman Filter (EKF) 
is considered as the standard technique for a number of non-
linear system applications. The summarized Extended 
Kalman Filter [23] algorithm can be written as: 

 

1) System Model 
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2) Measurement Model 
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3) Error Conditions 
 

)(x)(x̂)(x~ kkk −=  (12) 

 

where )(~ tx  is the state error and )(ˆ tx  the estimated states 

of the system. 
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4) System Initial States 
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where x(0)  is the initial estimated values and P(0) is the 

initial estimated error covariance of the system states. 
 

5) Other Conditions 
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6) State Estimation Propagation 
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where P(k) is the estimated error covariance with 
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and Px(k), Pvx(k) , Py(k) , Pvy(k) , Pat(k)  and Pan(k)  are 

respective estimated state  error covariance values. 

 

8) State Estimate Update 
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where x(k

-
) and x(k

+
) are the prior and posterior 

estimated system states respectively, and K(k) is the Kalman 
gain. 

 

9) Error Covariance Update 
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covariance of the system state respectively. 
 

10) Kalman Filter Gain 
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Figure 4. EKF Acceleration Estimation 

 

Figure 3. EKF Velocity Estimation 

 

 

Figure 2. EKF Trajectory Estimation 
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IV. COMPUTATIONAL SIMULATIONS 

This section contains a detail description of the software 
architecture and initial state values that are considered for the 
simulations. The proposed EKF algorithm is tested on the 
MATLAB software platform and simulations are presented 
in Figures of 2, 3 and 4. 

The values that are considered in the computational 
simulations of the EKF simulations can be presented as: The 
actual start position  x (0) = 0 (m) and y (0) = 0 (m) of the 
ocean vessel is considered. Then the initial velocity 
components of vx (0) = 1 (ms

-1
) and vy (0) = 2 (ms

-1
) are 

assigned and the actual mean accelerations at0 = 2(ms
-2

) and 
an0 = 4(ms

-2
) are assumed. The initial estimated position as 

)0(x̂ = 3(m) and )0(ŷ = 0(m) are considered. The estimated 

initial velocity components of )0(ˆ
xv = 2(ms

-1
) and  )0(ˆyv  = 

0 (ms
-1

) values are considered for the EKF algorithm. 
Furthermore, the initial estimated acceleration components 

of )0(ˆ
ta = 0(ms

-2
) and )0(ˆ

na = 0(ms
-2

) are considered. The 

sampling time used in the EKF estimation is 0.01 (s). 
The system state covariance values are assigned as Qx(t) 

= Qvx(t) = Qy(t) = Qvy(t) = 0.1 and Qat(t) = Qan(t) = 0.01, with 
the assumptions of position, velocity and acceleration  
component covariance values are uncorrelated. Similarly the 
initial estimated error covariance values are assigned as Px(0) 
= Pvx(0) = Py(0) = Pvy(0) = Pat(0) = Pan(0) = 0.01,  with 
assumptions of position, velocity and acceleration estimation 
error covariance components are uncorrelated. The 
covariance values for the measurements are assigned as Rx(t) 
= Rv(t) = 10 with assumption of position measurement 
covariance components  are uncorrelated.  

The computational simulations of the trajectory 
estimations for a maneuvering target vessel using the EKF 
algorithm are presented in Figure 2. The figure represents the 
actual trajectory (Act. Traj), Measured trajectory (Mea. 
Traj.) and Estimated trajectory (Est. Traj.) of the ocean 
navigation. As noted from the figure, the EKF estimates  the 
vessel maneuvering trajectory successfully. The vessel 
velocity components of vx(t) and vy(t) of actual and 
estimated are presented in Figure 3. Furthermore, the figure 
represents the Actual (Act.) and Estimated (Est.) velocities 
for each velocity components. The successful velocity 
estimation values are also achieved by the EKF algorithm as 
presented in the figure within 15 (s) of time interval.  

The Estimated (Est.) accelerations of at(t) and an(t) values 
are presented in Figure 4 with respect to the Actual (Act.) 
acceleration values. Furthermore, the figure represents the 
convergence of the Estimated accelerations into the Actual 
accelerations for normal and tangential acceleration 
components within 15 (s).  

V. CONCLUSION 

The satisfactory prediction of ocean vessel positions, 
velocities and accelerations are achieved by the EKF 
estimation that is working as an adaptive filter incorporated 
with the Curvilinear Motion Model and linear measurement 
model.  As presented in Figure 4, the convergence of the 
estimated accelerations into actual accelerations within 

approximate time interval of 15(s). Therefore, the estimated 
velocities and acceleration components can be used for the 
future maneuvering trajectory prediction of ocean vessel 
navigation. 

The estimated values of the velocity components have 
small variations around the actual values and that affect on 
the acceleration estimations. Hence, smoothing techniques 
can be used for better convergence of the estimated values of 
system states into the actual values. The improved system 
states can be used for better prediction of ocean vessel 
navigation trajectories within smaller time intervals. 

Furthermore, it is assumed that the mean acceleration 
components  are constant values with a white Gaussian noise 
in this study. However, this assumption may not always be 
realistic and changing acceleration conditions can be 
observed in ocean navigation. Even when real ocean vessel 
navigation consists of changing acceleration conditions, the 
formulations presented in this paper can still hold with the 
assumptions of constant acceleration within short time 
intervals.  

One should note that the velocity and acceleration 
estimation values are achieved by only the noisy position 
measurements that are collected from the vessel navigation, 
which is the main contribution in this approach. However, 
the improved formation of the EKF algorithm, with the 
smoothing techniques for the fast convergence into actual 
accelerations, is proposed as the further developments in this 
study.  
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