
SERSCIS-Ont

A Formal Metrics Model for Adaptive Service Oriented Frameworks.

Mike Surridge, Ajay Chakravarthy, Maxim Bashevoy, Martin Hall-May

IT Innovation Centre, 2 Venture Road, Chilworth, Southampton, UK.

{ms,ajc,mvb,mhm}@it-innovation.soton.ac.uk

Abstract— In the Future Internet, programs will run on a

dynamically changing collection of services, entailing the

consumption of a more complex set of resources including

financial resources. The von Neumann model offers no useful

abstractions for such resources, even with refinements to

address parallel and distributed computing devices. In this

paper we detail the specification for a post-von Neumann

model of metrics where program performance and resource

consumption can be quantified and encoding of the behaviour

of processes that use these resources is possible. Our approach

takes a balanced view between service provider and service

consumer requirements, supporting service management and

protection as well as non-functional specifications for service

discovery and composition.

Keywords-adaptive metrics; SOA; measurements;constraints;

QoS

I. INTRODUCTION

A (relatively) open software industry developed for non-
distributed computers largely because of the von Neumann
model [8], which provided the first practical uniform
abstraction for devices that store and process information.
Given such an abstraction, one can then devise models for
describing computational processes via programming
languages and for executing them on abstract resources
while controlling trade-offs between performance and
resource consumption. These key concepts, resource
abstraction supporting rigorous yet portable process
descriptions, are fundamental to the development and
widespread adoption of software assets including compilers,
operating systems and application programs.

In the Future Internet, programs will run on a
dynamically changing collection of services, entailing the
consumption of a more complex set of resources including
financial resources (e.g. when services have to be paid for).
The von Neumann model offers no useful abstractions for
such resources, even with refinements to address parallel and
distributed computing devices. In this context, we need
something like a ‘post-von Neumann’ model of the Future
Internet of Services (including Grids, Clouds and other
SOA), in which: program performance and consumption of
resource (of all types) can be quantified, measured and
managed; and programmers can encode the behaviour of
processes that use these resources, including trade-offs
between performance and resource consumption, in a way
that is flexible and portable to a wide range of relevant
resources and services.

In this paper, we describe the metric model developed
within the context of the SERSCIS project. SERSCIS aims

to develop adaptive service-oriented technologies for
creating, monitoring and managing secure, resilient and
highly available information systems underpinning critical
infrastructures. The ambition is to develop technologies for
such information systems to enable them to survive faults,
mismanagement and cyber-attack, and automatically adapt to
dynamically changing requirements arising from the direct
impact of natural events, accidents and malicious attacks.
The proof of concept (P-o-C) chosen to demonstrate the
SERSCIS technologies is an airport-based collaboration and
decision-making scenario. In this scenario, separate decision
makers must collaborate using a number of dynamic
interdependent services to deal with events such as aircraft
arrival and turn-around, which includes passenger boarding,
baggage loading and refuelling. The problem that decision
makers face is that the operations are highly optimised, such
that little slack remains in the turnaround process. If a
disruptive event occurs, such as the late arrival of a
passenger, then this has serious knock-on effects for the rest
of the system that are typically difficult to handle.

The focus for our work is therefore to support the needs
of both service providers and consumers. Our goal is to
allow providers to manage and protect their services from
misbehaving consumers, as well as allowing consumers to
specify non-functional requirements for run-time service
discovery and composition should their normal provider
become unreliable. In this sense, SERSCIS-Ont combines
previous approaches from the Semantic Web community
focusing on service composition, and from the service
engineering community focusing on quantifying and
managing service performance.

The rest of the paper is organised as follows. Section II
defines and clarifies the terminology used for metrics,
measurements and constraints. In Section III we present the
SERSCIS-Ont metric model. Here each metric is discussed
in a detail along with the constraints which can be imposed
upon these metrics. Section IV reviews the state of the art for
related work and compares and contrasts research work done
in adaptive system metrics with SERSCIS-Ont. Section V
presents the results of the validation/simulation experiment
carried out to test the applicability of the SERSCIS metrics.
Finally we conclude the paper in Section VI

II. METRICS MEASUREMENTS AND CONSTRAINTS

It is important to distinguish between the terminology
used for metrics, measurements and constraints. In Figure 1
we show the conceptual relationships between these terms.

1

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Figure 1: Metrics, Measurements and Constraints

Services (or sometimes the resources used to operate them)

are monitored to provide information about some feature of

interest associated with their operation. The monitoring data

by some measurement procedure applied to the feature of

interest at some time or during some time period. Metrics

are labels associated with this data, denoting what feature of

interest they refer to and (if appropriate) by which

measurement procedure they were obtained. Finally,

monitoring data is supplied to observers of the service at

some time after it was measured via monitoring reports,

which are generated and communicated to observers using a

reporting procedure. It is important to distinguish between

monitoring data for a feature of interest, and its actual

behaviour. In many situations, monitoring data provides

only an approximation to the actual behaviour, either

because the measurement procedure has limited accuracy or

precision, or was only applied for specific times or time

periods and so does not capture real-time changes in the

feature of interest. Constraints define bounds on the values

that monitoring data should take, and also refer to metrics so

it is clear to which data they pertain. Constraints are used in

management policies, which define management actions to

be taken by the service provider if the constraints are

violated. They are also used in SLA terms, which define

commitments between service providers and customers, and

may specify actions to be taken if the constraints are

violated. Note that management policies are not normally

revealed outside the service provider, while SLA terms are

communicated and agreed between the service provider and

customer. Constraints refer to the behaviour of services or

resources, but of course they can only be tested by applying

some testing procedure to the relevant monitoring data. The

testing procedure will involve some mathematical

manipulation to extract relevant aspects of the behaviour

from the monitoring data.

III. SERSCIS METRICS

In SERSCIS, we aim to support metrics which will
represent the base classes that capture the physical and
mathematical nature of certain kinds of service behaviors and
measurements. These are described below.

A. Absolute Time

This metric signifies when (what time and date) some

event occurs. It can be measured simply by checking the

time when the event is observed. Subclasses of this metric

would be used to refer to particular events, e.g. the time at

which a service is made available, the time it is withdrawn

from service, etc. There are two types of constraints

imposed on this metric. (1) a lower limit on the absolute

time, encoding “not before” condition on the event. (2) an

upper limit on the absolute, encoding a “deadline” by which

an event should occur.

B. Elapsed Time

This metric just signifies how long it takes for some event to

occur in response to some stimulus. It can be measured by

recording the time when the stimulus arises, then checking

the time when the subsequent event is observed and finding

the difference. Subclasses of this metric would be used to

refer to particular responses, e.g. the time taken to process

and respond to each type of request supported by each type

of service, or the time taken for some internal resourcing

action such as the time for cleaners to reach an aircraft after

it was scheduled and available. In the SERSCIS P-o-C, it

should be possible to ask a consumer task for the elapsed

times of all responses corresponding to the metric, and

possibly to ask for the same thing in a wider context (e.g.

from a service or service container). Constraints placed on

elapsed time are (1) an upper limit on the elapsed time

which encodes a lower limit on the performance of a

service. (2) a lower limit which is typically used only in

management policies to trigger actions to reduce the

resource available if a service over-performs. If there are

many events of the same type, one may wish to define a

single constraint that applies to all the responses, so if any

breaches the constraint the whole set is considered to do so.

This allows one to test the constraint more efficiently by

checking only the fastest and slowest response in the set.

Sometimes it may be appropriate to define constraints that

include more than one response time. For example, suppose

a service supports aircraft refuelling but the amount of fuel

supplied (and hence the time spent actually pumping fuel) is

specified by the consumer – See Figure 2.

Service

(or resource)

Observer
Monitoring

Report

Monitoring

Data Value

Measurement

Procedure
Metric

Feature

of Interest

Reporting

Procedure

Obtained

by

Denoted

by

Denoted

by

Reflects

Obtains

reports via

Provided

via

Provided

to

Observes

Contains

Applied

to

Associated

with

Constraint

Bounds

Has

Behaviour

Has

2

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Figure 2: Service response times

In this situation the service provider can’t guarantee the total

response time T(i), because they have no control over the

amount of time C(i) for which the fuel will actually flow

into the aircraft. But they can control how long it takes for a

fuel bowser to reach the aircraft after the refuelling request

is received, and how long it takes to connect and disconnect

the fuelling hoses and get clear after fuelling is completed,

etc. So the service provider may prefer to specify a

constraint on the difference between the two elapsed times.

In SERSCIS, anything that is constrained should be a metric

(to keep the SLA and policy constraint logic and schema

simple), so in this situation one should define a new metric

which might be called something like ‘fuelling operation

time’. One then has two options to obtain its value (1)

measure it directly so values are returned by the

measurement procedure; or (2) define rules specifying the

relationship between the new metric’s value and the other

metrics whose values are measured.

C. Counter

This metric signifies how often events occurs since the

start of measurement. It can be measured by observing all

such events and adding one to the counter (which should be

initialised to zero) each time an event occurs. In some

situations it may be desirable to reset the counter to zero

periodically (e.g. at the start of each day), so the metric can

refer to the number of events since the start of the current

period. In this case it may be appropriate to record the

counter for each period before resetting it the retained value

for the next period. Subclasses of this metric would be used

to refer to particular types of events, e.g. the number of

requests of each type supported by the service, or the

number of exceptions, etc. In the SERSCIS P-o-C, it should

be possible to ask a consumer task, service or container for

the counters for each type of request and for exceptions

arising from each type of request. Note that some types of

request may only be relevant at the service or container

level, and for these the counters will only be available at the

appropriate level. Constraints here are upper and lower

limits encoding the commitments not to send too many

requests or generate too many exceptions or to trigger

management actions. There are also limits on the ration

between the numbers of events of different types.

D. Max and Min Elapsed Time

These metrics signify the slowest and fastest response to
some stimulus in a set of responses of a given type, possibly
in specified periods (e.g. per day). They can be measured by
observing the elapsed times of all events and keeping track
of the fastest and slowest responses in the set. Subclasses of
this metric would be used to refer to particular types of
response, e.g. times to process and respond to each type of
service request, etc. In the SERSCIS P-o-C, it should be
possible to ask a consumer task, service or container for the
minimum and maximum elapsed times corresponding to the
metric. Constraints on such metrics signify the range of
elapsed times for a collection of responses. Only one type of
constraint is commonly used: an upper limit on the
maximum elapsed time, encoding a limit on the worst case
performance of a service.

E. Mean Elapsed Time

This metrics signifies the average response to some
stimulus for responses of a given type, possibly in specified
periods. It can be measured by observing the elapsed times
for all such responses, and keeping track of the number of
responses and the sum of their elapsed times: the mean is this
sum divided by the number of responses. Subclasses of this
metric would be used to refer to particular types of response,
e.g. times to process and respond to each type of service
request, etc. In the SERSCIS P-o-C, it should be possible to
ask a consumer task, service or container for the mean
elapsed time corresponding to the metric. Constraints on this
metric are the same as those for the elapsed time metric.

F. Elapsed Time Compliance

This metric captures the proportion of elapsed times for

responses of a given type that don’t exceed a specified time

limit. Metrics of this type allow the distribution of elapsed

times to be measured, by specifying one or more

compliance metrics for different elapsed time limits (See

Figure 3).

Figure 3: Elapsed time distribution

T
ri
g
g
e
ri
n
g
 e
v
e
n
t
(i
-t
h

re
fu
e
lli
n
g
 r
e
q
u
e
s
t
re
c
e
iv
e
d
)

F
u
e
l
s
ta
rt
s
 f
lo
w
in
g

F
u
e
l
s
to
p
s
 f
lo
w
in
g

R
e
fu
e
lli
n
g
 c
o
m
p
le
te
d

C(i)

T(i)

1.0

Elapsed time (T)

F
ra
c
ti
o
n
 F
(T
)
o
f
re
s
p
o
n
s
e
s
 w
it
h
 e
la
p
s
e
d
 t
im
e
 u
p
 t
o
 T

3 mins 6 mins 7.5 mins

Fraction taking

up to 3 m

Fraction taking

up to 6 m

Fraction taking

up to 7.5 m

3

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

When measuring elapsed time compliance, it is convenient

to make measurements for all the metrics associated with a

distribution like Figure 3. One has to observe the elapsed

times for all relevant responses, and keep track of the

number of responses that were within each elapsed time

limit, and also the total number of responses. The value of

the elapsed time compliance metric at each limit is then the

ratio between the number of responses that didn’t exceed

that limit and the total number of responses. Subclasses of

this metric would be used to refer to particular types of

responses and time limits. For example, one might define

multiple elapsed time compliance metrics for different time

limits for responses to each type of request supported by the

service, and for some internal process time. In the SERSCIS

P-o-C, it should be possible to ask a consumer task, service

or container for the elapsed time compliance for responses

corresponding to the metric. It may also be useful to support

requests for all elapsed time compliance metrics for a given

type of response, allowing the compliance of the entire

distribution function to be obtained at once. Note that some

types of request may only be relevant at the service or

container level, and for these the elapsed time distribution

function will only be available at the appropriate level.

Constraints for this metric are normally expressed as lower

(and sometimes upper) bounds on the value of the metric for

specific responses and time limits. SLA commitments

typically involve the use of lower bounds (e.g. 90% of

responses within 10 mins, 99% within 15 mins, etc), but

both upper and lower bounds may appear in management

policies (e.g. if less than 95% of aircraft are cleaned within

10 mins, call for an extra cleaning team).

G. Non-recoverable resource usage and usage rate

These metrics capture the notion that services consume
resources, which once consumed cannot be got back again
(this is what we mean by non-recoverable). In most cases,
non-recoverable usage is linked to how long a resource was
used, times the intensity (or rate) of usage over that period. It
can be measured by observing when a resource is used, and
measuring either the rate of usage or the total amount of
usage at each observation. Subclasses of the non-recoverable
usage metric would be used to refer to the usage of particular
types of resources, for example on CPU usage,
communication channel usage, data storage usage etc. In the
SERSCIS P-o-C, it should be possible to ask a consumer
task, service or container for the usage rate at the last
observation, and the total usage up to that point. Ideally this
should trigger a new observation whose result will be
included in the response. The response should include the
absolute time of the last observation so it is clear whether
how out of date the values in the response may be. Non-
recoverable resource usage is characterized by functions of
the form:

 �(�, �) ≥ 0 (1)

 	�(�, �)

	�
≥ 0

(2)

U represents the total usage of the non-recoverable resource

by a set of activities S up to time t. The range of U is

therefore all non-negative numbers, while the domain spans

all possible sets of activities using the resource, over all

times. In fact, U is zero for all times before the start of the

first activity in S (whenever that may have been), and its

time derivative is also zero for all times after the last activity

has finished. The time derivative of U represents the rate of

usage of the non-recoverable resource. This must be well-

defined and non-negative, implying that U itself must be

smooth (continuously differentiable) with respect to time,

i.e. it can’t have any instantaneous changes in value.

Constraints for non-recoverable usage and usage rate are

typically simple bounds on their values. Both upper and

lower bounds often appear in management policies to

regulate actions to decrease as well as increase resources

depending on the load on the service:

� ≤ �(�, ��) − �(�, ��) ≤
� (3)

represents a constraint on the minimum and maximum total

usage for a collection of activities S in a time period from t0

to t1, while:

�� ≤

	�(�, �)

	�
≤ ��, ∀�: �� ≤ � ≤ ��

(4)

represents a constraint on the maximum and minimum total

usage rate for a collection of activities S during a time

period from t0 to t1. Note that it is possible to have a rate

constraint (4) that allows a relatively high usage rate, in

combination with a total usage constraint (3) that enforces a

much lower average usage rate over some period.

Alternatively, a contention ration could be introduced for

usage rate constraints to handle cases where a resource is

shared between multiple users but may support a high usage

rate if used by only one at a time.

H. Maximum and Minimum Usage Rate

These metrics capture the range of variation in the usage

rate (possibly in specified periods, which is described

above. They can be measured by simply retaining the

maximum and minimum values of the usage rate whenever

it is observed by the measurement procedure. Subclasses of

these metrics would be used to refer to maximum and

minimum usage for particular types of resources.

Constraints on maximum and minimum usage rate take the

form of simple bounds on their values. Note that if we

constrain maximum usage rate to be up to some limit, and

the usage rate ever breaches that limit, then the constraint is

violated however the usage rate changes later.

4

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

I. State

This metric captures the current state of a service, with
reference to a (usually finite) state model of the service’s
internal situation (e.g. the value of stored data, the status of
supplier resources, etc). The value of the metric at any time
must be a state within a well-defined state model of the
service, usually represented as a string signifying that state
and no other. It can be measured by observing the internal
situation of the service and mapping this to the relevant state
from the state model. In the SERSCIS PoC implementation,
it should be possible to ask a task, service or container for its
current state. Note that the state model of a service will
normally be different from the state model of tasks provided
by the service, and different from the state model of the
container providing the service. State is an instantaneous
metric – a measurement of state gives the state at the time of
observation only. To obtain a measure of the history of state
changes one should use state occupancy metrics or possibly
non-recoverable usage metrics for each possible state of the
service. Subclasses of the state metric will be needed to refer
to particular state models and/or services. Constraints can be
used to specify which state a service should be in, or (if the
state model includes an ordering of states, e.g. security alert
levels), what range of states are acceptable.

J. State Occupancy

This metric captures the amount of time spent by a task
in a particular state (possibly in specified periods). It can be
measured by observing state transitions and keeping track of
the amount of time spent in each state between transitions.
Note that for this to be practical one must predefine a state
model for the task encompassing all its possible states, in
which the first transition is to enter an initial state when the
task is created.

The state of a resource on a service is a function of time:

 ��(�) ∈ Σ, ∀� ≥ �� (5)

where Si(t) is the state of resource i at time t, ∑ is the set of

possible states (from the resource state model) and t0 is the

time resource i was created. Constraints on state occupancy

are bounds on the proportion of time spent in a particular

state, or the ratio between the time spent in one state and

time spent in one or more other states.

K. Data Accuracy

This metric captures the amount of error in (numerical)
data supplied to or from a service, compared with a reference
value from the thing the data is supposed to describe. The
two main aspects of interest with this particular metric are
the precision of the data (how close to the reference value is
the data supposed to be) and the accuracy of the data (how
close to the reference value the data is, compared to how
close it was supposed to be). Subclasses of data accuracy
may be needed to distinguish between different types of data
used to describe the thing of interest (single values, arrays
etc), and different ways of specifying precision (precision in

terms of standard deviation, confidence limit etc), as well as
to distinguish between things described by the data (e.g.
aircraft landing times, fuel levels or prices). In the SERSCIS
P-o-C, we are only really interested in the accuracy of
predictions for the absolute time of future events, including
the point when an aircraft will be available so turnaround can
start (an input to the ground handler), the point when the
aircraft will be ready to leave, and various milestones
between these two points (e.g. the start and end of aircraft
cleaning, etc). Constraints on accuracy are typically just
upper bounds on the accuracy measure, e.g. accuracy should
be less than 2.0. Such constraints apply individually to each
data value relating to a given reference value.

L. Data Precision

This is a simple metric associated with the precision

bands for data supplied to or from a service. Data that

describes some reference value should always come with a

specified precision, so measuring the precision is easy – one

just has to check the precision as specified by whoever

supplied the data. The reason it is useful to associate a

metric with this is so one can specify constraints on data

precision in SLA, to prevent data suppliers evading

accuracy commitments by supplying data very poor (wide)

precision bands. Subclasses of data precision are typically

needed for different kinds of things described by data, and

different sources of that data. For example, one might define

different metrics to describe the precision in scheduled

arrival times (taken from an airline timetable) and predicted

arrival times (supplied by Air Traffic Control when the

aircraft is en-route). Note that precision (unlike accuracy) is

not a dimensionless number – it has the same units as the

data it refers to, so metric subclasses should specify this. In

the SERSCIS P-o-C testbed, it should be possible to ask a

consumer task for the precision of data supplied to or by it.

The response should ideally give the best, worst and latest

precision estimates for the data corresponding to the metric.

Constraints on data precision are simple bounds on its value.

Typically they will appear in SLA, and define the worst-

case precision that is acceptable to both parties. If data is

provided with worse precision than this, the constraint is

breached. This type of constraint is normally used as a

conditional clause in compound constraint for data accuracy

or accuracy distribution.

M. Data Error

This is a simple metric associated with the error in a data

item relative to the reference value to which it relates. In

some situations we may wish to specify and measure

commitments for this ‘raw’ measure of accuracy,

independently of its supposed precision. Subclasses of data

error are typically needed for different kinds of things

described by data, and different sources of data. In the

SERSCIS P-o-C testbed, it should be possible to ask a

consumer task for the error in data supplied to or by it once

the reference value is known to the service. The response

should ideally give the best, worst and latest error for data

5

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

sent/received corresponding to the metric. Constraints on

data error are simple bounds on its value. Typically they

will appear in SLA, and define the worst-case error that is

acceptable to both parties. If data is provided and turns out

to have an error worse than this, the constraint is breached.

N. Data Accuracy Compliance

This metric captures the proportion of data items in a

data set provided to or from a service whose accuracy is not

worse than a specified limit. This metric is mathematically

similar to the elapsed time compliance metric, and as before

we may wish to use several accuracy compliance metrics for

the same data at different accuracy levels, to approximate a

data accuracy distribution function. Accuracy compliance

can be measured by keeping track of the total number of

data items, and how many of these had accuracy up to each

specified level. The value of the metric is then the fraction

of data items whose accuracy is within the specified level.

In the SERSCIS P-o-C testbed, subclasses of accuracy

compliance are typically used to distinguish between

different accuracy levels, types of data and methods for

defining precision, for data forecasting the time of events.

To construct accuracy distributions it is necessary to classify

those events so we know which forecasts to include in each

distribution function. It should be possible to ask consumer

tasks, services or service containers for the value of these

compliance metrics. Constraints on accuracy compliance

just specify bounds on the metric, thus specifying what

proportion of data items can have accuracy worse than the

corresponding accuracy limit.

O. Auditable Properties

Auditable property metrics are used to express whether a

service satisfies some criterion that can’t be measured, but

can only be verified through an audit of the service

implementation and behaviour. An auditable property will

normally be asserted by the service provider, who may also

provide proof in the form of accreditation based on previous

audits in which this property was independently verified.

Auditable properties are usually represented as State

metrics: a state model is devised in which the desired

property is associated with one or more states, which are

related (out of band) to some audit and if necessary

accreditation process. Subclasses are used to indicate

different auditable properties and state models. Auditable

property constraints typically denote restrictions on the

resources (i.e. supplier services) used to provide the service.

For example, they may specify that only in-house resources

will be used, that staff will be security vetted, or that data

backups will be held off site, etc. In SERSCIS, such terms

are also referred to as Quality of Resourcing (QoR) terms.

As with other state-based descriptions, auditable properties

may be binary (true or false), or they may be ordered (e.g. to

describe staff with different security clearance levels). It is

also possible to treat Data Precision (and other data

characteristics) as an auditable property which does not

correspond to a state model.

IV. RELATED WORK

Characterizing the performance of adaptive real-time

systems is very difficult because it is difficult to predict the

exact run-time workload of such systems. Transient and

steady state behavior metrics of adaptive systems were

initially drafted in [4], where the performance of an adaptive

was evaluated by its response to a single variation in the

application behavior that increased the risk of violating a

performance requirement. A very simple set of metrics are

used: reaction time which is the time difference between a

critical variation and the compensating resource allocation,

recovery time by which system performance returns to an

acceptable level, and performance laxity which is the

difference between the expected and actual performance

after the system returns to a steady state. These metrics are

further specialized in [1] by the introduction of load profiles

to characterize the types of variation considered including

step-load (instant) and ramp-load (linear) changes, and a

miss-ratio metric which is the fraction of tasks submitted in

a time window for which the system missed a completion

deadline. System performance is characterized by a set of

miss-ratio profiles with respect to transient and steady state

profiles. A system is said to be stable in response to a load

profile if the system output converges as the time goes to

infinity, while transient profiles can measure responsiveness

and efficiency when reacting to changes in run-time

conditions. The SERSCIS-Ont metrics provide a superset of

these concepts, appropriate to a wider range of situations

where accuracy and reliability may be as important as

performance and stability.

A more recent alternative approach to defining adaptive

system metrics is given by [6,7]. Here the focus is on the

system engineering concerns for adaptivity, and metrics are

categorized into four types: architectural metrics which deal

with the separation of concerns and architectural growth for

adaptive systems [2], structural metrics which provide

information about the role of adaptation in the overall

functionality of a system (and vice versa), interaction

metrics which measure the changes in user interactions

imposed by adaptation, and performance metrics which deal

with the impact of adaptation on system performance, such

as its response time, performance latency, etc [2]. The focus

of SERSCIS-Ont is to provide concrete and mathematically

precise metrics covering performance and some aspects of

interactivity, which can be used in such a wider engineering

framework.

The most closely related work is found in the WSMO

initiative [3], which has also formalized metrics for resource

dependability. This was done with the intention of providing

QoS aware service oriented infrastructures. Semantic SLA

modeling using WSMO focuses principally on automated

service mediation and on the service execution

infrastructure [3]. By adding semantic descriptions for

6

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

service parameters it is possible for agents to discover and

rank services automatically by applying semantic reasoning.

The WSMO initiative focused its modeling efforts on

capturing service consumer requirements, which can then be

used for service discovery. Work in [5] extends the WSMO

ontology to include QoS and non-functional properties. This

includes providing formal specifications for service level

agreements including the units for measurement, price, CPU

usage etc. However, the focus is still to support the

description of services for orchestration purposes (service

discovery and selection). SERSCIS-Ont is more even-

handed. It can be used for service discovery and selection,

but it is also designed to support service operators by

introducing service protection measures from a provider’s

perspective such as the usage limits, service access and

control decisions, as well as workflow adaption, etc.

SERSCIS-Ont is thus also related to the development and

service management specifications such as WSDM. The

WSDM-MOWS specification [9] defines 10 metrics which

are used to measure the use and performance of a general

Web Service. These include NumberOfRequests,

NumberOfFailedRequests and NumberOfSucessfulRequests

which count the messages received by the Web Service end

point, and whether the service handles them successfully. In

SERSCIS-Ont we have a more general Counter metric, of

which these WSDM-MOWS metrics can be regarded as

subclasses specifically for Web Service management.

WSDM-MOWS also defines ServiceTime (the time taken

by the Web Service to process all its requests), and

MaxResponseTime and LatestResponseTime. In SERSCIS-

Ont these would be modeled as subclasses of usage and

elapsed time, and SERSCIS-Ont then provides additional

metrics such as min/max/mean responses and response time

compliance metrics. WSDM-MOWS specifies a state model

for Web Service operation with states {UpState, DownState,

IdleState, BusyState, StoppedState, CrashedState,

SaturatedState}, and metrics CurrentOperationalState and

LastOperationStateTransition all of which can be handled

easily by SERSCIS-Ont. The one area where WSDM-

MOWS goes beyond SERSCIS-Ont is in providing metrics

for the size of Web Service request and response messages:

MaxRequestSize, LastRequestSize and MaxResponseSize.

These can be modeled with difficulty using SERSCIS-Ont

usage metrics, but if SERSCIS-Ont were applied to Web

Service management, some extensions would be desirable.

V. VALIDATION EXPERIMENTS

To verify that SERSCIS-Ont really is applicable to the

management of service performance and dependability, the

project is conducting two types of experiments. Testbeds are

being developed comprising SERSCIS dependability

management tools along with emulated application services

based on air-side operations at Vienna Airport. This will be

a discrete event simulation in which realistic application-

level requests and responses are produced, and the full (not

emulated) management tools will be tested using SERSCIS-

Ont metrics in service level agreements and monitoring and

management policies.

Until the testbed is ready, SERSCIS validation work has

focused on the use of stochastic process simulation based on

queuing theory [10]. A simplified Markov chain model was

developed for a single aircraft refueling service, and the

resulting equations solved numerically to compute the

expected behavior. This approach is faster and easier to

interpret than a discrete event simulation, though it uses

simpler and less realistic models of services and their

interactions.

The basic model of the refueling service assumes that

around 20 aircraft arrive per hour and need to be refueled.

The service provider has 3 bowsers (fuel tankers) which can

supply fuel to aircraft at a certain rate. The time taken for

refueling varies randomly between aircraft depending on

their needs and how much fuel they still have on landing,

but the average time is 7.5 minutes. However, with only 3

bowsers, aircraft may have to wait until one becomes

available before refueling can start. The SERSCIS-Ont

metrics used to describe this service are:

• a counter metric for the number of aircraft refueled, and

an associated usage rate metric for the number of

aircraft refueled per hour;

• a non-recoverable usage rate metric for the time the

bowsers spend actually refueling aircraft, from which

we can also obtain the resource utilization percentage;

• an elapsed time metric for the amount of time spent by

aircraft waiting for a bowser (the refueling service can’t

control how long the refueling takes, so QoS is defined

in terms of the waiting time only); and

• elapsed time compliance metrics for the proportion of

aircraft that have to wait for different lengths of time

between 0 and 20 minutes.

We also assume that the service will refuse an aircraft,

i.e. tell it to use another refueling company rather than wait,

if it would become the 10
th
 aircraft in the queue. This is

captured by a further counter metric, which is used to find

the proportion of arriving aircraft that are refused service.

The first simulation considered an unmanaged service (no

SLAs), and produced the following behavior (See Table 1):

TABLE 1: UNMANAGED SERVICE SIMULATION

Metric Value

Service load 20 aircraft / hour

Service throughput 19.5 aircraft / hour

Percentage of aircraft that don’t have

to wait

33.6%

Percentage that don’t have to wait

more than 10 mins

74.6%

Percentage that don’t have to wait

more than 20 mins

94.4%

Percentage of aircraft refused service 2.6%

Mean waiting time 6.1 mins

Resource utilization 81.2%

7

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

The QoS is relatively poor because the random variation

in aircraft arrival and refueling times means queues can

build up, leading to a high proportion of aircraft having to

wait, and some having to wait for a long time or even being

sent to other service providers.

To investigate how the metrics could be used to manage

the service, the simulation was extended so airlines must

have an SLA with the service provider before they can use

the service. Each SLA lasts on average 1 week, and allows

an airline to refuel an average of 3 aircraft per hour. The

extended model assumed about one new SLA per day would

be signed, giving an average load roughly similar to the total

load in the first simulation. We also assumed the service

provider would refuse to agree more than 12 SLA at a time,

so the load could temporarily rise up to 50% higher than the

capacity of its resources. We wished to investigate how well

the use of SLA as a pre-requisite for service access allowed

such overloads to be managed. The results of this second

simulation were as follows (See Table 2):

TABLE 2: MANAGED SERVICE SIMULATION

Metric Value

Service load 0-36 aircraft / hour

Service throughput 21.1 aircraft / hour

Percentage of aircraft that don’t have

to wait

22.4%

Percentage that don’t have to wait

more than 10 mins

60.4%

Percentage that don’t have to wait

more than 20 mins

89.7%

Percentage of aircraft refused service 4.9%

Mean waiting time 9.4 mins

Resource utilization 87.8%

While the use of this SLA allowed the service provider to

anticipate the load from a pool of potential consumers, it

couldn’t improve QoS with a fixed set of resources. In fact,

the compliance metrics are now much worse than before,

with only a small increase in the total throughput because

the load exceeds the resource capacity around 25% of the

time. Further tests showed that reducing the number of SLA

the service accepts doesn’t help much as this only lowers

the long term average load, whereas overloads and long

queues arise from shorter-term fluctuations. The limit would

have to be much lower (and the throughput substantially

lower) before the compliance metrics were good enough to

be of interest to customers.

The final experiment used a different type of SLA in

which each customer can still have 3 aircraft serviced per

hour on average, but only one at a time. To handle this, we

used a non-recoverable usage rate metric for the number of

aircraft in the system and specified in the SLA that this

could not exceed 1. This simulation produced the following

(See Table 3):

TABLE 3: CONSTRAINED SLA SERVICE SIMULATION

Metric Value

Service load 0-36 aircraft / hour

Service throughput 17.9 aircraft / hour

Percentage of aircraft that don’t have

to wait

50.6%

Percentage that don’t have to wait

more than 10 mins

96.0%

Percentage that don’t have to wait

more than 20 mins

99.9%

Percentage of aircraft refused service 0%

Mean waiting time 3.4 mins

Resource utilization 74.7%

Evidently, if this last type of SLA were enforced by a

suitable management procedure, it would allow the service

to protect itself from overloads, without a huge drop in the

service throughput. Further experiments showed that if the

permitted long-term load per SLA were pushed up to 3.5

aircraft per hour, the throughput would reach 19.7 aircraft

per hour (more than the original unmanaged service), yet the

compliance metrics would stay above 90%. This provides a

good indication that the SERSCIS-Ont metrics can be used

to describe service management and protection constraints,

as well as consumer QoS measurements and guarantees.

VI. CONCLUSIONS

This paper describes a base metric model that provides a

uniform abstraction for describing service behavior in an

adaptive environment. Such an abstraction allows services

to be composed into value chains, in which consumers and

providers understand and can manage their use of services

according to these metrics.

A service provider, having analyzed the application

service that it is offering, defines a metric ontology to

describe measurements of the relevant service behavior.

This ontology should refer to the SERSCIS base ontology,

and provide subclasses of the base metrics to describe each

relevant aspect of service behavior. Note that while each

service provider can in principle define their own metrics

ontology, it is may be advantageous to establish ‘standard’

ontologies in particular domains – this reduces the need for

translation of reported QoS as it crosses organizational

boundaries.

Validation simulations provide a good indication that the

SERSCIS-Ont metrics are useful for describing both service

management and protection constraints, and service

dependability and QoS guarantees.

8

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme under grant agreement no. 225336, SERSCIS.

REFERENCES

[1] C. Lu, J.A. Stankovic, T.F. Abdelzaher,G.Tao, S.H. Son and

M.Marley, “Performance Specifications and Metrics for Adaptive
Real-Time Systems,”In Real-Time Systems Symposium 2000.

[2] C. Raibulet and L. Masciadri. "Evaluation of Dynamic Adaptivity
Through Metrics: an Achievable Target?". In the paper proceedings
of the 8th working IEEE/IFIP Conference on Software Architecture.
WICSA 2009.

[3] D.Roman, U.Keller, H. Lausen, R.L.J. de Bruijn, M. Stolberg,
A.Polleres, C.Feier, C.Bussler and D.Fensel. “Web service modelling
ontology”. Applied Ontology. I (1):77-106, 2005.

[4] D. Rosu, K. Schwan, S. Yalamanchili and R. Jha, "On Adaptive
Resource Allocation for Complex Real-Time Applications," 18th

IEEE Real-Time Systems Symposium, Dec., 1997. J. Clerk Maxwell,
A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73.

[5] I. Toma, D. Foxvog, and M.C. Jaeger. “Modelling QoS characterists
in WSMO”. In: Proceedings of the 1st workshop on Middleware for
Service Oriented Computing. November 27-December 01, 2006.

[6] L. Masciadri, “A Design and Evaluation Framework for Adaptive
Systems”, MsC Thesis, University of Milano-Bicocca, Italy, 2009.

[7] L. Masciadri, and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Software
Metrics”, Proceedings of the 4th International Conference on
Software Engineering Advances, 2009, in press.

[8] Collected Works of John von Neumann, 6 Volumes. Pergamon Press,
1963.

[9] WSDM-MOWS Specificaiton. www: http://docs.oasis-
open.org/wsdm/wsdm-mows-1.1-spec-os-01.htm (Last accessed Aug
2010).

[10] D. Gross and C.M. Harris. Fundamentals of Queueing Theory. Wiley,
1998.

9

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

