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Abstract—To achieve smooth communication between d/Deaf and
hard of hearing (d/DHH) and hearing people, we have developed
a continuous Japanese Fingerspelling (JF) recognition system
using sensor gloves and deep learning. We have selected a light
and inexpensive sensor glove adapted for the system’s daily
use. In our prior system using a machine learning model that
combines Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM), despite achieving an average micro F-
measure of 92.1% across the 76 JF characters, we reported the
average macro F-measure of only 64.7%. Two problems cause this
issue: distinguishing between static and dynamic fingerspellings,
and the decreased recognition rate due to the large number of
instances “ϕ” (the transition movements characters). Therefore,
we conducted a quantitative evaluation using the CNN-LSTM
combined machine learning model as a baseline to verify whether
the Transformer Encoder could improve JF recognition rates.
Consequently, for the 76 JF characters, the average micro and
macro F-measures were 93.8% (0.2) and 77.4% (1.0), respectively.

Keywords–Deaf and hard of hearing; Sign language; Sensor
glove; Recognition.

I. INTRODUCTION

To achieve smooth communication between d/Deaf and
Hard of Hearing (d/DHH) and hearing people, we have de-
veloped a continuous Japanese Fingerspelling (JF) recognition
system using sensor gloves and deep learning [1] [2]. However,
a machine learning model that combines Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) [2]
despite achieving the average micro F-measure of 76 JF char-
acters was 92.1%, we reported the average macro F-measure of
only 64.7% (Figure 1). Two problems cause this issue: distin-
guishing between static and dynamic fingerspellings, and the
decreased recognition rate due to the large number of instances
“ϕ” (the transition movements characters). However, in the
current research community on sign language recognition, a
machine learning model based Transformer [3] is often used.
Thus, we conduct a comparative analysis by a quantitative
evaluation using the CNN-LSTM combined machine learning
model as a baseline to verify whether the Transformer Encoder
could improve JF recognition rates. Additionally, in the current
research community on fingerspelling recognition and sign
language recognition, the small size of the dataset is listed
as an issue. To the best of our knowledge, no reports have
verified whether there are individual differences among signers
expressing continuous fingerspellings. Thus, we also compare
and analyze the impact of individual differences among signer
data by conducting cross-validation evaluations selecting train-
ing data.

The remainder of this study is organized as follows.
In Section II, we describe related studies on fingerspelling

recognition and sign language recognition. In Section III, we
describe a comparative analysis by a quantitative evaluation
using the CNN-LSTM combined machine learning model as
a baseline. In Section IV, we describe a comparative analysis
learning model as CNN-Transformer Encoder as a baseline.
In Section V, we discuss the results and the limitations of
the work. Finally, in Section VI, we provide some concluding
remarks and suggest some avenues for future research.
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Figure 1. Architecture of the CNN-LSTM combined machine learning
model.

II. RELATED WORK

Previous research on fingerspelling and sign language
recognition has proposed two types of sensors for recognizing
a series of operations in fingerspelling and sign language:
contact-type sensor gloves and non-contact-type cameras.

A. Image recognition
Several methods have been proposed for recognizing hand

shapes based on processing images of fingerspelling as cap-
tured by cameras.

As example of a fingerspelling recognition method, Mukai
et al.’s method [4] used a classification tree and machine learn-
ing based on a support vector machine to classify individual
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images; it targeted 41 immobile characters in Japanese Sign
Language (JSL) resulted in an average recognition accuracy of
86%. Hosoe et al.’s method [5] used deep learning for recogni-
tion and achieved a recognition rate of 93%, but only for static
fingerspellings. Jalal et al.’s method [6] achieved a recognition
rate of 99% for American Sign Language (ASL) images based
on a deep learning algorithm for static fingerspellings (i.e.,
excluding “J” and “Z”).

However, the recognition accuracy could not be considered
as sufficient for practical recognition in JF. Additionally,
relatively few recognition results have been reported for dy-
namic fingerspellings (i.e., fingers moving when expressing a
character). For example, in Kondo et al.’s study [7] of dynamic
fingerspellings in JSL, the identification of hand shapes was
performed using a kernel orthogonal mutual subspace method
from images of hand regions obtained from distance images,
and the classification of movements was performed using deci-
sion trees based on center-of-gravity coordinates. These results
yielded a 93.8% identification rate. However, the recognition
accuracy was insufficient for the practical recognition required
for JF.

Furthermore, examples of machine learning models based
on Transformers for sign language recognition include the
machine learning model SignAttention [8] targeted Greek Sign
Language, the machine learning model [9] using the American
Sign Language dataset How2Sign [10], the machine learning
model [11] using the German Sign Language dataset RWTH-
PHOENIX-Weather [12] [13] and other examples such as the
machine learning model [11]. Moreover, as a result survey
a related research on sign language recognition [14], it is
reported that CNN, LSTM, and Transformer are used in many
research, and as reported in the research that surveyed the
State-Of-The-Art (SOTA) in sign language recognition [15], it
is reported that Transformer is used in many cases.

On the other hand, there is also research [16] using com-
bination spatial-temporal modules and Multi-Layer Perceptron
(MLP), and Takayama et al.’s model [17] using combination
Spatial Temporal Graph Convolutional Networks [18] and
Transformer and targeted JSL. Additionally, as examples use
Conformer [19], Kimura et al.’s machine learning model [20]
targeted JSL. Signformer [21] also used a module that has been
redesigned based on the Conformer architecture.

B. Sensor glove recognition
Several methods have been proposed for recognizing hand

shapes based on measurement data acquired by contact-type
sensor gloves. These methods can measure data, which in-
cludes the flexion of the five fingers, the position and direction
of the hand. The measurement data are then sent to a personal
computer or microcomputer, and a classification algorithm is
used to recognize hand shapes.

As example of a fingerspelling recognition method, Cabrera
et al. [22] used the Data Glove 5 Ultra [23] sensor glove with
an acceleration sensor to acquire information regarding the
degree of flexion of each finger and wrist direction. The study
targeted 24 static fingerspelling characters in ASL, excluding
“J” and “Z”, and achieved a recognition rate of 94.07%.
Mummadi et al. [24] prototyped a sensor glove with multiple
embedded inertial sensors. The study targeted fingerspellings
of French Sign Language, and achieved an average recogni-
tion rate of 92% with an F1-score of 91%. Kakoty et al.’s

model [25] used kernel-supported vector machine, and targeted
a dataset of one-handed Indian sign language alphabets (C,
I, J, L, O, U, Y, W), ASL alphabets (A to Z), and signed
numbers (0 to 9). The study achieved an average recognition
rate of 96.7%. SpellRing [26] used combined active acoustic
sensing and Inertial Measurement Unit (IMU) in the ring-
shaped devices worn on the thumb. ResNet-18 [27] uses CNN
as the backbone and also leverages Connectionist Temporal
Classification (CTC) [28].

Furthermore, as examples of a sign language recognition
method, Chong et al. [29] placed six IMUs on the back
of the palm and on each fingertip to capture their motion
and orientations. The study targeted 28 proposed word-based
sentences in ASL, and used LSTM. The method achieved an
accuracy of up to 99.89%. SmartASL [30] uses IMUs installed
in two devices, an earphone and a smartwatch, to include not
only manual marker expressions but also Non-manual Marker
(NM) expressions. The method used LSTM for data related
to hand movements and CNN and LSTM for data related to
NM expressions. After that, the Transformer model T5 [31] is
used for fine-tuning together with translated English sentences.
SignRing [32] uses the IMUs in the ring-shaped devices worn
on the index fingers of both hands. It generates data similar to
that from the IMU sensors from the sign language videos in the
ASLLRP [33] ASL dataset. Then, it uses a model combining
CNN and LSTM to train the generated data.

III. FIRST COMPARATIVE ANALYSIS

To verify whether the JF recognition rate improved when
replacing LSTM with a Transformer Encoder, and to compare
the impact of the differences between machine learning model
architectures, we trained each model and compared their
accuracies. We have the following machine learning models:

• 2LSTM
• branch-2CNN-unit-2LSTM
• Transformer Encoder
• branch-CNN-unit-Transformer Encoder
• branch-2CNN-unit-Transformer Encoder

A. Continuous Japanese fingerspelling dataset

The continuous Japanese fingerspelling dataset used in this
study is our previously collected data [2]. The sensor glove
used for our previous data collection consists of Arduino
Pro Mini and MPU6050, where conductive fiber weaving
techniques [34] detect finger movements based on resistance
changes, and the MPU6050 detects acceleration and angular
velocity. The dataset contains words consisting of three to
five fingerspelling characters, with each word comprising 11
dimensions (finger movement: five dimensions, acceleration:
three dimensions, angular velocity: three dimensions) × 960
samples (120 sps × 8 sec). The dataset includes data from 33
participants, with each person performing 64 words five times
each. As preprocessing, we calculated angles using the angular
velocity three dimensions and added angles six dimensions (sin
and cos). Using moving average calculations, we also reduced
the 960 samples (120 sps × 8 sec) to 32 samples (4 sps ×
8 sec). Therefore, the input dimensions are 32 samples × 17
dimensions (length: 32, dim: 17).
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Figure 2. (a) Machine learning model architecture of the “branch-CNN-unit-Transformer Encoder”, (b) Machine learning model architecture of the
“branch-2CNN-unit-Transformer Encoder”.

B. Machine Learning Model Architecture
For the development environment, we used a Docker con-

tainer image distributed by NVIDIA [35]. The main specifi-
cations are as follows. We rebuilt all models, including our
previously constructed branch-2CNN-unit-2LSTM, switching
from TensorFlow to PyTorch.

• Ubuntu 22.04
• NVIDIA CUDA 12.3.0
• Python 3.10
• PyTorch 2.2.0a0+6a974bec

This motive is verify whether the JF recognition rate of
both 2LSTM and Transformer Encoder when combined with
CNN, improved compared to when not combined with CNN.
Therefore, we included both 2LSTM, which consist of two
LSTM layers, and the Transformer Encoder in this comparative
analysis. Next, Figure 2 (a) and (b) show the machine learning
model architectures that combine one and two layers of CNN
with the Transformer Encoder. The reason for this architecture
is that, similar to branch-2CNN-unit-2LSTM, the data is split
into separate branches for each feature dimension, such as the
finger movement, acceleration, angular velocity, and angle, and
then input through the CNN layer.

C. Evaluation experiments
We evaluated each machine learning model architecture

(Table I). First, we set the epoch to 3,000, and set the patience
to 300 for stopping training using EarlyStopping as a measure

against overfitting. In addition, we set the batch size to 64
for 2LSTM and branch-2CNN-unit-2LSTM, 16 for Trans-
former Encoder, and 32 for branch-CNN-unit-Transformer
Encoder and branch-2CNN-unit-Transformer Encoder because
the batch size was set to the best accuracy in each machine
learning model from the result we tested at the batch size 16,
32, and 64, respectively.

1) Comparison of k-Fold Cross-Validation Methods: We
evaluated each model using the 5-fold Cross-Validation (CV)
and the 10-fold CV. The input data was shuffled and then
divided into training and test data, and Table I shows the
average and standard deviation of the results of the 5 and
10 runs for each model. Moreover, Table I values are not
the values at the epoch when learning was stopped due to
early stopping to prevent overfitting, but the values at the
epoch when the validation loss was minimized. As shown in
Table I, the F-measure micro of each model at the 5-CV and
the 10-CV, except for 2LSTM, is over 90%. Comparing Trans-
former Encoder to 2LSTM, the F-measure micro and macro
improved over that of the former. The same improvement was
observed in comparing Transformer Encoder combined with
CNN to 2LSTM combined with CNN. In particular, the F-
measure macro for Transformer Encoder, branch-CNN-unit-
Transformer Encoder, and branch-2CNN-unit-Transformer En-
coder is improved by nearly 10% when compared to 2CNN-
2LSTM, suggesting that the decreased recognition rate due to
the large number of instances “ϕ” (the transition movements
characters), which was a previous study [2] issue, has been
alleviated.

15Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-268-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ACHI 2025 : The Eighteenth International Conference on Advances in Computer-Human Interactions



TABLE I. MODEL COMPARISON EVALUATIONS IN FIRST COMPARATIVE ANALYSIS. THE PARENTHESES INDICATE THE STANDARD
DEVIATION.

k=5, F-measure [%] k=10, F-measure [%] k=33 (randoma), F-measure [%] k=33 (personb), F-measure [%]
machine learning model architecture micro macro micro macro micro macro micro macro

2LSTM 89.9 (0.2) 50.5 (1.2) 90.2 (0.3) 51.6 (1.6) 90.4 (0.4) 52.1 (2.1) 88.8 (2.2) 40.5 (9.6)
branch - 2CNN - unit - 2LSTM 91.9 (0.1) 64.6 (0.7) 92.1 (0.2) 65.4 (1.1) 92.2 (0.4) 66.0 (2.5) 90.0 (0.3) 50.7 (13.1)

Transformer Encoder 92.8 (0.3) 72.5 (1.3) 93.3 (0.3) 74.9 (1.8) 93.5 (0.5) 75.8 (2.4) 92.2 (2.8) 69.1 (10.3)
branch - CNN - unit - Transformer Encoder 93.4 (0.1) 75.8 (0.6) 93.6 (0.2) 76.5 (0.8) 93.8 (0.5) 77.7 (2.2) 92.4 (2.9) 70.8 (10.1)

branch - 2CNN - unit - Transformer Encoder 93.3 (0.2) 74.8 (0.9) 93.6 (0.3) 76.6 (1.0) 93.8 (0.4) 77.1 (2.2) 92.4 (2.7) 70.8 (9.1)
a random: evaluation using randomly selected data for 33-fold CV.

b person: evaluation where the evaluation set consists of data from a single individual.

2LSTM 2CNN-2LSTM

Transformer Encoder CNN-Transformer Encoder 2CNN-Transformer Encoder

P0

P0 P0

P0 P0

Figure 3. Learning progress graph for each model (horizontal axis: number of epochs, vertical axis: validation loss): The loss for each person in the 33-fold
CV method is shown as a line graph, and it was observed that the data for one person (P0) showed a significant deviation from the others in the vicinity of 0.6

and 0.8.

2) The Impact of Individual Differences on 33-Fold Cross-
Validation: We evaluated the results using the 33-fold CV,
first, with case the input data for one person used as test data
and the data for the remaining 32 people used as training data
(k=33(person) in Table I), and second, the input data was shuf-
fled and then divided into training and test data (k=33(random)
in Table I). Moreover, Table I values are not the values at
the epoch when learning was stopped due to early stopping
to prevent overfitting, but the values at the epoch when the
validation loss was minimized. As described in Section III-C1,
the macro average of the F-measurement improved for all three
models (Transformer Encoder, branch-CNN-unit-Transformer
Encoder, and branch-2CNN-unit-Transformer Encoder) com-
pared to branch-2CNN-unit-2LSTM. However, we found that
we needed to consider the significant validation loss for the
same person’s test data. Figure 3 shows the graph showing the
change in validation loss for each model at the 33-fold CV
with case the input data for one person used as test data and
the data for the remaining 32 people used as training data.

Table II presents a comparative analysis of F1-scores for
individual fingerspelling characters across three models: the
previous 2CNN-2LSTM model and the two best-performing
models (CNN-Transformer Encoder and 2CNN-Transformer
Encoder), under three conditions: random data distribution, P0,
and P1. A notable improvement was observed in the recog-
nition of challenging characters. While the 2CNN-2LSTM
model showed zero F1-scores for 28 characters in the P0
condition, this number significantly decreased to 5 and 4
characters for the CNN-Transformer Encoder and 2CNN-
Transformer Encoder models, respectively. Furthermore, the
2CNN-Transformer Encoder under P1 condition demonstrated

robust performance, with no characters receiving zero F1-
scores, outperforming both the 2CNN-2LSTM and CNN-
Transformer Encoder models.

IV. SECOND COMPARATIVE ANALYSIS

Using branch-CNN-Transformer Encoder and branch-
2CNN-Transformer Encoder that showed good accuracy in
First Comparative Analysis, we examine the impact of the in-
put data for participant P0 identified in the impact of individual
differences validation comparison. We also examine the impact
of adding BatchNorm-1D and Rectified Linear Unit (ReLU)
to each of the two machine learning model architectures. The
timing of adding BatchNorm-1D and ReLU is when inputting
to the Transformer Encoder module from the CNN module.

A. Evaluation experiments
For each branch-CNN-Transformer Encoder and branch-

2CNN-Transformer Encoder, we evaluated the results using the
10-fold CV with three different combinations: add BatchNorm-
1D and ReLU, removing the input data for participant P0,
applying both modifications. The input data was shuffled and
then divided into training and test data, and Table III shows
the average and standard deviation of the results of the 10 runs
for each model. Moreover, Table III values are not the values
at the epoch when learning was stopped due to early stopping
to prevent overfitting, but the values at the epoch when the
validation loss was minimized. We also included the 10-fold
CV values from Section III-C1 to check improvement from
the no-applying case. CNN-Transformer Encoder and 2CNN-
Transformer Encoder showed improvement in the F-measure
macro compared to the no-applying case from case removing
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TABLE II. THE F1-SCORES FOR EACH OF THE FINGER CHARACTERS IN THE CHARACTERS IN THE MODEL COMPARISON IN THE FIRST
COMPARATIVE ANALYSIS.

2CNN-2LSTM CNN-Transformer Encoder 2CNN-Transformer Encoder
k=33 P0 P1 k=33 P0 P1 k=33 P0 P1

chi 41.3 ho 0.0 me 0.0 du 55.3 nu 0.0 nu 0.0 du 53.9 na 0.0 di 33.3
ho 44.2 bo 0.0 hu 0.0 di 59.7 da 0.0 yo 0.0 di 58.6 so 0.0 nu 50.0
pe 46.6 pa 0.0 du 0.0 chi 63.9 di 0.0 du 40.0 chi 63.8 ke 0.0 re 52.6
du 48.9 hu 0.0 re 21.1 nu 65.2 ze 0.0 yu 50.0 pe 64.3 di 0.0 ma 53.8
te 49.9 zi 0.0 xya 25.0 pe 67.1 ke 0.0 re 53.3 ho 68.6 pu 14.3 ho 54.5
pu 53.4 ha 0.0 ni 27.3 ho 68.0 ta 11.8 di 54.5 bo 70.0 ho 16.7 te 54.5
hu 53.7 no 0.0 ne 28.6 pi 69.9 pi 13.3 ra 54.5 so 70.7 ko 20.0 chi 54.5
he 54.5 ze 0.0 pe 28.6 tsu 71.4 ko 15.4 chi 54.5 he 70.8 a 22.2 xtsu 59.5
di 54.6 ni 0.0 di 37.5 yu 71.7 ha 17.4 ta 57.1 tsu 70.9 ze 23.5 ra 60.0
so 54.6 ro 0.0 yu 40.0 na 71.9 du 17.4 xyo 60.0 nu 71.8 chi 24.4 du 62.5
ni 55.9 pi 0.0 ho 40.0 ta 72.6 te 18.2 me 63.2 pi 71.9 du 26.1 yo 66.7
ko 56.0 te 0.0 he 44.4 se 72.7 e 19.0 ma 64.0 se 72.4 pi 26.7 yu 66.7
pi 56.3 xtsu 0.0 te 44.4 ro 72.8 wo 21.7 ne 66.7 yu 72.6 da 26.7 hu 66.7
ha 56.4 chi 0.0 wo 46.2 yo 72.9 o 25.0 de 66.7 na 73.0 pe 28.6 ni 66.7
ga 57.4 so 0.0 ro 47.6 he 73.1 ho 26.7 hu 66.7 ha 73.1 e 28.6 ta 66.7
ro 57.6 yu 0.0 nu 50.0 so 73.1 xya 26.7 ho 66.7 ta 73.2 ge 28.6 zu 66.7
ka 57.8 bi 0.0 chi 51.6 ha 73.2 ro 28.6 zo 66.7 o 73.9 wo 28.6 ka 66.7
pa 57.9 bu 0.0 xtsu 52.2 me 73.9 bu 28.6 ha 66.7 ro 74.3 ha 28.6 go 69.2
tsu 58.3 da 0.0 bo 53.3 de 73.9 so 28.6 pa 66.7 yo 74.4 tsu 30.5 xyu 69.6
bo 58.8 ko 0.0 ko 53.3 ko 74.0 pe 28.6 bo 70.6 hu 74.5 bu 30.8 ha 70.0
ne 60.3 ke 0.0 de 54.5 bo 74.0 go 30.0 pe 70.6 te 74.6 te 30.8 sa 70.2

xtsu 60.8 ga 0.0 ha 55.6 hu 74.0 tsu 30.3 hi 71.0 wo 74.9 me 31.3 xya 70.6
me 61.3 pu 0.0 pa 57.1 su 74.4 wa 31.6 ro 71.4 hi 75.0 ro 31.6 pe 70.6
zi 62.5 a 0.0 hi 57.1 xya 75.1 bi 31.6 ge 72.7 me 75.0 gu 33.3 zi 70.6
ya 62.5 di 0.0 ze 57.1 te 75.4 yo 31.6 tsu 72.7 re 75.3 o 33.3 ya 70.8
wa 62.5 wo 0.0 ra 57.1 ni 75.4 no 33.3 ka 72.7 xya 75.4 pa 33.3 de 71.4
nu 62.5 pe 0.0 ke 57.1 re 75.5 de 35.3 wa 73.7 ni 75.5 bi 33.3 pa 71.4
hi 62.6 du 0.0 xyu 58.3 da 75.5 ra 35.3 go 74.1 ge 75.5 yo 33.3 za 71.4
de 63.0 su 9.7 pu 58.8 ba 75.6 a 36.4 za 75.0 su 75.6 mo 34.4 ku 71.7
a 63.2 ru 9.7 tsu 58.8 hi 75.6 pu 37.5 wo 75.0 ne 76.2 yu 37.5 a 72.7
da 63.2 ta 10.0 go 61.5 ge 75.6 ge 37.5 xtsu 75.0 de 76.2 zo 37.5 gu 73.7
o 63.9 wa 13.8 sa 63.2 ke 75.8 yu 37.5 e 75.0 ba 76.3 ne 38.1 me 73.7
su 65.7 ne 14.3 po 64.7 o 76.5 pa 38.1 xya 75.0 bi 76.6 bo 40.0 wa 73.7
yu 66.0 de 14.3 be 66.7 wo 76.6 ne 38.1 ke 75.0 ma 76.9 nu 40.0 ne 73.7
ba 66.0 ri 14.6 da 66.7 ne 77.1 me 38.7 xyu 75.0 pa 76.9 ba 40.0 tsu 75.0
na 66.1 ra 18.2 yo 66.7 gu 77.4 zi 40.0 ru 75.3 xyu 77.1 ki 40.4 e 75.0
ma 66.2 xya 20.0 ma 66.7 ra 77.7 be 40.0 do 75.5 gu 77.7 zu 42.1 bo 76.2
shi 66.3 hi 21.4 ka 66.7 e 77.8 se 40.0 sa 75.5 ko 78.0 re 42.4 gi 76.7
bi 66.3 me 22.2 ta 66.7 ma 77.9 gu 41.0 su 75.9 da 78.0 xtsu 42.6 su 77.2
yo 66.7 ma 22.7 se 66.7 wa 77.9 su 41.6 ku 76.4 xtsu 78.4 su 43.3 no 77.2
po 66.9 ya 24.0 mo 69.1 bi 78.1 re 42.9 ya 76.6 to 78.6 ku 43.8 da 77.8
wo 67.2 go 25.5 za 69.2 ru 78.1 chi 43.5 mo 76.9 e 78.7 xya 44.4 ko 77.8
se 67.2 ba 26.1 wa 70.0 xtsu 78.2 ri 45.9 ni 78.6 ya 78.7 se 46.2 he 78.3
ta 67.3 tsu 26.8 zu 70.6 mo 78.2 gi 46.7 u 79.7 ru 78.8 hu 46.7 hi 78.8
sa 68.1 o 27.6 ya 71.1 ki 78.6 shi 47.1 te 80.0 ra 78.8 go 46.8 - 79.0
e 68.3 ge 28.6 zo 71.4 ya 78.7 ku 47.2 po 80.0 po 78.9 ra 47.1 wo 80.0
re 68.4 zo 29.6 bi 71.4 xyu 79.1 bo 47.6 so 80.0 shi 78.9 no 48.0 xyo 80.0
ru 68.5 re 30.0 ga 71.4 po 79.2 sa 47.9 a 80.0 u 79.0 ga 48.5 pu 80.0

xya 69.0 za 30.0 su 71.7 shi 79.3 hu 48.0 i 80.9 ka 79.1 ta 50.0 mo 80.0
be 69.1 na 30.8 ri 73.5 to 79.7 xtsu 49.1 to 81.0 mo 79.1 po 50.0 ke 80.0
ra 69.4 be 30.8 i 75.2 pa 79.9 ma 50.0 ri 81.3 bu 79.3 ni 50.0 zo 80.0
go 70.4 se 31.3 ru 75.6 a 79.9 ba 50.0 - 81.4 go 79.5 he 50.0 do 80.6
ze 70.8 gi 32.7 u 76.0 u 80.0 na 50.0 gu 82.4 a 79.6 hi 50.0 u 81.0
ge 70.9 he 33.3 to 76.1 ka 80.0 zo 50.0 o 82.4 ke 79.7 ri 50.3 se 81.3
ke 70.9 ku 35.0 e 76.2 i 80.4 mo 50.7 no 83.3 ki 80.2 za 51.9 po 81.5
gu 71.1 yo 35.3 mu 76.5 sa 80.6 ni 51.1 gi 83.6 wa 80.4 de 52.6 ru 82.5
zu 71.9 po 35.3 so 76.9 ga 80.6 ki 51.7 ko 84.2 sa 80.7 shi 52.6 to 83.2
bu 73.4 nu 35.3 ge 76.9 zu 80.6 ru 53.6 ze 85.7 zu 81.0 - 53.6 bu 83.3
i 73.7 do 37.5 zi 76.9 no 81.0 za 53.8 zi 85.7 i 81.0 u 54.2 bi 83.3

zo 73.8 shi 40.5 o 78.3 xyo 81.1 he 53.8 ga 85.7 do 81.5 zi 55.6 ro 83.3
mo 74.0 sa 40.6 do 79.3 go 81.2 - 54.1 ba 85.7 mu 81.5 i 56.0 shi 84.0
u 74.6 ka 40.7 ku 80.0 mu 81.2 zu 54.5 se 86.7 ga 81.6 nn 56.3 so 84.2
ki 75.3 - 41.4 - 81.0 bu 81.5 hi 55.0 he 87.0 no 81.6 ma 56.5 ri 85.4

xyu 75.8 u 43.9 gu 82.4 do 81.6 u 55.4 da 87.5 zo 81.7 gi 57.1 ba 85.7
no 76.1 e 44.4 shi 82.4 za 81.8 i 58.4 zu 87.5 gi 81.8 wa 57.1 i 85.7
za 77.1 i 45.5 gi 82.6 gi 82.0 nn 58.4 shi 88.0 ri 82.6 sa 57.5 nn 85.9
to 77.1 ki 47.9 no 83.0 pu 82.1 mi 58.9 nn 88.3 pu 82.6 ka 57.8 ze 87.5
gi 77.3 mo 48.5 xyo 83.3 ku 82.2 ka 61.2 pi 90.9 ze 82.9 to 58.8 ga 87.5
do 77.4 zu 50.0 nn 84.3 ri 82.8 xyu 61.5 ki 92.0 za 82.9 mi 60.4 mi 88.3

xyo 77.8 to 58.9 a 85.7 - 82.9 po 63.6 mu 92.3 xyo 83.0 ru 63.8 o 90.9
- 78.6 nn 59.2 ba 85.7 mi 83.2 xyo 64.0 be 94.1 zi 83.2 mu 65.2 ki 91.3
ri 78.7 xyu 59.5 ki 88.4 zo 83.3 to 64.8 pu 94.1 ku 83.4 be 66.7 mu 92.3
ku 78.9 gu 63.6 bu 88.9 nn 83.5 mu 65.4 mi 94.6 - 83.5 xyo 66.7 ge 93.3
nn 79.7 mu 63.8 mi 90.9 ze 84.4 do 65.9 ϕ 97.1 nn 83.7 ya 66.7 be 94.1
mu 79.9 mi 64.7 pi 90.9 be 84.8 ga 66.7 bi 100.0 mi 83.8 do 67.4 ϕ 97.0
mi 81.4 xyo 66.7 ϕ 96.5 zi 85.4 ya 69.1 na 100.0 be 86.0 xyu 68.1 na 100.0
ϕ 96.1 ϕ 90.5 na 100.0 ϕ 96.5 ϕ 90.6 bu 100.0 ϕ 96.5 ϕ 90.3 pi 100.0

66.0 22.7 63.1 77.0 40.3 75.4 77.1 41.7 75.6
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TABLE III. MODEL COMPARISON EVALUATIONS IN SECOND
COMPARATIVE ANALYSIS. THE PARENTHESES INDICATE THE

STANDARD DEVIATION.

k=10, F-measure [%]
machine learning model architecture micro macro

branch - CNN - unit - Transformer Encoder 93.6 (0.2) 76.5 (0.8)
(Remove P0 data） 93.9 (0.2) 77.6 (0.7)

(Add BatchNorm-1D and ReLU) 93.8 (0.2) 77.4 (1.0)
(Remove P0 data & Add BatchNorm-1D and ReLU) 94.1 (0.3) 78.4 (1.0)

branch - 2CNN - unit - Transformer Encoder 93.6 (0.3) 76.6 (1.0)
(Remove P0 data) 93.9 (0.2) 77.3 (1.0)

(Add BatchNorm-1D and ReLU) 93.5 (0.3) 76.1 (1.4)
(Remove P0 data & Add BatchNorm-1D and ReLU) 93.9 (0.2) 77.7 (0.6)

the input data for participant P0. Furthermore, in the case of
adding BatchNorm-1D and ReLU, CNN-Transformer Encoder
showed improvement, but no improvement was observed for
2CNN-Transformer Encoder.

Finally, we conducted a word-level accuracy evaluation
of the best-performing model configuration: the branch-CNN-
unit-Transformer Encoder incorporating BatchNorm-1D and
ReLU. The evaluation utilized the Letter Error Rate (LER)
metric, formulated in (1).

LER =
Substitutions + Deletions + Insertions

The number of characters in the reference
(1)

Similar to CTC, when evaluating sequences processed by
removing “ϕ” tokens from the Encoder’s output and merg-
ing consecutive identical fingerspelling characters, the system
demonstrated strong performance with an average LER of
0.122 (0.008), indicating a low misrecognition rate.

V. DISCUSSION

A. Replacing LSTM with a Transformer Encoder
Our results demonstrated improvement in generalization

performance when replacing LSTM with Transformer archi-
tectures. However, since the removal of P0 data led to im-
proved macro F-measure scores, we cannot make strong claims
about the model’s ability to handle individual differences.
The distinctive recognition results for P0 raise two potential
explanations:

1) Whether this represents an “extreme individual dif-
ference”

2) Whether the data contains “noise” that transcends
typical individual variations

During data collection, we only gathered limited participant
attributes (age, gender, hearing ability, and sign language
experience), which prevented us from fully analyzing the
characteristics of the removed participant’s data. Consequently,
we cannot definitively determine whether the observed varia-
tions represent individual differences or more significant data
anomalies. Thus, we have not necessarily sufficiently evaluated
the machine learning model’s robustness when the dataset
contains outliers. Future data collection efforts should include
more comprehensive participant attribute information, such
as experience with JSL or Signed Japanese, to enable more
thorough analysis. On the other hand, we can conclude that
both CNN combination and BatchNorm-1D+ReLU application
contributed to performance improvements. However, we have

not yet explored the full parameter space for CNN combina-
tions or the relationship with preprocessing parameters used
in moving average calculations during dataset construction.
Further comparative analysis is needed. Specifically, we plan to
investigate varying the moving average calculation from 960
samples (120 sps × 8 s) to N×8 samples (N sps × 8 s),
along with corresponding adjustments to CNN parameters -
modifying kernel size from (1, 2) to (1, N) and stride from (1,
1) to (1, N).

B. Practical use of the Transformer Encoder

Our study focused solely on the Transformer Encoder
component and demonstrated its practical applicability for
interface implementation. Specifically, not only did we achieve
a LER of 0.122 (0.008), but we also recorded a total inference
time of 0.732 s for processing the entire evaluation dataset.
Given that the evaluation dataset consisted of 1,042 words, we
estimated an average inference time of 0.702 ms per word.

C. Limitation

The current recognition system is not designed for real-time
processing; rather, it begins recognition only after receiving a
complete word input. Moreover, our continuous fingerspelling
dataset consists solely of word-level data, and similar to
SpellRing [26], does not include sentence-level data. Thus,
we cannot evaluate continuous fingerspelling recognition at
sentence-level including also NM expressions and grammatical
omission. In addition, as our implementation only utilizes
the Transformer Encoder, we have not conducted compara-
tive analyses involving Transformer Decoder or CTC [28].
Moreover, our analysis does not include comparisons with
other advanced architectures used in previous studies, such
as Conformer [19], Spatial Temporal Graph Convolutional
Networks [18], and Signformer [21].

VI. CONCLUSION AND FUTURE WORKS

In this study, we conducted a quantitative evaluation using
the CNN-LSTM combined model as a baseline to assess
whether the Transformer Encoder could improve Japanese
fingerspelling recognition rates. Our results demonstrated that
for 76 Japanese fingerspelling characters, the system achieved
average micro and macro F-measures of 93.8% (0.2) and
77.4% (1.0), respectively, with a word-level LER of 0.122
(0.008). We confirmed that replacing LSTM with Trans-
former improved generalization performance. Future work
should investigate machine learning models incorporating both
Transformer Encoder and Decoder architectures. Additionally,
comparative analyses including CTC and HMM approaches are
necessary. Further our research will also extend to comparisons
with other advanced architectures, such as Conformer [19],
Spatial Temporal Graph Convolutional Networks [18], and
Signformer [21]. Finally, we plan to examine the spatial
characteristics differentiating fingerspelling from sign language
through comparative analysis using our collected one-handed
sign language dataset [36].
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