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Abstract—Companies that have an online presence—in par-
ticular, companies that are exclusively digital—often subscribe
to this business model: collect data from the user base, then
expose the data to advertisement agencies in order to turn a
profit. Such companies routinely market a service as “free” while
obfuscating the fact that they tend to ‘“‘charge” users in the
currency of personal information rather than money. However,
online companies also gather user data for more principled
purposes, such as improving the user experience and aggregating
statistics. The problem is the sale of user data to third parties.
In this work, we design an intelligent approach to online privacy
protection that leverages supervised learning. By detecting and
blocking data collection that might infringe on a user’s privacy,
we can then restore a degree of digital privacy to the user. In
our evaluation, we collect a dataset of network requests and
measure the performance of several classifiers that adhere to
the supervised learning paradigm. The results of our evaluation
demonstrate the feasibility and potential of our approach.

Index Terms—User Privacy; Supervised Learning; Support
Vector Machine; Logistic Regression; Decision Tree

I. INTRODUCTION

Over the past few decades, the Internet has become a
part of people’s day-to-day lives. The activities facilitated by
the modern Internet are varied and innumerable: browsing
recipes, purchasing products, sharing videos, banking, billing,
socializing, and many, many more. In the era of Internet-
enabled expedience, users tend to overlook the slow decline
of privacy in favor of staggeringly greater convenience. How-
ever, the discussion of Internet-related privacy infringement
is becoming more relevant in the public eye. Some news
agencies and governments have started to point out how
these privacy-invading practices can affect people’s lives—
and even small businesses—without them realizing it [1].
International incidents have piqued the interest of news outlets
and security specialists to look into this new “surveillance”
business model, sparking comparisons between data collection
and ”Big Brother” from George Orwell’s book “1984” [2], [3].

Privacy can be invaded by any number of means, and there
is no clear distinction between that which is permissible and
that which is strictly prohibited by law. It has been reported
that a majority of Americans believe their online and offline
activities are being tracked and monitored by both companies
and the U.S. government with some regularity [6]. Invasions
of privacy have become the norm, not the exception. In fact,
privacy infringement is such a common condition of modern
life that approximately 60% of U.S. adults say they do not
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think it is possible to go about daily life without having data
collected by various companies or the U.S. government.

That said, some countries have made process and even
forced companies to limit some of their practices; e.g., the
European Union has implemented—and enforces—the Gen-
eral Data Protection Regulation (GDPR) [9]. Unfortunately,
the GDPR is still not enough to defeat some external threats.
For example, a malicious third party may exfiltrate data and
documents that colleagues create, access, store, and share
across an organization. When a third party gains access to
an individual’s private information, there is a risk of data loss,
reputational damage, and regulatory fines.

Contributions. In the literature, we have seen many poten-
tial strategies (e.g., privacy-preserving techniques [25], [32]) to
ensure data privacy in various environments, but safeguarding
a user’s privacy online is still an open challenge—especially
with the rapid pace of digitization. In this work, we contribute
to the defense of online privacy by introducing a tool that can
be used to block HTTP requests that would gather users’ data.
Our main contributions are summarized below:

o We develop a tool which leverages supervised machine
learning to detect malicious online requests and protect
users’ privacy. In addition, we detail the API implemen-
tation of our tool.

o In our evaluation, we collect a dataset of online requests
and evaluate the performance of three supervised learning
classifiers. The results demonstrate the feasibility and
potential of our tool.

The remainder of this paper is organized as follows: Sec-
tion II introduces related work on privacy protection. In
Section III, we explain our proposed tool in detail, including
the data collection process and the three supervised learning
classifiers. In Section IV, we describe the API implementa-
tion of our tool and discuss experimental results. Section V
concludes our work.

II. RELATED WORK

In this section, we highlight various privacy-enhancing
schemes, each of which aims to ensure a user’s privacy while
he or she is online.

Rodrigo-Ginéss et al. [33] crafted a tool called “Priva-
cySearch” that contributes to the development of Privacy-
Enhancing Technologies (PETs). This paper addresses the
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problem of personalized profiles based on Web Search En-
gines (WSEs). Such personalized profiles are created with
the intent of selling information. The authors exploit the
query-generalization principle: when a user types a query,
the PrivacySearch tool replaces the text of the query with
generic terms before submitting the generalized query to the
WSE. The tool supports three different privacy levels: low,
medium, and high. The three privacy levels refer to the degree
of generalization provided by the tool; a higher privacy level
will generate a more generic query (compared to the original
query) than a lower privacy level.

Reiter er al. [34] proposed a system, dubbed “Crowds,” to
increase the privacy of web transactions. Crowds leverages the
concept of a “crowd,” in which one hides one’s actions behind
the actions of many, many others. Crowds—i.e., the “crowd”
technique—works as follows:

1) A user gains access to the system called Crowds

2) The user’s request to a web server is passed to a random

member of the same system in an encrypted form

3) Upon receiving the request, the random member flips

a biased coin to determine if he or she should submit
the request or forward it to another randomly selected
member (the request data is encrypted until the moment
the request is submitted to the server)

4) The previous step repeats until the request is submitted

5) The web server’s reply traverses the same path but in

reverse

Their work provided a good strategy to anonymize web
transactions, though the proposed Crowds strategy comes at
the cost of additional overhead. This system also obfuscates
the information that a local eavesdropping might use to learn
about the identity of the receiver.

Mozilla offers a solution called “Facebook Container” [4]
to set boundaries for Facebook and other Meta websites. Face-
book Container is an extension that isolates Meta sites (e.g.,
Facebook, Instagram, and Messenger) from the remainder of
the web to limit where the company can track its users.
Meta’s “like” and “share” contain Facebook trackers, and these
buttons can be found in numerous websites, from news to
shopping to blogs and more. Mozilla’s Facebook Container
alerts the user when trackers are discovered on a non-Meta
site by adding an icon to the address bar and subsequently
blocking the trackers. Users are given the option to disable
Facebook Container on specific websites, allowing Facebook
to see their activity there. Mozilla’s tool constrains the volume
of data that Meta is able to obtain, though other advertisers
might still be able to correlate Facebook activity with a user’s
regular browsing.

Another solution, “Pi-Hole” [5], enhances digital privacy by
blocking known advertising domains. Pi-Hole was conceived
as an open-source alternative to Ad-Trap. A Raspberry Pi—a
small, single-board computer—acts as a Domain Name System
(DNS) server for a given private network. DNS servers are
populated with the mappings of domain names to IP addresses.
As such, Pi-Hole comes with a file of blacklisted hosts [7],
which is properly maintained and up to date. Whenever queries
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Fig. 1. A network request log from a cooking website.

are made to known advertising domains, a falsified IP address
is given to the web server. Then, instead of an advertisement,
the web server serves a tiny blank image file or web page.
A user can surf the web freely and privately, knowing that
an invasive request will be misdirected and will never reach
its target IP address. Thus, users can avoid sharing private
information (e.g., browsing habits) with unwanted sources.

III. OUR APPROACH

Fig. 1 provides a snapshot of the network requests ex-
changed by a cooking website. A number of the requests are
utterly irrelevant to the usability of the site, while a select few
are necessary in order to supply the information that a user
seeks. More than 80% of the network requests are involved in
delivering information to third-party advertisers who can do
what they please with the data.

Going a step further, we reviewed and analyzed the network
requests of multiple websites. We inspected the network logs
and verified that any suspicious requests were indeed trans-
mitted to advertisement domains or other domains that had no
relevance to the website in question.

A. Design Phase

A sequence diagram is depicted in Fig. 2, providing an
abstract view of our design. To ensure that our proposed solu-
tion would be accessible, we decided to expose an endpoint.
This endpoint would be responsible for receiving requests,
pre-processing those requests, and invoking the tool. We
implemented our endpoint as an application programming
interface (API). This API receives an input, runs that input
through our tool (a supervised machine learning model), and
returns an output.

To build the tool itself, we needed to select a suitable
machine learning model. The model would be expected to

229



ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

send verification request

transform to model form

Check prediction score

A 4

return score

Check prediction

return decision

T TP ettt O S

Fig. 2. A sequence diagram outlining our proposed approach.

differentiate between benign traffic and privacy-invading traf-
fic. In this work, we considered three supervised learning
classifiers due to their popularity and their reportedly good
performance.

o Logistic Regression (LR). This is a type of statistical
modeling often used for classification and for predictive
analytics. [15]. Logistic regression falls under the umbrel-
la of linear regression, but it is a special case: in logistic
regression, the predicted outcomes are categorical. If
there are two possible outcomes, it is referred to as bino-
mial logistic regression, and if there are more than two
possible outcomes, then it is called multinomial logistic
regression [30]. During logistic regression, the model
first computes the sum of the input features and then
applies the logistic function. The output is guaranteed to
be between 0 and 1. In our scenario, 0 would be “benign”
and 1 would be “privacy-invading.” The closer the value
is to 1, the higher the probability that the current sample
will be categorized as privacy-invading, and vice versa.

o Decision Tree. This is a supervised learning technique
that operates on a tree-like structure: the nodes represent
the features of the dataset, the branches represent the
decision rules, and the leaf nodes represent the out-
comes [11], [19]. To construct a decision tree, each
feature in the dataset is mapped to a node. Starting at
the root node, branches with decision rules are created
to extend to the next nodes, each of which becomes a
subtree. This process continues for each subtree that is
created [36].

o Support Vector Machine. This supervised learning
scheme uses data points plotted in an n-dimensional
space, where n represents the number of features. Each
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feature corresponds to the value of a particular coordinate.
During the training process, a hyperplane is constructed
to subdivide all samples into one of two classes [20], [24].
The goals of SVMs can be summarized as follows [35]:
1) Maximize the margin which separates the two class-
es
2) Use relatively few training samples—or support
vectors—to define the hyperplane which separates
the two classes
3) Classify data that is not linearly separable—with the
help of a kernel
All of the classifiers were implemented in Python.

B. Data Collection

High-quality data is essential to machine learning. The
quality of the training data can directly influence the model’s
performance.

As such, during the data collection process, we thoroughly
investigated each of the logged network requests to determine
which requests were required and which were not. It was cru-
cial to properly validate the “required” requests (i.e., confirm
that they were necessary), just as it was critical to ascertain
that a supposed data-gathering request was purely gathering
data and was not performing some sort of usability-related
function. If data-gathering requests were mislabeled as benign
requests, the model might produce false negatives; conversely,
if benign requests were mislabeled as data-gathering requests,
the model might produce false positives. If benign requests
are mistakenly blocked, the user’s browsing experience will
be disrupted; if privacy-invading requests are mistakenly per-
mitted, then the tool will fail to safeguard the user’s privacy.

To attenuate such issues, we perform a particular two-stage
test during our data gathering process. Given a request, we
scrutinize the payload to determine what type of data will be
transmitted to the server. Then, we check the domain name
of the server: Is this domain name relevant to the website at
hand? If the payload appears suspicious and the domain name
of the server is unrelated to the current website, then the curl
(Client URL) request will be copied to a separate backup file
and the domain name will be blocked. Finally, we refresh the
site in order to ensure that blocking the suspicious requests
does not interfere with the usability of the current website.

If a request is deemed non-invasive (in terms of privacy),
then the curl request will still be copied in order to provide
the machine learning model with examples of both benign and
privacy-invading requests.

Once we had collected a sufficient volume of data for train-
ing and evaluation, we transferred the data to a spreadsheet
for easier accessibility when working with the model. During
this process, we manually examined each request, including
its URL, payload, and properties. The data was organized in
the spreadsheet as follows:

o Request data that was not extracted from payload (e.g.,

properties)
— invasive - a binary value that indicates whether
or not a request was deemed privacy-invasive
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— url - a string that specifies the domain name of the
request’s intended destination

— reqg_type - the type of request (e.g., GET, POST,
PUT)

— is_json - the format of the payload—either JSON
or non-JSON (at this time, for easier data collection,
we limit our scope to JSON-formatted payloads)

o Request data that was extracted from the payload

- pl_isprebid

- pl_appid

— pl_domain

- pl_imp

- etc.

For the initial implementation of our tool, we limit our scope
to payloads that are formatted using the JSON4 clear text
standard.

C. Data Processing

Data cleaning. The quality of a machine learning model
is contingent on the quality of the data. As such, we applied
several cleaning and pre-processing techniques to the data, as
described below [37]:

Noise removal. “Noise” refers to (1) unwanted, meaningless
data and (2) unwanted, meaningless perturbation. As a data
pre-processing step, noise removal ensures that the data is
free of interference, distortion, or uninformative values; that
is, noise removal ensures that the data is clean.

In this step, we checked the dataset for duplicate entries. In
addition, since the data was manually collected, we reviewed
the dataset for human error.

Outlier filtering. “Outliers” are values which do not fall in
the average range defined by existing data points. Outliers in
datasets can often be attributed to measurement error during
data collection, but they can also occur naturally; some data
properties are innately prone to outliers.

Much of our data is one-hot encoded; that is, the variables
have been converted to binary indicators. The one-hot encod-
ing process implicitly completes the data filtering step.

Structural error correction & missing value correction.
“Structural error” occurs mainly due to naming and spelling
discrepancies. If naming conventions are not consistent across
the dataset, then the machine learning model—which receives
the data as input—might become muddled and inaccurate.
Naming and spelling-related discrepancies can arise from
typographical errors or from variations in the naming and
spelling conventions used by different researchers. In our case,
a sample will either be classified as “benign” or “privacy-
invading.” A simple spelling error could cause a benign sample
to be labeled privacy-invading, or vice versa.

Missing values differ from structural error; a “missing
value” occurs when no value is stored in a given attribute
of a data object. If, during data collection, a request lacks a
response, then one or more missing values might result.

We manually corrected for both structural error and missing
values while collecting and populating the dataset. During the
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implementation phase, we decided to remove the url column
from the dataset, as it is a categorical column with very few
values that repeat themselves. In addition, we elected to one-
hot encode the req_type column; we renamed the column
GET/POST and converted the values to binary. Since our
current dataset contains GET and POST requests, exclusively,
the reqg_type column (now the GET/POST column) was
an ideal candidate for the one-hot encoding tactic, reducing
clutter in the dataset.

Data splitting. When it comes to training and testing data,
the convention in the literature is the 70-30 split, meaning
that 70% of the samples are used to train the model, while the
remaining 30% are used to test the model.

Therefore, we separated the training column and the target
column (which identifies a sample as “benign” or “privacy-
invading”), creating four new variables:

e x_train - This variable contains 70% of the samples
in the dataset, including all feature columns. These are
the training samples.

e x_test - This variable contains 30% of the samples in
the dataset, including all feature columns. These are the
testing samples.

e y_train - This variable contains 70% of the target
values in the dataset, which correspond to x_train.
These are the training targets.

e y_test - This variable contains 30% of the target values
in the dataset, which correspond to x_test. These are
the testing targets.

IV. IMPLEMENTATION AND EVALUATION

In this section, we detail the API implementation of our tool
and discuss the evaluation results.

A. API implementation

An application programming interface (API) is an interme-
diate piece of software that facilitates communication between
two applications. This type of software interface is similar to
a contract between two parties: There is an expected request
structure, and the response adheres to a predetermined format.
An API abstracts the particulars of an application and exposes
only necessary services to other applications. As such, an API
can easily share an application’s functionality with external
applications, clients, or services.

In this work, a web API was implemented. A web API
is a service that runs on a machine and can be accessed by
potential clients via HTTP requests. To use our tool, a potential
client would send a data transfer object (DTO)—which carries
data between processes—to the web API. The tool’s response
would contain either a “1” for invasive requests or a “0” for
non-invasive requests.

To implement the web API, we leveraged the Python
programming language. A contributing factor in our choice
of programming language was Python’s compatibility with
other components of our tool. Our web API relies on a Python
framework called Flask [8]. Flask provides tools and features
that help its users to easily create and operate web applications.
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A simple web server can be constructed with as little as five
lines of code.

When the application executes, it will first load the previ-
ous model using the pickle module. The previously built
model is then made available in the code. The application
exposes two endpoints under the routes /api/predict/1lr
and /api/predict/dt. The former generates a prediction
based on Logistic Regression, while the latter leverages a
Decision Tree to determine if a given request is invasive (1)
or benign (“0”). Both endpoints expect a request with a specific
JSON-formatted DTO.

The endpoints are strict; all variables are expected to be
present in the payload. If the endpoints were not strict—i.e.,
if the endpoints generated predictions based on incomplete
payloads—then the endpoints would be liable to output in-
correct results. The required DTO should not be difficult to
construct, as it consists of information that the client can
extract from the original request.

B. Evaluation Results

To assess the performance of our design, we adopted a
confusion matrix—i.e., a table that provides data regarding
the performance of an algorithm. Confusion matrices contain
the following four values:

e True positives (TP). The number of correctly predicted

positive outcomes based on the predictive model.

o True negatives (TN). The number of correctly predicted
negative outcomes based on the predictive model.

« False positives (FP). The number of incorrectly predicted
positive outcomes based on the predictive model.

« False negatives (FN). The number of incorrectly predict-
ed negative outcomes based on the predictive model.

These metrics are the building blocks for a number of
popular performance measures:

o Accuracy. Accuracy measures how often the model cor-
rectly classifies a sample. It is one of the most commonly
used metrics for evaluating models. That said, it is a
biased measure and is not necessarily the best indicator
of overall performance.

o Precision. Precision—or positive predictive value—is de-
fined as the proportion of positive predictions that were
actually correct. The formula for precision divides the
number of true positives by the total number of positive
predictions (true positives and false positives).

o Recall. Recall—or sensitivity—is defined as the propor-
tion of actual positives that were predicted correctly. The
formula for recall divides the number of true positives by
the total number of positive samples in the dataset (true
positives and false negatives).

o Specificity. Specificity is defined as the proportion of ac-
tual negatives that were predicted correctly. The formula
for specificity divides the number of true negatives by
the total number of negative samples in the dataset (true
negatives and false positives). Specificity is similar to
sensitivity, except that the perspective shifts from positive
to negative.
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o Fl-score. Fl-score is calculated as the “harmonic mean”
of precision and recall. Both false positives and false
negatives are factored into the Fl-score; as such, it is
a good metric for imbalanced datasets.

The dataset consists of 90 unique requests that were man-
ually collected from various websites, and our supervised
machine learning model was trained on 178 unique classes.
It is important to note that a relatively small dataset can
pose a problem to the predictive “power” of a machine
learning algorithm, since a machine learning model’s ability
to recognize patterns is generally proportional to the size of
the dataset. Smaller datasets correspond to less powerful and
less accurate machine learning models [16].

We evaluated three supervised machine learning paradigms:
logistic regression, decision tree, and support vector machine.
All three models yielded a result in a very short amount of
time. The model has been developed using the scikit-learn
library [10]. The size of the training dataset was 60 samples,
and the size of the testing dataset was 30 samples. Fig. 3
illustrates the confusion matrices that were generated by each
of the three models. The results can be interpreted as follows:

o The confusion matrix for the support vector machine is
depicted in Fig. 3(a). The model predicted TRUE for
all samples, but it was wrong 30% of the time. The
evaluation criteria, as well as the numerical evaluation
results, are presented in Table I. The model demonstrated
a precision of 0.7. The model achieved a perfect 1.0 score
for recall, as it correctly identified all positive samples
as invasive. Unfortunately, the model achieved this score
by classifying all samples as positives, meaning that the
model has a serious problem with false positives. These
false positives are reflected in the model’s specificity
score, 0.0, which is the lowest possible score. The model
achieved an F1-score of approximately 82%. We can see
that the support vector machine has a severe bias toward
privacy-invading predictions, which causes it to routinely
misclassify benign samples as invasive.

o The confusion matrix for the decision tree is shown in
Fig. 3(b). The model that was trained using the decision
tree algorithm gave accurate predictions 56.(6)% of the
time and inaccurate predictions 43.(3)% of the time.
While ~ 56% is better than 50-50 odds, it is not better by
much. The precision of the model was 0.75—somewhat
higher than the precision of the support vector machine.
The recall, however, was 0.57, which is much lower than
the 1.0 recall of the support vector machine. When it
came to specificity, the model attained a modest 0.55(5),
indicating that 55% of the non-invasive requests would be
correctly whitelisted by the model. Note that the decision
tree produced the fewest false positives of all the models;
as such, it would be least likely to interfere with the us-
ability of a given website. Unfortunately, the model’s F1-
score was 0.64, which is quite low for a machine learning
model. The low Fl-score can generally be attributed
to the relatively high number of false negatives; the
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Fig. 3. Confusion matrices for the support vector machine, decision tree, and logistic regression models.

TABLE I
EVALUATION RESULTS
TP TN FP FN Accuracy Precision Recall Specificity ~ Fl-score
Support Vector Machine 0 21 9 0 0.7 0.7 1.0 0.0 0.82352
Decision Tree 5 12 4 9 0.56666 0.75 0.57142 0.55555 0.64864
Logistic Regression 1 21 8 0 0.73333 0.72413 1.0 0.11111 0.84

decision tree model misclassified nine invasive samples
as benign. Neither the support vector machine nor the
logistic regression model produced any false negatives.

o The confusion matrix for the logistic regression is illus-
trated in Fig. 3(c). The logistic regression-based model
generated correct predictions for 73.(3)% of the samples
and incorrect predictions for 26.(6)% of the samples. At
a precision of 0.72, the logistic regression model sits
between the support vector machine and the decision
tree in terms of positive predictive value. The logistic
regression model matched the support vector machine in
terms of recall, achieving a perfect 1.0 score. Unfortu-
nately, the logistic regression model has the same issue
with false positives as the support vector machine—non-
invasive requests are regularly misclassified as invasive.
Fortunately, the logistic regression model achieved a
somewhat better specificity score than the support vector
machine—0.1(1) instead of 0.0. The logistic regression
model achieved the highest Fl-score of all the models:
84%.

C. Limitation and Open Challenges

As discussed earlier, each of the models—support vector
machine, decision tree, logistic regression—comes with both
advantages and disadvantages. In terms of recall (proportion
of invasive requests that were correctly identified), the worst
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performing model was the decision tree with a score of 0.57.
For the decision tree model, we can expect that approximately
43% of invasive requests might pass as non-invasive. 43%
might seem quite high at first glance, but the current state of
user privacy is much worse: for the average user, 100% of
invasive requests will be allowed. Therefore, if we can block
57% of invasive requests, then we have made a significant
step forward in terms of user privacy. The issue, then, is the
false positives. If our tool blocks non-invasive requests that
a website needs in order to function properly, then usability
will be impacted. The specificity score of the decision tree
was 0.55(5). As such, we anticipate that approximately 44%
of non-invasive requests will be blocked, impeding a given
website’s ability to run.

The next model we need to address is the model trained
using the support vector machine algorithm. On the surface,
the model’s accuracy, precision, and recall are all reasonable—
0.7, 0.7, and 1.0, respectively. However, the SVM-based model
would be impracticable in a real-world scenario due to its
bias toward positive predictions. Under evaluation, the model
incorrectly classified all the benign requests as invasive. If
a user were surfing the web, the model would block all
requests, both invasive and non-invasive, completely disrupting
the user’s day-to-day activities on the web.

Finally, we will review the logistic regression-based model.
Similar to its support vector machine-based counterpart, it is
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exceedingly biased toward positive predictions. As such, it
suffers similar limitations in a real-time scenario; it would
disrupt a user’s web-surfing experience by blocking most—if
not all—non-invasive requests.

V. CONCLUSIONS AND FUTURE WORK

The objective of Privacy-Enhancing Technologies (PETS) is
to safeguard user data from misappropriation and mishandling.
When a user’s data is protected, the user’s privacy should be
protected as well. This work was built upon the following hy-
pothesis: It is possible to enhance the privacy of normal users
without disrupting their day-to-day web surfing activities. We
set out to develop a proof-of-concept tool to confirm our hy-
pothesis. We constructed a supervised machine learning model
that classifies HTTP requests as invasive or non-invasive, and
we evaluated three different machine learning paradigms as
the foundation of the model. Our results demonstrate that our
current solution has the potential to be used in real life—but
at the cost of browsing convenience and usability.

Future work involves collecting a much larger dataset of
online request and training new learning models to further im-
prove the performance metrics. For example, some advanced
learning algorithms can be explored to improve the results,
such as deep learning [13], [17], semi-supervised learning [18],
[21] and clustering methods [23], which can handle unlabeled
data with various optimization approaches [12], [31]. Our tool
can also be integrated with existing traffic sampling [22], [28]
and traffic filtration methods [14], [27], [29].
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