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Abstract—Human and activity detection has always been a
vital task in Human-Robot Interaction (HRI) scenarios, such
as those involving assistive robots. In particular, skeleton-based
Human Activity Recognition (HAR) offers a robust and effec-
tive detection method based on human biomechanics. Recent
advancements in human pose estimation have made it possible
to extract skeleton positioning data accurately and quickly using
affordable cameras. In interaction with a human, robots can
therefore capture detailed information from a close distance and
flexible perspective. However, recognition accuracy is susceptible
to robot movements, where the robot often fails to capture the
entire scene. To address this we propose the adoption of external
cameras to improve the accuracy of activity recognition on a
mobile robot. In support of this proposal, we present the dataset
RHM-HAR-SK that combines multiple camera perspectives aug-
mented with human skeleton extraction obtained by the HRNet
pose estimation. We apply qualitative and quantitative analysis
to the extracted skeleton and its joints to evaluate the coverage
of extracted poses per camera perspective and activity. Results
indicate that the recognition accuracy for the skeleton varies
between camera perspectives and also joints, depending on the
type of activity. The RHM-HAR-SK dataset is available at Robot
House.

Keywords—Assistive Robot, Non-generative, Multi-view
dataset, Skeleton-based, Activity Recognition

I. INTRODUCTION

Assistive robots are predominantly being developed to sup-
port older people who may have difficulty with daily living
[1], [2]. To be able to offer effective assistance, such robots
have to monitor people’s activities, for example, to help with
their medication. Skeleton-based Activity Recognition (SAR)
algorithms present a viable option in such scenarios since they
can capture fine-grained details of human motion, providing
accurate and nuanced information about the actions performed
by an individual [3]. Moreover, the mobility of assistive robots
allows them to move the camera in order to gather a high-
resolution view of the human’s posture and movements from
a close-up perspective.

Detection accuracy is imperative in assistive robotics, since
such robots often support vulnerable people and mistakes
might have a serious outcome [4], [5]. However, robot cameras
often suffer from a restricted field of view and can also be
influenced negatively by robot and camera movements, for
example, when they are mounted on the robot’s head, which

might be required to be moved away from the human for
communicational purposes.

Combining the robot’s view with external cameras allows
us to capture the scene from additional perspectives, thereby
increasing the overall robustness of activity recognition. More-
over, such an approach can take advantage of its situatedness,
allowing recognition results from certain camera perspectives
to be weighted depending on the current interaction with the
human.

With this paper, we present two main contributions to
human activity detection in ambient assisted living scenarios.
Firstly, we present the novel dataset RHM-HAR-SK comprised
of human skeleton data on top of an existing video dataset [6].
The dataset contains extracted skeletons of human activities
from four different perspectives and aims to provide a rich
information source to train and test the performance of human
activity recognition approaches in indoor scenarios. Moreover,
the dataset allows for detection algorithms to rely on low-
dimensional skeleton data instead of videos and therefore
reduces computing resources and networking requirements,
which are otherwise computationally expensive considering
the multiple parallel video streams. Secondly, we demon-
strate how using additional camera perspectives enhances an
assistive robot’s activity recognition pipeline. For that, we
measured the information contained in the different views by
analysing the number of missed frames and missed poses.

Results show that certain camera views provide more valu-
able activity recognition data than others. For example the
robot’s mobility helps to follow humans and capture more
details of some actions. Moreover, a wider view from envi-
ronment could be a complimentary. This suggests that using
additional external camera views can significantly improve
reliability of activity detection to allow an assistive robot
to maximise its functionality and thereby increase the users’
safety, comfort, and quality of life.

To present our approach, we discuss related works that apply
HAR to support assistive robots in providing their functionality
and introduce methods that our recognition pipeline relies
upon in Sec. II. We present the new dataset and how we aug-
mented it with additional information to enhance its versatility
within the application domain in Sec. III. We evaluate the
quality of each camera view in terms of missed frames and
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poses in Sec. IV and discuss implications for assistive robotics
in Sec. V before concluding the paper in Sec. VI.

II. RELATED WORK

In this section, a brief review of the various technologies uti-
lized for HAR is presented, with emphasis on the significance
of the development of corresponding datasets. Subsequently,
an overview of pose estimation techniques is provided, and
finally, a discussion of the two distinct categories of multi-
view datasets and related skeleton-based works is highlighted.

A. Human activity recognition methods

Vision-based HAR methods [7], [8], [9] rely on 2-
dimensional (RGB), or 3-dimensional (RGB-D) video data
acquired by a wide range of devices, e.g. stereo cameras,
webcams, smartphones, etc. Video material is often sourced
from video streaming platforms like YouTube or social media.
Sensor-based recognition instead, relies on additional sen-
sors, including global positioning systems (GPS), gyroscopes,
accelerometers, or magnetometers [10], [11]. Some attempts
(e.g. Bharti et al. [12]) combine both approaches and fuse
recognition results from multiple sensors and cameras. Our
approach allows fusing recognition results using multiple
cameras without relying on external sensory technology.

Vision-based activity recognition methods can operate di-
rectly on the video input (RGB or RGB-D) or on derived
data, such as skeleton information that is generated using pose
extraction methods on the raw data. Methods operating on
raw camera data extract features directly from image frames
in the video stream and typically perform at high accuracy
[8]. By contrast, our approach relies on derived data using
a pose extraction method [13] to generate skeleton-based
representations of human activities in a domestic environment.
Such an approach has shown to be more robust than operating
on raw data (RGB) against environmental clutter and varying
light circumstances and could concentrate on the activity being
conducted [14].

B. Human activity recognition in assistive robotics

Human activity recognition enables robots to understand
and respond to human users’ needs and activities. However,
few studies specifically focus on the Ambient Assisted Living
(AAL). Additionally, referring to comprehensive review works
of assisted living technology [15] and HAR [16], [9], there is
a lack of skeleton-based and multi-view HAR datasets in this
field. Therefore, developing a new dataset focusing on assistive
robotics will open a new horizon in this field.

C. Pose Extraction for activity recognition

Since the pose extraction method is applied at an early-stage
task in the HAR pipeline, it plays a vital role in skeleton-based
HAR [17]. Low or high accuracy in this section directly affects
the rest of the procedure. Thus, a reliable HAR method is
dependent on a high-accuracy pose extraction method. Pose
extraction typically relies on either 2-dimensional (RGB) or
3-dimensional (RGB-D) input data [18], [19]. While depth

data in 3-dimensional approaches allows for better recognition
results, they require special sensors that are sometimes costly
or unsuitable for the environment. Moreover, the storage size
of such datasets increases drastically compared to RGB-based
ones. Hence, publicly available datasets often provide 2-
dimensional data only. To allow for later comparison to other
datasets and approaches, our work relies on 2-dimensional
data. Moreover, the simplicity, affordability and accessibility
of RGB cameras allow us to apply a high-performance pose
extraction method independent of specific hardware on a robot.

There are two general methods in two-dimensional pose
estimators, BottomUp [19] and TopDown [20], [21]. The
difference between the two is the sequence of finding poses
and humans. The TopDown method first finds the Region
of Interest (ROI), which is the human body, and then finds
the poses. The provided dataset in this work also used the
TopDown method. On the other hand, in the BottomUp
approach, we need to find the poses, and then by grouping
them, the human skeleton data will be created.

D. Generative and non-generative datasets

When it comes to data preparation techniques, generative
and non-generative view invariant HAR methods are the two
primary dataset groups. As implied by the name, generative
approaches produce their input data from one or more actual
views [22], whereas non-generative approaches acquire their
data from genuine input devices like sensors and cameras.
For instance, [23] is a SOTA prospective shifting approach
that transforms an action into many views and is based
on the angle representation in skeletons data. Their method
proved reliable when dealing with incomplete data. Moreover,
Generative Adversarial Networks (GAN) [24] and encoder-
decoder CNN networks are popular for RGB-based approaches
[25], [26]. However, there currently exist no non-generative
skeleton-based HAR dataset including a robot view, and this
work address this gap. Additionally, the presented dataset
can provide sufficient data to create generative datasets in
the future and can be adopted for the future development of
assistive scenarios.

III. RHM-HAR-SK DATASET

This section provides information about the RHM-HAR-SK
dataset that we created on top of the extended version of
RHM [6] RGB data, a multi-view human activity dataset. It
includes a single person, trimmed video from four independent
cameras, two wall-mounted cameras (Front-view and Back-
view), one mobile robot camera (Robot-view), and one ceiling
fish-eye camera (Omni-view). Cameras were used to cover
the whole area resembling an ordinary living room, and we
note that the videos from different views overlap. This dataset
captures fourteen daily indoor activities [walking, bending, sit-
ting down, standing up, cleaning, reaching, drinking, opening
can, closing can, carrying object, lifting object, putting down
object, stairs climbing up, stairs climbing down] in a typical
living room of a British home. The conspicuous feature is a
mobile robot camera synchronized with three other cameras. It
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(a) Walking Back-view. (b) Walking Front-view (c) Walking Robot-view. (d) Walking Omni-view.

Figure 1. Synchronized skeleton output from different views of the ”walking” action.

enables us to explore the added value of mobile observations
in HRI in the context of social and assistive robotics.

In all video clips, the frame size is 640× 480. As shown in
Figure 1 the bounding box size varies in different frames. The
variation is based on the distance of the detected human to
the camera, the camera type and position, the subject’s body
dimension, and the number of detected poses. The HRNet [13]
has been used to extract poses from videos. This model has
been trained over the COCO keypoint detection dataset [27],
and the MPII Human Pose dataset [28].

One body skeleton with 17 poses has been extracted from
each frame, and the total number of video frames varies and
is not fixed in each video stream and activity. Total number of
synchronized videos from each camera view in all actions is
6700. Each pose includes X and Y positions in the 2D scene.
In the first step, we store the extracted poses in a JSON file.
The JSON file was transformed to the Tensor file to feed the
ML Training mode.

All actions from different views are combined in a single
five-dimensional tensor: T = {n, c, f, p, s}, where n ∈
{N0|n < 6700} denotes the sample number. Note: videos
are synchronized, meaning each sample across the four videos
from a different camera. Some of the videos are filled with zero
(0) values. These refer to a video clip with missing poses;
c ∈ {N0|c < 4} identifies one of the four camera views;
f ∈ {N0|f < 34} refers to the frame number. Because the
nature of the matrix does not support different dimensions,
to unify it, 34 frames randomly selected and sorted as the
original sequence. p ∈ {N0|p < 17} denotes the number of
extracted poses up to a maximum of 17 identifiable poses
(c.f. TABLE . I); s ∈ {R|s < 3} combines the relative x and
y position plus the score of this pose are in this section. The
confidence score depicts the reliability level of the extracted
pose. l ∈ {N|l < 14} is an individual tensor L with the same
dimension of sample number, which shows the class labels for
the actions.

A. The Input Data Size and Sampling

One of the most challenging parts of the HAR task is the
video frame sampling. Every video is labelled as a single
activity, and the video length is different based on action type
and situation. Then, for the ML models, this variation means
having a dynamic input size. Consequently, all parameters in
the model should modify based on the input size. Designing

this dynamic model is a significant structural challenge in
AI modelling, which is still an open area for improvement.
Similarly, the skeleton-based methods need to use fix size input
data. However, sampling or other reduction-based methods
could lose valuable data from a video stream. In this work,
ordered random sampling method has been used, which a fix
the number of frames like 34, 64 and 128, have been selected
randomly from entire frames.

A 2D image (Figure 2) visualizes the spatial-temporal data.
It shows the results of transforming 20 videos stream of
skeleton data from walking action in robot view to 2D images.
The spatial information which is extracted from each video
frame is transformed into a single row, one dimension vector
with 17 elements. Each element of this row can show the
relevant body pose information. They could be X, Y, or the
results of a specific function like the Mean square. The X
value of all 17 positions is shown in Figure 2. We have
depicted the information of these experiments with a grayscale
image to give a better understanding.

Figure 3 displays a real frame capturing a human engaged
in stair climbing down action, along with the extracted body
poses and skeleton, as depicted in Figure 3a. Additionally,
Figure 3b showcases the individual human skeleton data de-
void of RGB data. Each pose is represented by a unique index
number, as demonstrated in Figure 3c, with corresponding
nomenclature provided in TABLE I.

TABLE I. TABLE OF KEYPOINTS INDEX

Index Keypoint Index Keypoint
0 Nose
1 Left eye 2 Right eye
3 Left ear 4 Right ear
5 Left shoulder 6 Right shoulder
7 Left elbow 8 Right elbow
9 Left wrist 10 Right wrist
11 Left hip 12 Right hip
13 Left knee 14 Right knee
15 Left ankle 16 Right ankle

IV. QUANTITATIVE AND QUALITATIVE ANALYSIS

This section focuses on the quantity and quality of the ex-
tracted skeleton and its poses from the RHM-HAR-SK dataset.
Two general terms are considered to describe the quality of
extracted skeleton from RGB images, the number of missed
frames and the number of missed poses. The primary objective
of the analysis is to provide an improved comprehension of
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Figure 2. The two dimension representation of x position from
20 videos with different length in Robot-view from walking
action.

(a) (b) (c)

Figure 3. 3a shows a subject performing the ”stair climbing
down” action with skeleton overlay. 3b shows only the skele-
ton of the same action, and 3c another skeleton with index.

the effectiveness of different camera views in human detection
and pose extraction quality.

A. Missed Frames

The RGB frames on which the pose extraction methods
could not find any human skeleton is considered a missed
frame. In the RHM-HAR-SK dataset, 14 actions have been
captured from four synchronized camera views. The number
of frames in all views is the same, but it’s different from
action to action. Figure 4 depicts the total number of missed
frames in four views and 14 actions separately. The balck bars
show the total frame number distribution in the dataset and
each activity individually. The orange bar shows the statistics
of Omni-view’s camera missed frames, which illustrates that
the majority of actions missed the frames, higher than 45%.
Meanwhile, the walking and carrying object actions by 29.6%
and 36.5% have the lower missed frames in the Omni-view,
respectively. At the same time, these actions have higher
frames error in the Robot-view with 0.9% for walking and
1.3% for carrying objects, which is negligible.

Excluding the Omni-view, the highest missed frames belong
to the Front-view in stairs climbing up/down with 13.3% and
9.4%. Following that, the Back-view has the same pattern in
stairs climbing actions by 10.2% and 4.7%.

B. Missed Poses

There are three parameters for each pose, X and Y values
in 2D space and the confidence score. The confidence value
refers to how much the extracted position is accurate. This
value is between 0 to 1, and we considered the values less
than 0.5 as missed poses. Figure 5 illustrates the total number
of all actions’ missed poses from three views, and 17 poses
separately. The total number of each pose in all activities is
almost the same and hovers around 500000. The red, green,
and blue bars show the robot, back, and front view cameras’
missed poses. The percentage of missed poses is also shown
on top of each bar.

Overall, in the Figure 5 the Back-view has the lowest
confidence (highest number of missed poses) in all poses, and
the Front-view and Robot-view have the highest confidence,
which changes in different joints. For the Robot-view, the
highest number of missed poses belong to the lower body,
with more than 50% in ankle joints and around 31% in knee
joints. Except stairs climbing up and down actions all other
action has the similar pattern, for instance, Figure 6 illustrates
the walking action statistics, on the other hand, the statistics in
stairs climbing up (Figure 7) and down are slightly different
from all other actions. Robot camera-view shows superior
results in these actions with very low missed poses. The
left and right shoulders have fewer missed poses in almost
all actions among all body joints. The relevant total frame
numbers of each individual action is shown on top of balck
bar in Figure 4.

V. DISCUSSION

The missed frames statistics show that an omnidirectional
camera is an unreliable source for body pose extraction.
However, we note that it delivers good information in actions
with long-range movements like walking and carrying objects.
Meanwhile, there is still significant room for developing
this view further, such as improving the accuracy of pose
estimation by incorporating details of other views or distortion
factors.

These statistics also reveal that the number of missed frames
is correlated with the action type. Actions like stair climbing
up and down, bending, sitting down, and cleaning that need
more vertical and horizontal courses have more missed value
in two fixed wall mount cameras compared to the Robot-view.
This is because the robot head follows the human, whereas
the wall-mounted cameras do not. At the same time, the robot
view has moderately more missed frames due to being too
close to the human or being within a cluttered environment.
These manifest mainly in actions carrying objects, walking.
Considering the results of both missed frames and missed
poses in Robot-view, we deduce that being close to the human
when they are moving around quickly or for long distances can
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Figure 4. Missed frames Across all actions grouped by view

Figure 5. Percentage of frames with missed skeleton poses across all actions grouped by view.

decrease recognition quality due to partially observable or not
observable joints. The reason is that this view has a closer
view of the human and the scene, causing missing the lower
body joints.

The previous discourse might led to the proposition that uti-
lizing a wide-angle camera in robot could potentially facilitate
the research; nevertheless, comparable cameras were employed
in order to circumvent any further technical examination,
which may be explored in a subsequent investigation.

The statistics in stairs climbing actions prove that the robot’s
camera movement and ability to follow the human results in
fewer errors. The human has vertical movement in this action,
which can be followed by a robot camera that other cameras
might miss. For example, the front-view, which has the fewest
missed poses on all actions on average, has the higher number
of missed poses in stairs climbing up (Figure 7) and down
actions.

Comparing two wall-mounted cameras with the same tech-
nical feature emphasizes the effectiveness of the viewpoint.
The missed pose statistics index in Figure 5 shows that the
Front-view has better results regarding pose extraction quality.
On the other hand, the Back-view, which is also a wall-
mount camera with the same technical features, results in the
most missed poses in almost all actions. The only difference
between these two wall-mount cameras is the altitude and
view side. Reviewing the videos from these camera views in
different activities suggests that the higher attitude and broader
view in wall-mounted cameras can decrease the missed poses.

It is important to note that our dataset has a high level of
accuracy, as demonstrated by the quantitative and qualitative
results that differentiate between the various conditions. The
variations in camera type and viewing angle have a discernible
impact on the performance of pose extraction, and our dataset
is of a sufficient quality to capture these differences. This high-
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Figure 6. Percentage of frames with missed skeleton poses of ”walking actions” grouped by view.

Figure 7. Percentage of frames with missed skeleton poses of the ”stairs climbing up” actions grouped by view.

lights the importance of carefully selecting data acquisition
techniques to ensure accurate and reliable results.

Overall, the results show that the camera position, view,
activity type, and joints are highly significant in the qual-
ity of pose extraction. Theoretically, combining a Robot-
view camera and two other cameras can enhance skeleton
extraction. The integration of an extra camera may incur
substantial expenses both in terms of computational resources
and monetary cost, yet this concern has been subject to further
discussion in a parallel work which we utilise this dataset to
train a light-weight MV-HAR model, and our results indicate
that adding other views has a good impact on the robot’s HAR
accuracy [29].

VI. CONCLUSION

In this paper, we have presented the novel dataset RHM-
HAR-SK that provides human skeleton data from multiple
perspectives to facilitate human activity in ambient assisted
living scenarios. Our findings reveal that the accuracy of
skeleton recognition varies depending on both the camera
perspective and the specific joint being analyzed, with vari-
ations being particularly pronounced for different types of
activities. In particular, we have shown that a broader view
and higher installation height positively impact the extracted
skeleton quality. In addition, results in an accompanying paper
have shown that combining the robot camera with an external
camera can increase HAR accuracy. Grafting all information
into a single HRI scenario, we conclude that the proposed
dataset can practically help to develop a high-level robot per-
ception in assistive technology. Our future work will consider
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application of generative views from existing synchronised
data in order to achieve close to real-time detection in AAL
scenarios.
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