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Abstract—With the development of neural network, Text-To-
Speech (TTS) technology is booming unprecedentedly. The speech
generated by modern text-to-speech systems almost sound as
natural as human audio. However, the style control of synthetic
speech usually limits to discrete emotion type and the emotion
embedding which controls emotion transfer contains redundant
transcript information. In this paper, we apply pre-trained
language model Bidirectional Encoder Representations from
Transformer (BERT) to our TTS system to achieve style control
and transfer. Using BERT makes our proposed model study the
relationship between text representations and acoustic emotion
embedding. The experimental results show that our proposed
model outperforms baseline Global Style Token (GST)-Tacotron2
model in both parallel and non-parallel style transfer.

Keywords—emotional text-to-speech; style transfer; pre-trained
language model

I. INTRODUCTION

Text-to-speech (TTS), also knowed as speech synthesis,
is the technology which aims to synthesize intelligible and
natural speech from raw text. Early speech synthesis tech-
niques mainly include waveform concatenation [1][2] and
statistical parametric speech synthesis [3]–[6]. A classic Sta-
tistical Parametric Speech Synthesis (SPSS) system usually
includes three components which contain a front-end model
(convert text symbols to linguistic features), an acoustic model
(map linguistic features to acoustic features) and a vocoder
(generate speech from acoustic features). In the past decades,
this method was widely used in industrial production due
to the advantages of robustness and efficiency. However, the
generated speech of this method has lower naturalness and
intelligibility because of artifacts such as muffled and noisy
audio. The voice quality has been largely improved on neural
network approaches [5][6] instead of Hidden Markov models
(HMM) [4]. Deep Voice [7] still follows the three components
in statistical parametric synthesis, but upgrades them with the
corresponding neural network models. Furthermore, WaveNet
[8], proposed to directly generate waveform from linguistic
features, is regarded as the first modern neural TTS model.

Recent end-to-end speech synthesis models surpass tradi-
tional parametric systems in many ways, including the use of
an encoder to replace linguistic features, a neural vocoder to
replace the traditional vocoder, and an attention mechanism for
the purpose of end-to-end training. Tacotron [9] is a sequence-
to-sequence model which simplifies the traditional speech
synthesis pipeline by replacing the production of magnitude
spectrograms from text with a single neural network trained
from data alone. Like many modern TTS systems, it learns an
average prosody of the training data. Afterwards, Tacotron2
[10] gains a great success through refining Tacotron model

structure and cascading with a modified WaveNet vocoder.
Tacotron and Tacotron2 first generate mel spectrograms from
text directly, then synthesize audio samples produced by a
vocoder, such as Griffin Lim algorithm or WaveNet. Using
an end-to-end network, the quality of synthesized audio is
greatly improved and even comparable to human recordings
on some datasets. The end-to-end TTS model contains two
components, an encoder and a decoder. The encoder maps
sequence of text into semantic space and generates a sequence
of encoder hidden states, and the decoder, taking these hidden
states as context information with an attention mechanism,
constructs every mel spectrogram symbol per step. However,
these generated models adopt recurrent neural network which
limits the parallel processing capability both in training and
inference stage. To deal with this problem, some models [11]–
[13] leverage Transformer [14] network to replace recurrent
neural network in TTS system. Among these models, Fast-
Speech 1/2 [12][13] use self-attention mechanism in order
to deal with long distance dependency problem on the last
previous hidden state and improve parallelization capability.
The generated audio of these models is more robust than
that of sequence-to-sequence models. However, because the
audio generated by these models only contains neutral prosody
is limited in many scenarios like AI voice assistants and
navigation systems, there has been an increasing interest in
emotional TTS and the method to control the generated speech
style.

In expressive TTS, the speaking style is modeled in su-
pervised or unsupervised manner. Lee et al. [15] proposed
an emotional end-to-end speech neural speech synthesizer,
controlling speech emotion with discrete label. Luong et al.
[16] introduces a DNN-based text-to-speech system which
takes speaker, gender and age codes as inputs in order to
modify synthetic speech characteristics based on the input
codes. Lorenzo-Trueba et al. [17] evaluates a large-scale
corpus of emotional speech from a professional voice actress
for the purpose of investigating different representation for
modeling and controlling multiple emotions in DNN-based
speech synthesis. However, the control of speech emotion
is only limited to the emotion category which, we have
predefined and synthetic speech cannot convey a variety of
emotion. With the rapid progress of sequence-to-sequence
architecture, especially Tacotron family, reference-based style
transfer has emerged as another solution with great potential
to solve this problem. The reference-based model learns a
latent style embedding from the reference audio and generate
speech which matches the prosody of the reference speech
even if their speakers are different from each other. To model
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reference speech as style input, there has evolved a plenty of
work, such as Global Style Token (GST) [18][19], Variational
Autoencoder (VAE) [20][21] and their variants. Global Style
Token (GST) [19] introduces a reference encoder that extracts
style embedding from the acoustic signal and encodes various
speaking styles into a fixed number of tokens. Variational
Autoencoder (VAE) [21] infers style representation through
the recognition of VAE, then feeds it into TTS network to
guide the style in synthesizing speech.

The remaining part of this paper proceeds as follows.
Section II introduces related work. The overview and each
component of the proposed model are described in Section III.
Experiments and results are reported in Section IV. Lastly, the
conclusion and future work are covered in Section V.

II. RELATED WORK

In this section, we first introduce reference-based TTS
model, followed by a brief description about language model
in TTS.

A. Reference-based TTS model

The reference-based TTS model aims to synthesize speech
whose style is transferred from reference audio. The most
straightforward way is to obtain style embedding from ref-
erence speech and use it as condition control to guide speech
synthesizing. Skerry-Ryan et al. [18] proposes the concept of
prosody embedding and merges prosody encoder into Tacotron
architecture for computing low-dimension information of ref-
erence speech. The embedding captures audio features inde-
pendent of speech information and specific speaker features
such as accent, intonation, and speech rate. At the inference
stage, we can use this embedding to perform prosody transfer
and produce speech from a completely different speaker’s
voice. The embedding can also transfer temporally aligned
precise prosody from one phrase to a slightly different one,
even though the reference and target phrases are similar in
length and structure. On the basis of previous work [18], global
style token (GST) [19] is an updated method to learn the
style representation by encoding various speaking style into
a fixed number of tokens. By adding an additional attention
mechanism to Tacotron, it enables it to express the prosody
embedding of any speech segment as a linear combination of
a fixed set of base embedding. The attention weights represent
the contribution of each style token, and style embedding is
made up of the weighted sum of all style tokens. In the training
stage, each token is randomly initialized in an unsupervised
manner. During the inference step, we can use a different
audio signal or specify the attention weights of style tokens
to achieve style transferring and controlling. Um et al. [22]
introduces an inter-to-intra emotional distance ratio algorithm
to the embedding vectors which can balance the distance
between the target emotion category and the other categories.
Li et al. [23] is also a GST-based method for expressive TTS,
where the authors insert two classifiers into GST-Tacotron2
[19] model for improving emotion discrimination ability of
emotion and deliver emotional speech with preferred strength.

B. Language model in TTS

Language model (LM) is often used in many natural lan-
guage processing applications, such as speech recognition,
machine translation, syntactic analysis, handwriting recogni-
tion and information retrieval. With the development of neural
network, language model becomes increasingly powerful and
is exploited in TTS system to improve the quality of synthetic
speech. Jia et al. [24] introduce a new encoder model which
takes both phoneme and grapheme representations of text as
input and is trained in a self-supervised manner. Fang et al.
[25] uses BERT [26] in TTS system to know when to stop
decoding and help faster converge during training. Zhang et
al. [27] employs BERT in a unified front-end model for the
purpose of improving polyphone disambiguation accuracy. In
[28], style tag makes synthetic audio more interpretable and
natural compared with style index of reference speech. Shin et
al. [29] proposes a style encoder which models the relationship
between the text embedding and speech embedding with a pre-
trained language model.

III. PROPOSED MODEL

Our proposed model architecture is shown in Figure 1.
The proposed model is based on Tacotron2 with an emotion
recognition network, an additional network and a semantic
network.

A. Encoder

The encoder is made up of a character embedding layer, 3
convolutional layer and a single bi-directional LSTM [30].

Because a character is represented as a 512-dimensional
one-hot vector, the input character sequence which contains n
characters is converted to a n × 512-dimensional character
embedding through character embedding layer. In order to
capture a longer range of contextual information and obtain
features of character sequence, the character embedding is
then passed through 3 convolutional layers and each layer
has 512 filters where each cover 5 characters, followed by
batch normalization and ReLU activation. The output of the
last convolutional layer is sent to a bi-directional LSTM layer
which contains 512 units to generate encoded features. After
the above operations, the encoder finally encodes the input
character sequence into a 512-dimensional hidden feature
vector.

B. Decoder

As we all konw, the decoder is an autoregressive recurrent
neural network trained from the input sequence of the encoder
to predict the output mel spectrogram. The mel spectrogram
at the previous moment is first passed into a pre-net which
is comprised of two fully connected layer with 256 hidden
ReLU activations. It is important for the pre-net to learn
attention alignment mechanism. The output of pre-net and the
anttention vector are connected with each other and sent to
two one-way LSTM layers with 1024 units. The output vector
of LSTM is concatenated with the attention context vector
output by the encoder, and then passed to a linear projection

147Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions



Figure. 1. Model Architecture

layer to predict the current mel spectrogram frame. Finally, the
post-net containing 512 filters with shape 5 × 1 with batch
normalization takes the predicted mel spectrogram as input to
add the residual to previous mel spectrogram for improving
reconstruction ability.

C. Emotion Recognition Network

From the top left of Figure 1, the emotion recognition
network contains a reference encoder and an emotion classifier.

1) Reference encoder: The reference encoder we adopted
in our model is the same in [18]. It is composed of six 2D
convolutional network where each layer equipped with batch
normalization has 3 × 3 filters with 2 × 2 stride. The output
of convolutional network is then passed through a GRU [31]
layer, and we use a fully connected layer followed by a tanh
activation in order to map the final GRU state to our desired
128-dimensional embedding.

2) Emotion classifier: We use emotion classifier followed
by reference encoder to facilitate the discrimination ability of
emotion types. The classifier consists 5 fully connected layers
with tanh activation. In the classifier, the size of first layer is
128-unit and that of the remaining layers is 256-unit. For the
downstream emotion classifier task, a softmax layer is applied
to produce the probability of each emotion category, such as
neutral, happy and angry. The output of third layer and the
hidden feature vector from the encoder are concatenated for
teach-forcing speech waveform generation.

D. Additional Network

The additional network shares the same structure with the
emotion recognition network, as is shown in the top right
of Figure 1. In detail, we plug an additional network to the

decoder , which enables the predicted mel spectrogram to iden-
tify emotion category. The output of third layer from additional
network acts as an emotion embedding of the generated speech
and is compared with the emotion representation of input audio
for better training and optimizing.

E. Semantic Network

The semantic network is composed of a pre-trained BERT
model and semantic layer. We use this network to map text
sequence to semantic representations, which aims to remove
text-related information from acoustic features and leverage
transcript dataset to assist TTS training.

1) BERT: BERT is of great significance to a large amount
of NLP tasks. It consist a stack of Transformer [14] blocks and
is trained with Mandarin text data. The input text sequence
is made up of many characters where each is transformed
to a linguistic feature, and is encoded to capture contextual
information from Mandarin text by BERT. BERT can be
trained in two unsupervised manners, one is mask language
modeling where we randomly replace the token in each
training sequence with a [MASK] token and then predict
the original word at the [MASK] position, and the other is
next sentence prediction where the model has the ability to
understand the relationship between two sentence in many
downstream tasks.

2) Semantic layer: To adapt to downstream task, we design
the semantic layer that is connected with BERT in order
to modeling the input text sequence. Similar to Emotion
classifier, the semantic layer is built with 3 fully connected
layer followed by tanh activation. The output of semantic layer
is used to reduce impact on acoustic representations and focus
on emotion dimension of the synthetic speech.

148Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions



F. Training and inference

During training, we use five loss terms summed as a total
loss in our model. The loss function of the basic acoustic
model, referred as Ltac which is followed with Tacotron2 [10],
is the Mean Square Error (MSE) between the input ground-
truth mel spectrogram and the predicted mel spectrogram. To
make the reference encoder only extract emotion features, we
adopt Lemo sem that calculates the loss between the emotion
vector ze extracted from the emotion recognition network and
the semantic embedding zs extracted from semantic network.

Lemo sem =

N∑
i=1

(zei − zsi)
2 (1)

To improve the distinguish capability of the generating speech,
the loss function, Lemo add, is determined by MSE between
emotion embedding ze fetched from the emotion recognition
network and addition embedding za fetched from the addi-
tional network as follows.

Lemo add =

N∑
i=1

(zei − zai)
2 (2)

Besides, Lcls src and Lcls pre denote the cross entropy loss
for the source audio classifier in emotion recognition network
and the predicted audio classifier in additional network, re-
spectively. The total loss of the proposed model is:

L = Ltac + Lemo sem + Lemo add + Lcls src + Lcls pre (3)

In the inference stage, we use reference speech or emotional
vector to achieve style control and transfer. For the emotional
vector method, emotional vector ve is determined by averaging
the samples of the corresponding emotion category as follows:

ve =
1

Ne

∑
xi⊂Xe

xi (4)

where Xe represents all the weight vectors of the emotional
category and Ne and xi donate the number of weight vec-
tors and weight vector belonging to the emotional category,
respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our proposed
model in parallel style transfer and non-parallel style transfer
through subjective evaluations and objective evaluations.

A. Dataset and settings

In our experiments, we use a high-quality emotional speech
corpus which is recorded by a Chinese female professional
speaker and contains <text, audio, emotion label> tuples. The
emotions of all the speeches are classified by 2 categories
(neutral and happy). The corpus consists of 12000 utterances
(12 hours), among which 10000 (10 hours) belong to the
neutral emotion and the happy emotion has the remanent 2000
utterances (2 hours). We down-sample all the recordings from
48kHz to 22.05 kHz for model training. 80-dimensional mel
spectrogram is extracted from the dataset as acoustic features.

The frame length and frame shift are set to 50ms and 12.5ms,
respectively.

The experimental environment configuration is shown in the
Table I.

TABLE I
EXPERIMENTAL ENVIRONMENT PARAMETERS

Operating System Ubuntu18.04

Graphics Card NVIDIA GeForce RTX 3090
Memory 24G
Python 3.7.6
PyTorch 1.8.1
CUDA 11.1

We train our model for 500 epochs with a batch size of
32 because using BERT makes our model size larger. We use
the Adam [32] optimizer with a learning rate of 1e-5 to learn
the parameters in a single GeForce GTX 3090 GPU. In the
reference encode, the number of GRU hidden units is set to
128. As for speech generation, we build a WaveRNN [33] as
the vocoder trained by ground-truth mel spectrogram.

B. Text preprocessing

In our acoustic model, we use traditional Chinese represen-
tation as the input sequence for speech generation. Figure 2
shows the process of translating traditional Chinese characters
into phonemes. We first represent Chinese characters with
Chinese phonetic alphabet, then convert Chinese phonetic
alphabet to combination of initials and finals instead of English
alphabet.

Figure. 2. Example of translating traditional Chinese characters into
phonemes

C. Subjective evaluations

To subjectively evaluate the performance of our model, we
compare our proposed model with baseline model on the Mean
Opinion Score (MOS) and ABX preference subjective tests.
Some samples can be found from https://light-cao.github.io/.

We evaluate the naturalness of the generated speech ut-
terances by using the Mean Opinion Score (MOS) test. Ten
native Mandarin speakers are asked to stay in a quiet room
and listen recordings with noise canceling headphones, and
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then make their judgements of the performance with five-
point scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).
We randomly select 10 sentences from each emotion category
for both parallel style transfer and non-parallel style transfer
experiments with our proposed model and baseline model.
Parallel style transfer means the transcript of the synthetic
speech matches that of the reference audio. Non-parallel style
transfer refers to synthesizing the audio with arbitrary text in
the prosodic style of the reference signal.

The MOS test results in Table II confirm that our pro-
posed model performs better than the baseline model both in
parallel style transfer and non-parallel style transfer. Parallel
style transfer outperforms non-parallel style transfer in speech
quality because the transcript seen during training is beneficial
to better modeling the synthetic audio.

TABLE II
MEAN OPINION SCORE(MOS) WITH 95% CONFIDENCE INTERVALS ON

PARALLEL AND NON-PARALLEL STYLE TRANSFER

parallel transfer non-parallel transfer

Ground truth 4.25 ± 0.15 -
GST-Tacotron2 3.90 ± 0.16 3.57 ± 0.19
Proposed 4.07 ± 0.16 3.79 ± 0.18

To demonstrate that our model can control style transfer,
we conduct a ABX preference test with the baseline GST-
Tacotron2 and our proposed model. In this test, the participants
are provided a fair number of samples from baseline and the
proposed model and rated which sample is as expressive as
the reference speech. If there is no obvious difference between
the two samples, they can choose no preference. The results
in Figure 3 show that our proposed model outperform the
baseline model in both neutral and happy emotion category.

Figure. 3. ABX preference test results on two emotion categories between
baseline model and the proposed model

D. Objective evaluations

We visualize the attention alignment of the decoder in
Figure 4 and check if the attention mechanism learns how
to align between the text sequence and the reference audio.
In Figure 4, the attention alignment of our proposed model
is slightly brighter than that of the baseline GST-Tacotron2
in many places, which indicates the proposed model surpass

(a)

(b)

Figure. 4. Comparison on attention alignment between text and speech. (a)
From the baseline GST-Tacotron2. (b) From our proposed model

the baseline model. From the analogous shape of the proposed
attention, we can see that our proposed model could align the
reference speech to the text well.

V. CONCLUSION AND FUTURE WORK

In our work, we utilized semantic network in our model to
control and transfer style. In order to deliver the emotion more
accurate, we inserted two classifiers after the reference encoder
to enhance the emotion discriminative ability of the emotion
embedding and the predicted mel spectrogram. Compared with
the baseline model, the proposed model improved the quality
of synthetic speech and achieves excellent performance on
parallel and non-parallel style transfer. Besides, our proposed
model could align the reference speech to the text better
than the baseline model. In the future work, we want to
improve the model for excluding the transcript information
in acoustic features more precisely and experiment on more
emotion categories.
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