
Exploring Medical Practitioners Abilities to Use Visual Programming to Code

Scenarios for Virtual Simulations

Bjørn Arild Lunde, Joakim Karlsen

Department of Computer Science and Communication

Østfold University College

Halden, Norway

bjorn.a.lunde@hiof.no, joakim.karlsen@hiof.no

Abstract— Virtual simulations provide a safe environment to

practice medical skills and has become more common in the

health sector. To maintain and update virtual simulations with

state-of-the-art medical procedures require expert knowledge

in programming and IT development. Significant resources

could be saved if medical educators and students could update

the virtual simulation with new scenarios themselves. Based on

a qualitative study of end users solving visual programming

tasks, we identify constraints and opportunities in achieving

this. The main constraint was their inability to break down

scenarios into smaller codable steps. The main opportunity was

how their familiarity with some elements in the visual

programming language increased their ability to write code.

Keywords-end-user programming; virtual simulations

medical training

I. INTRODUCTION

The healthcare sector is actively pursuing the
development of technology to support training [1]. Several
experiments indicate that serious games and virtual
simulations are promising platforms to support practitioners
in the field with learning activities [2]–[4]. Due to rapid
advancements in health research, activities are not
necessarily done in the same way as they were ten years ago.
To keep up with these changes, training tools and learning
material must be updated to keep the practitioners’ skills up
to date. In the case that the learning tools are complex
entities, such as virtual simulations and serious games, it is
not unusual to hire personnel, either internal or external, who
can adapt the training tools to reflect new knowledge.
Valuable resources can be saved by giving end users the
ability to make these changes themselves, using end-user
programming tools.

Having the right skillset to write code and update virtual
simulations requires an understanding of programming. A
motivation for this study is to lower this knowledge barrier
by wrapping text-based programming in a graphical interface
that is user-friendly for end users without prior knowledge of
programming. Visual programming languages that try to
achieve this already exist, with block-based and node-based
approaches being the most popular. A familiar example of
block-based programming is Scratch, which was created
specifically for end users without programming experience
[5]..

The purpose of this study is to explore whether end-user
programming can provide educators and students in the
healthcare sector the ability to code a sequence of events for
their training scenarios without the help of external
personnel. Visual programming can probably give end users
this capability, by being adapted to their requirements. The
research question is therefore as follows.

What do observation of health personnel challenged to

do visual programming to adapt virtual simulations to their
training needs, tell about the opportunities and constraints of
providing end-user programming tools for this purpose?

The result of the study will be a consideration of what

this means for further development of end user-tool in this
context.

In Section II, we will summarize previous work on this
topic. After this, in Section III, we will describe the methods
for data collection and analysis. Then, we will present the
results in Section IV. In Section V, the discussion will be
presented. Lastly, conclusion and future work will be
discussed in section VI.

II. BACKGROUND

A typical end user will be a domain expert in a field other
than computer science, in our case educators and students in
the healthcare sector. End users do not possess the
knowledge or understanding required to create and maintain
software [6]. Giving the end users the opportunity to
customize software without the assistance of external
resources is the general idea of end-user tools [7]. Fischer
claims that end-user tools are necessary to not get stuck in
old routines as a result of outdated software [8].

The main challenge when learning how to write code that
computers understand, is the different ways humans and
machines interpret signs. Tanaka-Ishii [9] illustrates this
issue with the following code example:

int x = 15

In this example, the content (the number 15) is
represented by three different signs. The first is quite
obviously the number itself, 15. This value is then
represented by x, which points to where the value is stored.
Finally, we have int, which represents the data type of the

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

value. The challenge for newcomers according to Tanaka-
Ishii, is that it can be confusing how these three signs are
interpreted. In end-user tools, this problem can partially be
eliminated by relying on visual blocks or nodes, direct
manipulation and degrees of domain-specificity.

Variants of node-based and block-based visual
programming both scrap the traditional textual programming
in favor of visual elements. A block-based approach offers
blocks that are put together almost like a puzzle where only
certain pieces fit together to prevent error in the code [10]. A
node-based language will consist of nodes that often have
ports for input and output that are connected by threads
where the information flows from node to node through
these threads [11]. A strength of some block-based
programming languages is that it’s quite clear which parts fit
together, something which minimizes the possibility of
making mistakes. This constraint is not as prevalent in a
node-based approaches. Since the user decides how nodes
are connected, however, a node-based solution can be seen
as more flexible. Both approaches to visual programming
relies on "direct manipulation” which provides visual
elements that end users can point and click on [12]. Three
characteristics define direct manipulation:

• Continuous visual representation of objects.

• All actions involve pressing buttons instead of using
syntax.

• Operations must be possible to reverse quickly and
easily.

Further, a visual programming tool can implement a
Domain Specific Language (DSL), using terminology and
concepts used by the target group to create the visual
programming language [13]. This provides an additional
layer of familiarity to the language, easing the learning
process by reducing technical terms and jargon.

III. METHOD

To be able to shed light on the opportunities and
constraints in providing end-user programming tools to
medical educators and students, two digital task sets were
created giving the informants tasks of programming a virtual
simulation of a simplified scenario using a block-based or
node-based DSL. The DSLs were designed specifically for
this study. The tasks and supporting information built on
each other so the informants could become familiar with the
concepts and see different use cases for each node or block
without being overwhelmed.

The final task set consisted of 18 pages in total, of which
6 of these were tasks in different forms that the informants
had to answer. Each informant only completed one of the
task sets, to prevent the results being skewed based on the
informant having more experience with the tasks at hand.
Initially in the task set, the study and purpose were
introduced so the informants could gain an understanding of
what they were about to do. The main purpose of
programming and the way humans and computers handle
information differently was presented in this step. The
informants were then introduced to a task requiring using
blocks and nodes to handles text prompts to the players. This

was done to provide an easy introduction on how to connect
these together. In its simplest form, three different block and
nodes were introduced through the task sets, but some
variations of these appeared as they progressed.

Figure 1. The different nodes (top) and blocks (bottom) in the task sets

Figure 1 illustrates how the different nodes and blocks
look. The orange elements handle text prompts, which is
displayed to the player going through the scenario. The light
blue handle instructions for how the computer should carry
out operations such as moving objects, handling time or
similar uses. The dark blue represents if / else statements.
Inside the nodes and blocks themselves, there are colored
fields which have different functionality. The purple fields
allow the users to point to objects that exists in the scene
they are working on, this includes characters, medicines,
devices and more. The green field allow the user to enter
manual values such as coordinates, blood levels and more.
All of these are introduced and demonstrated both separately
and combined with each other through the task set.

The next two tasks were multiple-choice tasks that
presented the informants with pre-written code, where the
task is to choose the option that the code expresses. These
tasks had two intentions: evaluate the understanding of the
informants’ abilities to read code and to present them with
pre-written code so that they could become more familiar
with how the blocks or nodes should be connected. From this
point, more components were gradually added to the code
while removing the aids more and more. In the fourth task,
the informants were presented with code and they had to
write the meaning of the code, as illustrated in Figure 2.

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

Figure 2. Task 4 in the node-based (top) and block-based (bottom) task

set.

The fifth task introduced if / else statements and the
informants were presented with a task where they should
describe whether they should provide the patients with
insulin based on blood sugar values. The informants did not
get any alternatives to rely on and were asked to write how
they understood the code in their own words.

In the final and heaviest task, the informants were asked
to draw code themselves to simulate a sequence of events as
given in the medical scenario illustrated in Figure 3. The task
was solvable by using the tools they had learned previously.

Figure 3. Task 6 in both task sets

A. Data collection and analysis

The medical students and educators recruited to the
study, were affiliated with a small university college in

Norway, having a state-of-the-art simulation center used to
educate health personnel. The data was collected both
digitally and physically to secure participation from both
students and staff at the university. The digital data
collection lasted from May 15th to September 15th, 2021.
There was a total of 9 informants completing the digital task
sets, both male and female nursing students and medical
educators ranging from 20-35 years of age. Out of these 9
informants, 5 completed the node-based task set while 4
completed the block-based task set. The physical data
collection was completed in weeks 43 and 44 in 2021. There
was a total of 5 informants completing the task set, all of
them being female medical educators ranging from 35-60
years of age. Out of these 5 informants, 2 completed the
node-based task set while 3 completed the block-based task
set. All the informants are listed in Table I with the
associated task set they completed as well as which data
collection they participated in.

TABLE I. INFORMANTS

Participant Task set Data Collection

#1-1 Node-based Digital

#1-2 Node-based Digital

#1-3 Node-based Digital

#1-4 Node-based Digital

#1-5 Node-based Digital

#2-1 Block-based Digital

#2-2 Block-based Digital

#2-3 Block-based Digital

#2-4 Block-based Digital

#3-1 Node-based Physical

#3-2 Node-based Physical

#4-1 Block-based Physical

#4-2 Block-based Physical

#4-3 Block-based Physical

 As the digital collection had to be anonymous in line

with the approved application submitted to the Norwegian
Center for Research Data (NSD), recruitment had to happen
through group pages on social media and neutral third parties
reaching out to informants. The subsequent data analysis
followed the model proposed by Creswell & Creswell [14],
which consists of five steps; 1) sort and prepare data for
analysis, 2) create a general understanding of the data,
collect and sort thoughts and feelings from the informants, 3)
code and categorize data, 4) describe factors such as places,
people and sequences of events in the data, 5) consider
different perspectives and quotes, and compare them to each
other, present data in a narrative giving expected findings,
surprising findings and unusual or conceptual findings.

IV. RESULTS

The multiple-choice tasks, tasks 2 and 3, in both task sets
were answered correctly by all informants, both in the digital
and physical sessions. These were not the most complex
tasks, but provided an indication that the programming
languages were both readable and understandable. In the
physical sessions, a few informants were on the wrong track
on task 3 before they ended up with the right answer. The
correct answer to task 3 is option “C”, but there were two

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

informants who quickly chose alternative “B”. These two
options are quite similar, where option “C” suggests the code
simulates moving the bed from one position to another,
while option “B” suggests moving the patient. As soon as the
context was removed and they didn’t have a visual
representation to support them, the informants quickly
seemed uncertain. This issue is illustrated in the response
from participant #4-1.

So I’m going to move the bed? Then it is alternative
number 2 (B). Move patient from position 10.4 to bed at
position… But it is… Yes… or wait…. #4-1

Author: Why do you think that?

No, now I’m thinking… I want to… We will move the
patient… move… moving the bed is impossible because
it’s nothing there. There is no code. But we are going
from 10.4 to 7.8. Then it must be: Move bed from
position 10.4 and to the bed at position 7.8? But it may
still be that… This one was a bit more difficult. This is to
check if it is easy to use or not, I must think about that.
#4-1

Author: What if you start at the top and work your way
down?

Okay. I’m going to move the bed. From 10.4 to 7.8. Then
it must be alternative “C”? #4-1

From task 4 no alternatives were offered, and they had to

write their answers without support. This resulted in a major
drop in the quality of the results. The correct sequence of
events simulates a nurse that moves from where he / she is to
where the thrombolysis bag is and retrieves it. The
informants took freedom in the way this was interpreted,
evident in the following examples from informants #1-2 and
#2-1.

The nurse should go from for example the patient room
to the rinsing room and pick up thrombolysis bag #1-2

Nurse picks up thrombolysis bag #2-1

On the same task there were some misunderstandings

regarding how the code worked. In the example below,
informant #2-2 interprets the code as the interface itself, and
that the blocks are buttons to press.

If you press the orange block, we will move the nurse
from position 17.5 to 2.2. Then press the lower orange
block, and bring along the bag on your way. #2-2

Something that is pervasive in these examples is that it is

troublesome for the informants to distinguish what is
information to the player from the information to the
computer. Another observation based on the block-based
responses is that it was challenging for the informants to
understand which order to read the code.

In the fifth task, that dealt with if / else statements, the
general understanding seemed good. The informants all
understood that a condition decide the outcome. There were
some differences in the way informants read the “greater
than” or “lesser than” symbols, however, as seen in the
examples below.

If BS is over 17mmol/l, you should be given insulin, if
below, do not give insulin. #1-1

If the blood sugar value is less than 17mmol/l then give
insulin. If not, then do nothing. #2-1

In one of the physical sessions, informant #4-2 seemed to

misunderstand the concept of “greater than” and “lesser
than” and thought that if the value was anything else than
what was being checked, 17mmol/l in this case, that the else
condition would be triggered.

It simulates a blood sugar measurement, that a nurse
should manage blood sugar. And if the value is 17mmol/l
you should give insulin, if not, then do nothing. #4-2

In task 6, which is the last and most complex task, more

effort was required, and the quality of the answers varied
accordingly. Overall, Figure 4 illustrates what could be
expected. Informant #1-1 took advantage of a variety of
nodes with mostly correct use of color codes and proper
connections.

Figure 4. Response from participant #1-1 on task 6

One of the strengths of block-based programming is that
you can only connect blocks if they fit together. This seemed
to be forgotten or ignored in several of the responses, and the
informants took freedoms that would not be possible. The
blocks are in some cases stacked on top of each other
without regards to these rules as displayed in Figure 5.

Figure 5. Responses from participants #2-2 and #2-3 on task 6

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

With multiple hand-drawn responses on task 6 from the
digital sessions, it was more appropriate to conduct a
discussion with the informants in the physical sessions. This
way, the informants could put words to their thought process
when solving the tasks. The following quotes from informant
#3-1 seem to indicate a pretty good overall understanding.

I think the first one is perhaps an orange one, considering
the task is to move the nurse from one place to another.
Behind the orange node there is more code, and that is
the purple for the nurse who is going from the office to
the lunch area. #3-1

As in all examples presented in the task set, the informant

starts with an orange node to prompt the user with
information. When asked to check if the apprentice was
present, using an if / else statement were quickly suggested.
This was also the intended way to solve this part of the
problem.

We need to check if the apprentice is in, then we use that

if and else node again, so you do it if he is there,
otherwise, we do nothing. I think I get that one correctly.
#3-1

While not completely sure on how to connect the orange

nodes for the text prompts, the informant was aware of their
existence. This was also the only case where breaking down
the scenario into tasks was addressed.

Only I might be a little unsure of how many activities

and these orange nodes I should put between the actions.
I split up the scenario into tasks, so I thought the first
thing about moving the nurse is a task. #3-1

In the responses to the block-based task set in the
physical sessions, there were a few more challenges as seen
in the response from participant #4-2 below. In the same way
as the digital task set, several code components such as text
prompts are forgotten. In addition to this, color codes are not
commented on at all.

To me it looks like we are just passing by and going from
one place to another, and then I look to see if someone is
there. But how the interaction takes place, how to ensure
that the nurse brings the apprentice and how they take the
blood test, I do not know. #4-2

An interesting observation is the way the informant

attacked the problem. Instead of dividing the scenario into
smaller parts like in the previous response on the node-based
task set, she tried to solve the entire scenario at once.

I move the nurse to the office, and then I check if the
apprentice is there, then I should be able to move on? So,
I take a blood test of the patient? #4-2

As soon as all the supporting materials were removed,

the informants quickly felt overwhelmed and somewhat

insecure about the order to do things. As seen in the quotes
above, the informants solving the node-based task set
included the concepts of the language itself in explaining
how they were trying to solve the problem at hand. The
informants solving the block-based task set did this to a
lesser degree.

A. Recurring themes

While not required to complete the tasks, the informants had
the opportunity to display information to the players using
the orange nodes or blocks. This, however, seemed to be
ignored for the most part. An interesting observation in this
regard occurred in one of the physical interviews conducted
for the node-based task set, where one of the informants tried
to improve the pre-written code by posting questions to the
players using the orange nodes.

Several of the informants in the physical sessions had
previous experience with real-life simulations at the college
in which they as educators observe students and provide
them with instructions using a communication system. In
these simulations, the students go through different
scenarios, and in one of the interviews on the node-based
task set, comparisons were drawn between the programming
task and these physical simulations. The informant explained
that the actions and the way they gave instructions to the
students were quite similar, and that the flow of the code
running from node to node was kind of the same as reading
the instructions in the simulations.

Another comparison occurring in the responses from the
informants solving the node-based task set, was that it was
reasonably easy to follow the flow of the code as it looked
somewhat similar to flow charts. No such comparisons to
previous experiences were mentioned in any of the responses
for the block-based task set.

While comparing the responses from the last tasks in
both digital task sets, it is immediately apparent that the
answers in the node-based task set follow the rules as
intended when compared to the block-based responses. The
nodes are to a greater extent connected properly, and there is
more active use of color codes and text prompts to the
players, although this is in several cases forgotten here as
well.

V. DISCUSSION

Based on the analysis of how the informants solved the
task sets, we identify one major constraint and one major
opportunity for creating end user programming tools in this
case.

The main constraint revolves around the inability to
break down scenarios into smaller steps. Instead of looking
at the individual steps in the scenarios and which elements
were needed to represent them, some looked at the problem
as a whole, and tried to code multiple or all the parts of the
scenario at the same time. The ability to adapt complex
problems to lesser, solvable problems through reduction,
algorithmic thinking or other means are referred to in the
literature as computational thinking [15]. Increasing the end
user’s familiarity with this kind of problem-solving may
decrease the significance of this constraint over time. In

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

addition to this, the informants wanted to express themselves
more freely than the languages allowed them to, and several
wrote code that would be syntactically impossible (for a
machine to understand).

The main opportunity was the familiarity end users have
for certain visual tools and procedures. Even though flow
charts were not on the agenda to be explored in the study, it
turned out to be a form of visualization healthcare
professionals recognize and understand. Further, to rely on
elements from their practice, or to make the language
domain specific, seemed to work well. The if / else task
supported this, as they were already familiar with how the
measurement of blood sugar impacts what action should be
taken. Based on this knowledge they understood that based
on a condition, being the blood sugar values in this case, one
of the listed actions should be taken.

We conclude that combining domain specificity in the
language, using familiar visual elements such as flow charts
and adopting the concepts of direct manipulation, are the
three main aspects that could help health educators and
students in coding sequences of events in virtual training
scenarios.

VI. CONCLUSION AND FUTURE WORK

After investigating different approaches to visual
programming, enough data has been collected to answer our
research question. The data indicates that the idea of letting
medical educators and nursing students manipulate and
maintain their own training tools using visual programming
is one worth pursuing. As discussed earlier in Section V,
there are however several prerequisites and aspects of both
the languages themselves and the interfaces to them that
needs to be further experimented with to make tools like
these accessible to the end users.

The next step will be to develop a new and more in-depth
visual programming interface using node-based
programming, direct manipulation and incorporating
elements from flow charts, as a baseline. While this study
indicates that medical educators and students can express a
sequence of events in scenarios using code, this is only a step
on the way towards developing a fully working end-user tool
to create, maintain and adapt virtual simulations for health
care education. A telling example of the complexity
involved, is the need to code meaningful interactions with
the students taking part in the simulation, a challenge
touched upon in this study by exploring the use of visual
elements to express this (orange nodes or blocks). The
ultimate goal of future work is to support further
development of virtual simulations for training purposes in

healthcare education, by giving the end users the means to
make these without the help of trained IT professionals.

REFERENCES

[1] N. Sharifzadeh et al., “Health Education Serious Games Targeting
Health Care Providers, Patients, and Public Health Users: Scoping
Review,” JMIR Serious Games, vol. 8, pp. 1-16, Mar. 2020, doi:
10.2196/13459.

[2] C. Foronda, B. MacWilliams, and E. McArthur, “Interprofessional
communication in healthcare: An integrative review,” Nurse Educ.
Pract., vol. 19, pp. 36–40, Jul. 2016, doi: 10.1016/j.nepr.2016.04.005.

[3] D. King et al., “Virtual health education: Scaling practice to
transform student learning,” Nurse Educ. Today, vol. 71, pp. 7–9,
Dec. 2018, doi: 10.1016/j.nedt.2018.08.002.

[4] W. Westera, “How people learn while playing serious games: A
computational modelling approach,” J. Comput. Sci., vol. 18, pp. 32–
45, Jan. 2017, doi: 10.1016/j.jocs.2016.12.002.

[5] M. Resnick et al., “Scratch: programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009, doi:
10.1145/1592761.1592779.

[6] M. F. Costabile, P. Mussio, L. Parasiliti Provenza, and A. Piccinno,
“End users as unwitting software developers,” in Proceedings of the
4th international workshop on End-user software engineering -
WEUSE ’08, Leipzig, Germany, 2008, pp. 6–10. doi:
10.1145/1370847.1370849.

[7] Z. Menestrina and A. De Angeli, “End-User Development for Serious
Games,” in New Perspectives in End-User Development, F. Paternò
and V. Wulf, Eds. Cham: Springer International Publishing, 2017, pp.
359–383. doi: 10.1007/978-3-319-60291-2_14.

[8] G. Fischer, “End-User Development and Meta-design: Foundations
for Cultures of Participation,” in End-User Development, vol. 5435,
V. Pipek, M. B. Rosson, B. de Ruyter, and V. Wulf, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 3–14. doi:
10.1007/978-3-642-00427-8_1.

[9] K. Tanaka-Ishii, Semiotics of Programming. Cambridge University
Press, 2010.

[10] D. Weintrop and U. Wilensky, “Comparing Block-Based and Text-
Based Programming in High School Computer Science Classrooms,”
ACM Trans. Comput. Educ., vol. 18, no. 1, p. 3:1-3:25, Oct. 2017,
doi: 10.1145/3089799.

[11] D. Mason and K. Dave, “Block-based versus flow-based
programming for naive programmers,” in 2017 IEEE Blocks and
Beyond Workshop (B B), Oct. 2017, pp. 25–28. doi:
10.1109/BLOCKS.2017.8120405.

[12] B. Shneiderman, “Direct manipulation for comprehensible,
predictable and controllable user interfaces,” in Proceedings of the
2nd international conference on Intelligent user interfaces, New
York, NY, USA, Jan. 1997, pp. 33–39. doi: 10.1145/238218.238281.

[13] J. Sprinkle and G. Karsai, “A domain-specific visual language for
domain model evolution,” J. Vis. Lang. Comput., vol. 15, no. 3, pp.
291–307, Jun. 2004, doi: 10.1016/j.jvlc.2004.01.006.

[14] J. W. Creswell and J. D. Creswell, Research design : qualitative,
quantitative & mixed methods approaches, 5th edition. Los Angeles,
California: Sage, 2018.

[15] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no.
3, pp. 33–35, 2006.

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-078-0

ACHI 2023 : The Sixteenth International Conference on Advances in Computer-Human Interactions

	I. Introduction
	II. Background
	III. Method
	A. Data collection and analysis

	IV. Results
	A. Recurring themes

	V. Discussion
	VI. Conclusion and future work
	References

