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Abstract—Human cognition is the set of abilities humans
possess to intelligently interact with the world through goal-
directed behaviors and is an essential component of daily life.
As with several other processes (e.g., physical exertion), cognitive
resources are inherently limited. Moreover, as the systems with
which humans interact become more complex (e.g., artificial
intelligence), the degree and rate of the associated depletion of
these cognitive resources can vary dramatically. A real-time signal
of cognitive depletion can be used to moderate task demands
imposed on humans to enable high-performing human and
complex system interactions; however, previous attempts have
identified generalizability across both individuals and a variety of
tasks to be a significant challenge in modeling cognitive depletion.
Here, we present a model that uses physiological measurements
and that generalizes across three different real-world tasks
and across heterogeneous samples of participants. Specifically
using features that are implicated in autonomic and central
nervous system activity, our model detects cognitive resource
depletion in multiple tasks, including mental arithmetic, simu-
lated navigation/decision-making, and visuospatial/sensorimotor
processing. The model makes second-by-second predictions of
cognitive resource depletion, which can be used in real-time
human-in-the loop systems.

Index Terms—cognitive resource depletion; humans and com-
plex systems

I. INTRODUCTION

Our perceptual experiences coupled with our intrinsic goals
guide our subsequent actions. This requires a series of complex
perceptual interpretations, sensorimotor processes, and rapid
decisions. While this complex cognitive coordination is often

completed with relative ease, there are inherent limitations to
each one of these constructs. Notable limitations have been
observed in working memory [1] and visual attention (e.g.,
see [2] but see [3]); importantly, these limitations can have
an inherent fluctuations independent of ongoing task demands
[3] and a wide range of individual differences [4]. Moreover,
fluctuating individual states like changes in stress, fatigue,
and other physiological factors can impact these limitations
in complex ways and sometimes with dramatic consequences
[5].

Real-time monitoring of cognitive resources can facilitate
optimal performance by providing actionable insights that can
be used to trigger individualized adaptations [6]. These indi-
vidualized interventions could, for example, take the form of
retasking to another cognitive domain or a forced intermission
of inactivity if a particular individual’s cognitive resources are
depleted.

The ways in which cognitive resources have been moni-
tored, however, are somewhat limited. For example, at one
extreme, subjective measures like the validated NASA-TLX
[7] are widely used; however, they require interruption of
the ongoing task and are impossible to use in a real-time
state assessment system. At the other end of the spectrum,
researchers have developed cognitive workload models using a
variety of deep learning and machine learning approaches [8].
Some of the biggest challenges with this latter approach are
1) the lack of generalizability across various tasks and 2) the
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limited application or utility outside of artificially constrained
laboratory-based tasks.

Here, we introduce a model of Cognitive Resource De-
pletion (CRD) which is built on the physiological features
extracted during a realistic multi-task dataset and is tested in
two independent but similarly realistic task paradigms. The
physiological measures are derived from electroencephalogra-
phy (EEG) and electrocardiography (ECG) and were chosen
because of their specificity to central nervous system (CNS)
and autonomic nervous system (ANS) functions, both of which
have been related to cognitive workload in other studies.

The model accounted for significant sources of variability in
performance in all tasks, regardless of individual differences
or the variety of sensorimotor actions and complex decisions
required for each task. Due to the complex interplay between
the ANS, the CNS (measures derived from EEG), and the most
predictive measurement features extracted within the model,
the model appears to be predictive of cognitive depletion in
a subject- and task- agnostic fashion, suggesting the critical
role the relationship between the CNS and the ANS plays in
cognitive resource depletion.

In Section II, the experimental approaches including the
types of data and sensors used are described. In Section III the
approach to model development and validation and provided.
In Section IV, the modeling results including results for each
dataset are presented. In Section V a discussion of the results
in the context of CRD are described. In Section VI, we present
general conclusions and suggested future research directions.

II. METHODS AND MATERIALS

In this section, we describe the experimental methods used
to collect the data and how the model was derived from those
data.

A. Overview

For an overview of the model development and deployment,
Figure. 1 displays the training, testing, and validation stages
of the model. As shown in 1, a single model was developed
with the DualTask data and then applied to the independent
but similarly dynamic and realistic TeamTask and VisualTar-
getTask, which were collected in separate populations and at
different experimental sites. Validation of the model was ini-
tially performed within the DualTask (tan) using a leave-one-
out (LOO) procedure. External validation was performed using
the TeamTask and VisualTargetTask (green). Descriptions of
the datasets are provided in subsequent sections. Briefly, the
DualTask dataset was analyzed and used to develop a real-time
model of cognitive resource depletion which was hypothesized
to occur during the dual task phase of the experiment (i.e.,
when participants were performing the simultaneous naviga-
tion and mental arithmetic tasks). The model was validated
with that dataset using a LOO cross-validation approach. Once
trained and tested, the model in DualTask was then applied to
the TeamTask and VisualTargetTask datasets.

In the TeamTask, the model output was compared to sub-
jective ratings from the NASA-TLX. To validate the model,

the continuous model probabilities were thresholded and then
integrated over time, resulting in a cumulative amount of time
that the model predicted a participant was cognitively depleted.
This cumulative number of seconds was correlated with each
NASA-TLX subscore and total score.

In the VisualTargetTask, the percentage of time that the
model predicted cognitive resource depletion was compared
between high and low difficulty conditions. The length of time
that participants experienced the low difficulty condition was
longer than the high difficulty condition, so it was necessary
to compare this normalization.

All protocols were approved by the U.S. Combat Capa-
bilities Development Command Army Research Laboratory
(ARL) Human Research Protection Program.

Fig. 1: An overview of the methods presented in the current
manuscript.

B. DualTask

Forty-five subjects, recruited from the Los Angeles area,
participated in this study [17 females with mean age ± standard
deviation (SD) = 36.8 ± 12.3 years; 28 males with mean
age ± SD = 41.6 ± 14.4 years]. All subjects were at least
18 years of age or older and able to speak, read, and write
English. All subjects signed an Institutional Review Board-
approved informed consent form prior to participation and
were compensated for their time.

The overarching study aim was to examine physiological
markers (i.e., EEG, ECG) of cognitive resource depletion in
the context of an experimentally imposed dual-task paradigm.
Participants were asked to count the number of target objects
in a visual search task. All participants were exposed to all the
same target objects, but they were asked to focus on different
target objects. Participants were randomly assigned to one out
of four target object conditions (1 – Motorcycle, 2 – Humvee,
3 – Furniture, 4 – Aircraft). In addition, the environment also
contained non-targets that were used as distractors.

While participants performed the continuous target identifi-
cation and navigation task, they were simultaneously required
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to complete a math task. This math task was given approxi-
mately 8 minutes into the experiment and required the addition
of a series of 3-4 numbers that were read aloud. Participants
were then asked to report the sum aloud while continuing
to navigate the virtual environment and count targets. While
performing the task, participants wore a 64-lead EEG and 2-
lead ECG; the complete description of the data collection has
been previously published [9].

C. TeamTask

Participants were seven U.S. Army Soldiers. Six Soldiers
were members of the Minnesota U.S. Army National Guard,
and one Soldier was assigned to the Army Evaluation Center
under the U.S. Army Test and Evaluation Command. The
Soldiers were aged 37.71 ± 10.16 (29 – 57 years) and had
19.71 ± 9.52 (12 – 39) years of experience in the Army.

Zephyr BioHarnesses were used to collect ECG data. The
BioHarness is a lightweight (50g) belt that is worn around the
upper torso, directly against the skin. The 2-lead BioHarness
enables the capture and wireless transmission of ECG, torso
accelerometry, and respiration data. EEG data were collected
using Advanced Brain Monitoring (ABM) X24 EEG Systems.
The ABM X24 is a commercial EEG system designed for
measuring EEG in an untethered, free-moving manner with
minimal impact on the wearer. The system has 20 leads and
mounts to the head using an elastic headband.

Subjective measures have been found to be useful in charac-
terizing individual workload and are often used as a validation
of other measures. The NASA-TLX [10] has been used exten-
sively to assess individual ratings of overall workload, as well
as a breakdown of six categories that are seen as contributing
to this overall workload (mental demand, physical demand,
temporal demand, performance, effort, and frustration).

In this study, participants completed a set of simulated
missions in which vehicle crews navigated to objectives and
performed various offensive and defensive maneuvers. Within
each mission, participants had to consider multiple factors,
including mission completion, enemy engagements, terrain,
troops, time, and civilians. The crew was responsible for
multiple tasks within each vehicle, including driving, main-
taining situational awareness, using the weapon to engage with
human-operated opposition forces, and completing mission
objectives. Movement through the environment was dynamic
and consisted of formations, battle drills, or movements coor-
dinated by the commander and among the team. Participants
were fully trained on each of the tasks that they were asked
to perform. At the conclusion of each simulated mission,
participants completed an electronic version of the NASA-
TLX.

D. Visual Target Task

Participants were seventeen students (7 women, 10 men)
from a university in the Mid-Atlantic region of the United
States. All participants were volunteers recruited through flyers
and word-of-mouth on campus, and they provided informed
consent in accord with the university’s Institutional Review

Board. The sample had a mean age of 26.18 years (SD =
3.70).

The dataset used for this analysis came from a neuro-
feedback study whose methods have been previously pub-
lished [11]. Briefly, participants wore 64-lead EEG and 2-
lead ECG monitors. The task performed was a high difficulty
and low difficulty shooting virtual reality simulation in which
participants had to shoot enemy targets and refrain from
shooting friendly targets. Difficulty was manipulated by target
exposure time. In the high difficulty condition, targets were
presented very briefly, forcing participants to make a decision
on whether to shoot or not very quickly. In the low difficulty
condition, the target exposure time was longer, permitting
easier discrimination between friendly and enemy targets.

III. MODEL DEVELOPMENT

In the DualTask experiment, the objective was to determine
on a second-by-second basis if the participant was in the
dual task state or not, which was interpreted as cognitive
resource utilization. The model was developed using EEG and
ECG features. The EEG features were specifically chosen to
characterize frontal/parietal interactions, and the ECG features
were chosen to characterize the autonomic nervous system
response.

The inputs to the model are features derived from ECG and
EEG data. The EEG electrodes used were P3, P4, O1, O2,
FP1, FP2, F3, F4, F7, and F8. The output of the model for
the DualTask is the predicted probability that the subject was
performing the math task. For binary outcomes, the probability
was thresholded at 0.5.

Raw ECG data was cleaned using the Neurokit2 package
for Python. Raw EEG data was cleaned by low-pass filtering at
30 Hz and then mean-centering across the frontal and parietal
channels of interest. ECG features were calculated over 30-
second windows, while EEG features were calculated over 3-
second windows.

The ECG features calculated were heart rate: min, max,
mean, and variability. EEG features calculated were: power of
alpha-band frequencies over parietal channels, power of theta-
band frequencies over frontal channels, Pearson correlation
coefficients between all EEG channel pairs, and functional
connectivity features (using the weighted phase lag index)
between alpha- and theta-band-passed channels. These fre-
quencies were chosen because of their relationship to mental
arithmetic performance.

Subjects were excluded from the dataset if their data
suggested either ECG or EEG electrodes were not securely
attached, determined by visual inspection of the data. Out of
64 subjects, 19 were excluded. Constraints were applied to
heart rate and heart rate variability calculations: heart rates
outside the window [25, 175] BPM were deemed invalid; heart
rate variabilities greater than 300ms were also deemed invalid.
Where invalid values were present, the previous (valid) value
was used.

A feed-forward neural network with 2 dense hidden layers
and 20 nodes per layer was used. Dropout layers were used
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but replaced in favor of L1 and L2 regularization with factors
of 0.003 and 0.01 respectively. ReLU activations were used
on the hidden layers, and the final activation was a sigmoid
function. Weighted binary cross entropy was used for the
loss function, with a weight such that false negatives were
penalized twice as much as false positives. Learning curves
were used to tune the hyperparameters to prevent overfitting
and maximize performance. The final, tuned model was then
applied to the TeamTask and VisualTargetTask datasets. In
Figure. 2 an example out of the model is provided with
a threshold of 0.5. The prediction from the model (blue
line) is shown with the Dual Task (mental arithmetic). The
model outputs a probability ranging from 0-1 at each second.
The probabilities provided by the model were thresholded at
different values (dashed lines) to create a binarized time series
for subsequent analyses.

A. Exploratory Analysis: Thresholding

As part of our exploratory analyses in the external validation
datasets (TeamTask and VisualTargetTask), we examined the
effect of various thresholds for the model predictions. This was
motivated by the observations that 1) the tasks in each dataset
were markedly different and therefore likely had different
cognitive demands, and 2) the subjects used in each dataset
were different. Thus, we wanted to examine whether different
thresholds might result in different model predictions based
on the differences in tasks and the individuals performing
them. For these analyses, we varied the threshold for the
model prediction from 0.1 to 0.9 in increments of 0.1. At
each threshold level, we binarized the models’ probability
output and computed a prediction. In TeamTask, these var-
ied threshold predictions were compared with the NASA-
TLX subscores and total score, and in VisualTargetTask these
thresholds were used to compare the differences across high
and low difficulty conditions. In Figure. 3, the results of this
analysis are shown across NASA-TLX subscores and various
thereshold is provided. Mental demand and Temporal Demand
were highly correlated with the model output across a wide
range of thresholds. This statistically significant correlation
over a range of thresholds was not evident for the other
subscales of the NASA-TLX nor the total score.

IV. RESULTS

In this section, results of the model output are discussed
separately and concludes with a discussion of the dynamic
thresholding results.

A. Dual Task

The model presented in this manuscript was developed and
fit to DualTask using the Matthews Correlation Coefficient
(MCC) as the objective function. This was chosen because of
its ability to better assess the performance of the model on
unbalanced data.

The performance of the model using a LOO cross validation
was evaluated with accuracy, precision, recall, F1 score, and
the Matthews Correlation Coefficient. These values (mean +/-

Fig. 2: Example dynamics in prediction of the DualTask and
thresholding.

standard deviation) were: 0.72 +/- 0.06; 0.30 +/- 0.12; 0.40
+/- 0.18; 0.336 +/- 0.12; 0.18 +/- 0.15, respectively.

Feature importances were determined to understand what
physiological parameters contributed to the prediction of being
in the DualTask. Of the 250 features used in the full model, we
report the 10 most important features in order of most-to-least
important: mean heart rate, minimum heart rate, maximum
heart rate, heart rate variability, FP1T, FP2-F4 correlation, O1-
F4 correlation, F7-FP2 correlation, O2-FP2 correlation, theta
band P3-FP2 WPLI.

B. Team Task

In TeamTask, participants performed realistic military mis-
sions (e.g., area defense) in a simulated environment. At
the conclusion of each mission ( 75 minutes), participants
completed a NASA-TLX survey. Our model, trained on Dual-
Task, was used to create second-by-second predictions. These
binarized predictions were integrated over time and used to
correlate with NASA-TLX subscores and total score, as we
expected a survey response to be based on perceived lasting
cognitive burden throughout the task.

Using a threshold of 0.5 (that was used to train the model in
the DualTask), significant correlations were observed for the
mental demand (r = 0.42, p = 0.0197) and temporal demand
(r = 0.42, p = 0.0201) components of the NASA-TLX. This
was an expected finding, considering known difficulties in
multitasking and validated estimates of workload determined
by NASA-TLX. However, we also explored additional thresh-
olds in deploying the model in TeamTask, as the demand
and burden could have been considerably different from the
DualTask procedures. It is likely that different tasks would
have different levels of workload and thus, thresholds should
be adapted. We show this exploratory analysis below.

Over a range of thresholds, mental demand and temporal
demand showed statistically significant correlations (r = 0.38-
0.50; all p ¡ .05). At the very highest thresholds, additional
components of the NASA-TLX were correlated, including the
NASA-TLX total score with the highest noted correlation (r
= 0.5536, p = 0.01).

C. Visual Target Task

In the VisualTargetTask experiment, participants performed
a simulated shooting task in high difficulty and low diffi-
culty conditions. The model output was compared between
the difficulty conditions. At a threshold of 0.5, there was
a significant difference between the model predictions for
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Fig. 3: Correlations between the amount of time cognitively
depleted and the various subscores of the NASA-TLX (x-axis)
across a number of thresholds (y-axis).

the high and low difficulty conditions. In the low difficulty
condition, the model estimated that participants experienced
cognitive resource depletion 2.5% of the time compared to
1.86% in the high difficulty condition (difference = 0.64%, p
= 0.0013, via t-test). This was somewhat unexpected, as we
predicted that there would be greater model-determined CRD
for the high difficulty compared to the low difficulty condition;
however, the unexpected result may be due to peculiarities
in the design of this task. Specifically, accurately shooting
the targets was made more difficult by less exposure time
to the target, which then could have impacted the way in
which resources are deployed (e.g., more reflexive responses).
Despite this peculiarity, the CRD model can successfully
classify difficulty across task conditions.

We also performed an exploratory analysis over thresholds
as was done for the TeamTask (Figure 4). In Figure. 4, the
mean differences between high and low difficulty are plotted
for various thresholds (blue line). The blue line shows the dif-
ference between the model predictions, while the orange shows
just the high difficulty predictions. Starting at a threshold
probability of 0.3, there is a statistically significant difference
between the model predictions for the two conditions (aster-
isks) which were determined by t-test. For all comparisons, the
low difficulty condition had higher levels of cognitive resource
depletion predictions. This number represents the difference in
time (expressed as a percentage) between the time spent in a
CRD state for both difficulty conditions. For thresholds of 0.3,
0.4, 0.5, and 0.6, a significant difference was observed wherein
the model predicted more CRD in the low difficulty condition
than in the high difficulty condition (asterisks). As a reference,
the percentage of time in spent in a CRD state is shown for
the high difficulty task alone without the low task difficulty
percentages subtracted (orange).

Fig. 4: Exploratory analysis was performed to investigate
relative thresholding of probabilities and its effect on discrim-
inating high and low difficulty conditions.

V. DISCUSSION

We have developed a continuous and generalizable Cog-
nitive Resource Depletion (CRD) model that successfully
estimates resource depletion in a variety of realistic tasks and
that is robust to individual differences from non-invasively
collected physiological signals. Physiological signals collected
during three different realistic tasks were used as predictors to
train and test the model, and the reliable and validated NASA-
TLX survey [7], [10] or experimental manipulations were used
to validate the cognitive burden of each individual subject.
The CRD model, trained on a dataset where subjects were
continuously monitoring an environment and occasionally
asked to perform an additional task, the DualTask dataset,
was able to be deployed on two independent datasets: a team-
based navigation and decision making task (TeamTask) and an
individual visual target detection task (VisualTargetTask) with
different levels of difficulty. This model, and the underlying
physiological signals used as predictors, appears to success-
fully predict a state that underlies each one of these tasks and
is behaviorally relevant.

A. Generalizability of the CRD Model

Generalizability of models in human state assessment is
often quite challenging, as there are many contributing factors
that deter these models from being generalizable, includ-
ing individual differences in cognitive strategy, measurement
noise, and task-specific physiological targets. Our CRD model
was trained on a single dataset that involved monitoring an
environment and performing mental arithmetic and that was
purposely designed to engage multiple systems and burden
subjects. In this model, we attempted to predict whether
there was a single task being completed or subjects were
engaged in the dual task. Model output was then validated
with NASA-TLX subscales when the model was deployed on
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the TeamTask, a challenging and complex realistic navigation
and decision making task that required coordination between
individuals. Interestingly, the estimated total time of cognitive
depletion was significantly correlated with multiple subscales
of the NASA-TLX and most robustly (across many thresholds)
with the mental and temporal demand subscales. Moreover,
in the VisualTargetTask, this time of cognitive depletion was
also associated with task difficulty, however in a way that was
opposite of what was predicted. Perhaps due to the imple-
mentation of “difficulty” in this task and different cognitive
resource deployment compared to the other tasks, the CRD
model did not relate to task difficulty as predicted, but it still
predicted a difference in these conditions. Thus, it appears as
though the CRD model may be tracking a cognitive construct
that changes continuously and is sensitive to multi-tasking,
perceived mental and temporal demand, and task difficulty,
which we call cognitive depletion.

The training set, a dual visual monitoring and math task,
appears to sufficiently engage cognitive depletion such that the
CRD Model does not need additional training for robustness.
This dual task robustness is unique in its use of mathematics
and visual processing and general multi-tasking. Performing
arithmetic calculations in one’s mind involves a complex
coordination of different brain regions and networks [12] and
a level of abstraction that separates itself from both the object
and social world in which we live and interact [13] but
paradoxically may be applied to both [14]. Multi-tasking is
also a specialized state that recruits more neural resources than
a single task alone [15] and can potentially lead to distraction,
overload, and information loss. These properties, coupled with
current notions of general intelligence within the brain [16],
could suggest that the training task (DualTask) is uniquely
suited for a generalized model of cognitive depletion, as it
engages resources within the mind (through the mathematics
component) that can be applied to a variety of experiences
and to multitasking. Future studies may further test the gen-
eralizability of the model, perhaps using more abstract tasks
and parametrically modulating the number of tasks.

Interestingly, the CRD model is also robust to individual
differences, as it does not need to be calibrated to each subject.
This result of robustness to individual differences underlying
the construct of cognitive depletion is quite surprising. Intu-
itively, one might understand that cognitive depletion would
require individual calibration, especially when considering the
model is based on physiological signals that often suffer
from nuisance signals, especially in a realistic non-laboratory
setting [17], [18]. It may be, however, that special properties
of the features extracted and used in the model may have
substantially contributed to the generalizability across subjects.

B. Covert physiological events and the CRD Model

Physiological monitoring of covert mental events is com-
monly used to understand the mechanistic properties of
thought, including a variety of cognitive phenomena (e.g.,
perception, emotions, etc.) and fleeting mental states (e.g.,
fatigue, stress). Within the CRD Model, heart rate information

and specific EEG features (i.e., connectivity) were the most
diagnostic to this cognitive depletion.

The most informative features of the ANS were those asso-
ciated mostly with fluctuations in sympathetic and parasym-
pathetic nervous system activity; specifically, modulation of
heart rate and heart rate variability [19], [20]. Interestingly,
these features were among the most important among the
250 features tested. While the relationships between cognitive
workload and autonomic metrics have been studied extensively
[21], cardiovascular metrics such as those used here vary
significantly with age, and our participants varied quite dra-
matically in age. This may suggest that the CRD model learns
complex relationships between these features which transcend
this inherent limitation in cardiovascular metrics.

The most informative EEG features involved not the com-
monly used power fluctuations in EEG, but rather the statistical
dependence between different sensors, especially involving
the frontal cortex (see Results). This interesting finding is
perhaps not surprising, as power fluctuations in EEG are often
susceptible to many different sources of noise [22], especially
in a realistic environment in which subjects may move more
freely or perform continuous tasks in which eyeblinks and
other movements are difficult to control. We have recently
shown that in another realistic tasks (i.e., driving), a synchro-
nization metric between EEG sensors was also more sensitive
to task demands than fluctuations in power [23] to the extent
that if power alone were used, no neural differences would
have been observed. Moreover, fluctuations in neural networks
underlying a large variety of tasks has been shown to be
predictive of a large and growing list of behaviors including
multitasking [24] and adaptations to new stimuli or stress [25].

Thus, in addition to the idiosyncrasies of evoked task
demands, underlying physiological features of the CRD Model
appear to have a substantial contribution to its generalizability.
Future studies may be able to deploy this model in different
settings and contexts, using additional features that may cap-
ture the dynamic physiological processes more broadly and
perhaps extending the simple statistical dependencies between
sensors used here to more complex systems or network science
approaches known to capture physiological behavior at a
variety of scales.

C. Temporal Resolution and Thresholding

An overarching concept that emerges between the tasks,
model fit, physiological sensors, and underlying construct
which we suggest we are predicting is that of temporal
resolution. The convergence of these items into a successful
and robust model suggests a waxing and waning of cognitive
depletion across time, and while our thresholding and correla-
tional analyses suggest a pathway in which it may be calibrated
for individual tasks, this model could also provide a framework
in which to detect other potential states of interest. Currently,
we suggest that thresholds will need to be determined on a
per task basis which is congruent with the notion that various
tasks impose varying levels of cognitive demand. In order to
support generalizability across tasks we suggest two future
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research directions. First, the model output can be thresholded
at varying levels and an integration across those thresholds
performed to identify robust periods of CRD detection. This
would generate additional parameterization (e.g., continuity
of significant differences across thresholds). This type of
analysis is similar to cluster-based statistical testing [26].
A second approach could involve empirical derivation of
appropriate thresholds for a dictionary of task types (e.g.,
visuospatial demanding task, mental arithmetic, etc.). This
second approach has some traction in the cognitive ergonomics
literature that examine different types of naturalistic tasks [27].
With respect to timescales, the EEG and ECG features were
extracted in 3 sec and 30 sec windows respectively, thus
limiting the fluctuations which may be diagnostic for other
states or limiting the generalizability of the model. Rather
than a limitation, these two different timescales could also
have contributed to the model’s robustness. Future studies
may explore the complex dynamics between the length and
dynamics underlying cognitive constructs, the measurement
resolution, and the need for temporally flexible or scale-free
feature extractions for covert physiological recordings.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The continuous, generalizable, and robust CRD Model
successfully estimates resource depletion in a variety of re-
alistic tasks and is resilient to individual differences from
non-invasively collected physiological signals; however, the
deployment of this model is still limited. Future investigations
of the CRD Model robustness may inspect its success in
non-visual tasks and expand the context to additional real-
world applications. Additionally, future research may include
additional physiological sensor types and features including
fNIRS and pupillometry (although the latter is difficult without
measurement of ambient luminence). Finally, more psycho-
logical assessments will be useful to understand its uses and
limitations. Future applications may use this model in a closed-
loop fashion where real-time assessments are used to drive
adaptations between humans and complex systems.
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