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Abstract – A quantitative scoring mechanism based on signal 
detection theory was developed in the context of an 
experimental command-and-control environment. The scoring 
approach was designed to include well-established evaluation 
criteria of performance metrics and to enable insights into 
various cognitive and behavioral processes of the subjects. 
Cognitive processes on a perceptual, sensory, and motor level 
were linked to subtasks similar to the warship commander 
task. Signal detection theory provides a theoretical rationale 
for the quantitative scoring mechanism. Due to the 
generalizability of the scoring approach, a flexible application 
to a wide range of experimental tasks should be possible. 
Considerations and lessons learned are discussed. 

Keywords – Behavioral processes; Cognitive processes; Human 
machine interaction; Command-and-control; Quantitative 
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I.  INTRODUCTION  

Measuring human performance in complex experimental 
tasks can be challenging. Generally, two approaches are 
available to measure user performance in such experiments: 
Qualitative performance assessment aims at gaining an in-
depth understanding of the matter of interest as well as its 
context. Since the observer’s point of view is internal, the 
results tend to be subjective and difficult to verify. 
Consequently, conclusions based on qualitative assessments 
may not be replicable. In contrast, quantitative approaches 
objectify performance assessment and enable the use of 
inferential statistics, such as significance testing [1][2]. 
Quantitative performance assessment aims at measuring 
human performance through predefined metrics that can be 
calculated in an automatic manner, resulting in a numeric 
value, such as a score. Moreover, it allows for flexible 
adjustment of the scoring mechanism to reflect specific 
characteristics of an experimental task (e.g., task priorities). 
This is important, given that adequate scores can reveal 
underlying cognitive processes involved in task performance. 
For instance, by combining time and the amount of errors to 
complete a given task, one can derive insights about the 
speed-accuracy tradeoff of the participant. 

Ducheneaut, Moore and Nickell [3] provide an example 
of how a quantitative assessment method can reveal deeper 
insights into complex behavioral processes than a qualitative 
assessment method could. While exploring the concept of 
sociability in massive multiplayer online games, the authors 
gained better understanding of the matter by investigating the 
number, frequency, and length of visits in social places. 
However the qualitative results could not reveal how generic 

and how representative the observed activities were, so they 
turned to quantitative analysis. Other experimental testbeds 
benefit from a quantitative performance assessment in the 
same way, for example the Warship Commander Task 
(WCT) [4]. 

Safety-critical vigilance tasks can be found in many 
domains, such as air traffic control, driving on highways, or 
in the control room of nuclear power plants. The Warship 
Commander Task is one example of such a task. With the 
primary goal of protecting their own ship from hostile tracks 
appearing on a simulated radar-screen, WCT users must 
complete multiple subtasks of different priorities within 
limited time. These hierarchically organized subtasks include 
identifying all unknown tracks, as well as warning and 
engaging identified hostile tracks. The engagement of a 
hostile track can only be performed after its warning. 
Similarly, the warning of a hostile track can only be 
performed after its identification (see Figure 1), resulting in a 
hierarchical task structure.  

 

 
Figure 1.  Subtasks of the WCT 

Cognitive processes involved in executing a subtask in 
the WCT are identified based on the human processor model 
developed by Card, Moran and Newell [5]. The human 
processor model describes the calculation of reaction times 
based on the time needed for perceptual, cognitive, and 
motor processes. Figure 2 illustrates the cognitive processes 
involved in executing a subtask of the WCT: Visual attention 
and perception are a necessary prerequisite for detecting an 
object and discriminating it from the background of the 
screen. After successful detection of a relevant object, a rule-
based decision is necessary to identify the object and 
determine if further action is necessary. In case of the WCT, 
such a rule can be found in the warning and engagement 
subtasks. The operator must decide if a track has to be 
warned or engaged based on its identity and distance. 
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The decision-making process is followed by task 
execution. The physiomotor response of clicking the button 
representing the required action concludes the subtask. For 
the identification subtask, the operator clicks on a button 
named “IFF” (“identify friend foe”). For executing a warning 
or an engagement, the operator clicks on a button named 
“warning” or “engagement”.  

 
Figure 2.  Cognitive processes involved in WCT based on [5] 

While performing the main task, different kinds of errors 
(e.g., late or incorrect execution) can occur at various stages 
of cognitive processing. For instance, at the stage of 
perception, the operator may fail to direct visual attention to 
the relevant areas. Consequently, an approaching track may 
not be perceived. If the operator attends to the relevant area 
but does not process the stimulus or cannot discriminate the 
object from its environment, an error during the stage of 
object detection and discrimination occurs. At the decision-
making stage, the incorrect application of decision rules can 
lead to decision errors. Finally, errors can also occur during 
the stage of task execution, e.g., by selecting the wrong 
response or omitting a response altogether.  

The amount and complexity of the cognitive processes 
involved in tasks like the WCT require a performance 
mechanism that adequately represents the operator’s 
performance. However, the original performance assessment 
employed in the WCT neither considers the speed of task 
completion, nor the type and amount of errors of the 
operator. For example, in vigilance tasks with temporal 
components like reaction time, a single overall performance 
score cannot consider the speed-accuracy tradeoff that 
describes the process of sacrificing accuracy for speed in 
task execution [6]. Specifically, accuracy cannot be defined 
by a single numerical value in complex tasks like the WCT 
due to the various sources of possible errors and mistakes.  

For our purposes of creating affect-adaptive interaction, 
these are serious limitations. Trading accuracy for faster task 
completion (speed-accuracy tradeoff) is unfavorable in a 
command-and-control (C2) task where errors can have fatal 
consequences. An adaptive system could employ strategies 
to shift the internal criterion of the operator to complete tasks 
with more accuracy.  

Quantitative analyses of the different error types allow 
for an in-depth understanding of the decision-making 
processes of the operator. With a scoring approach that 
captures the multidimensionality of performance decrements, 
researchers can exploit the advantages of an objective, 
quantitative assessment method while learning more about 
the operators’ decisions that lead to the performance 
decrement. 

In section 2, Signal Detection Theory (SDT) is 
introduced as theoretical background. Section 3 describes the 
scoring mechanism as it was developed for the chosen task 
environment followed by a discussion of lessoned learned 
and a generalized scoring system in section 4. Section 5 
sums up the results, provides a conclusion and outlines future 
work. 

II. SIGNAL DETECTION THEORY  

Signal Detection Theory (SDT) provides a theoretical 
rationale on which quantitative measurement techniques in a 
wide range of application domains can be based on. 
Originating from signal detection in psychophysics [7], the 
theory successfully explains phenomena in the study of 
visual search [8], recognition memory [9], decision making 
in supervisory control [10], air combat training [11], essay 
grading [12] or social anxiety [13]. All these domains seem 
unrelated at first sight. However, the application of signal 
detection theory lead to a greater understanding by 
quantifying the underlying cognitive and behavioral 
processes.  

SDT describes the process of detecting a signal [7] that 
can either be present or absent as well as detected or missed. 
This results in four possible outcomes, namely Hit, Miss, 
Correct Rejection or False Alarm (see Table I).  

TABLE I.  DECISION-MAKING IN SDT 
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Miss Correct Rejection 

 
Based on that categorization, the operator’s criterion and 

ability to discriminate the signal (+ noise) from a noise-only 
condition can be determined. The operator’s tendency to 
exhibit a response independent from the presence of the 
nature of the signal is referred to as the criterion. An operator 
with a liberal criterion has higher False Alarm and Hit rates, 
whereas an operator with a conservative criterion has higher 
Correct Rejection and Miss rates. Discriminability is defined 
as the number of correct decisions (Correct Rejection and 
Hit) relative to the number of incorrect decisions (Miss and 
False Alarm) [14].  
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III. THE SCORING MECHANISM  

We used signal detection theory as a basis in the 
development of a detailed scoring mechanism to assess the 
operator’s response bias and performance across multiple 
performance criteria in a command-and-control environment 
(see section 3A). The first application of the scoring 
approach is described in section 3B. 

A. Command-And-Control Tasks  

The scoring mechanism was implemented in the Rich 
And Adaptable Test Environment (RATE), a modular and 
scalable task environment developed by Fraunhofer FKIE 
that allows for flexible design of experimental tasks. One 
instantiation of RATE is the described command-and-control 
task. This setup, coined RATE for C2, was used to 
investigate the relationship between performance and 
emotion in a command-and-control task [15]. In accordance 
with the WCT described in section 1A, the operator’s task in 
RATE for C2 is to identify unknown tracks on a simulated 
radar screen and categorize them into neutral, hostile, or 
friendly tracks. Furthermore, hostile tracks that enter certain 
ranges around the own ship must be warned or engaged, 
respectively.  

The operator’s performance was measured by accuracy 
and speed in task completion. To assess performance at the 
subtask level, negative and positive scores for each category 
(accuracy and speed) were assigned to every subtask 
(identification. warning and engagement). The division into 
separate positive and negative scores is necessary to cover all 
categories of the SDT, as described in section 2.  

The accuracy scores are based on the correctness of the 
operator’s action. For instance, the engagement of a hostile 
track gains points on the positive accuracy score, whereas 
engagement of a neutral or friendly track increases the 
negative accuracy score. Similarly, positive and negative 
speed scores were used to capture the temporal performance 
aspects based on response time. For instance, timely 
engagement of a hostile track leads to an increase in the 
positive speed score, whereas a missed or delayed 
engagement of a hostile track increases the negative speed 
score. Figure 3 demonstrates how the subtasks of the WCT 
relate to the assigned performance scores. 

The criterion of the operator is determined by the 
relationship between positive and negative scores of each 
category (accuracy and speed). An operator with a liberal 
criterion would tend to engage many tracks – including 
friendly or neutral ones - leading to an increase in positive as 
well as negative scores of accuracy. This corresponds to a 
high Hit and False Alarm rate in SDT. In contrast, a 
conservative operator would be hesitant in engaging tracks, 
leading to an increase in negative speed score. This 
corresponds to a high Miss Rate in SDT.  

Insights into the cognitive processes associated with the 
subtasks of RATE for C2 arise from the analysis of 
individual scoring components. Problems with visual 
attention and perception, as well as object discrimination 
become evident in a high negative speed score for the 
subtasks of identification, warning, and engagement.  

A high negative accuracy score results from problems 
occurring during the stage of decision-making and rule 
application. For instance, if the operator assigns a false 
identification to the corresponding track the negative 
accuracy score increases. This again results from incorrect 
interpretation of the IFF code.  

 
Figure 3.  Subtasks of RATE for C2 and performance scores 

Furthermore, a high negative speed score in combination 
with a high positive accuracy score indicates problems 
within the motor task execution. 

To calculate total subtask and task performance, we 
deducted the negative from the positive score because high 
positive and low negative scores display high performance. 
However, achievable scores may vary greatly across 
conditions or scenarios. For example, in our task 
environment, difficulty levels were determined by the total 
number of tracks and the relative proportion of hostile tracks. 
In order to be able to compare absolute performance scores 
across conditions and scenarios it is necessary to normalize 
the absolute score. Our approach was to divide the absolute 
delta between positive and negative scores by the maximum 
achievable score within each category (see Table II), 
resulting in a comparable performance. 

TABLE II.  THE SCORING MECHANISM FOR ACCURACY AND SPEED 
ADAPTED TO A C2-TASK 

Individual Scoring 
Components 

Conditions  

Accuracy 

Positive Score 
Correct Decisions:  

Correct Identification, Correct Warning of Hostile 
Tracks, Correct Engagement of Hostile Tracks 

Negative Score 

Incorrect Decisions:  
False Identification, False Warning 

(friendly/neutral Track), False Engagement 
(friendly/neutral Track)  

Total Score Positive Score - Negative Score 

Max Score ∑ Achievable Positive Scores 

Performance Total Score / Max Score 

Speed 

Positive Score 

Correct Decisions:  
Identification in <=30 seconds, Warning of Hostile 

Tracks in <=20 seconds, Engagement of Hostile 
Tracks in <=10 seconds 

Negative Score 

Incorrect Decisions:  
Identification in >30 seconds, Warning of Hostile 

Tracks in >20 seconds, Engagement of Hostile 
Tracks in >10 seconds 
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Individual Scoring 
Components 

Conditions  

Total Score Positive Score - Negative Score 

Max Score ∑ Achievable Positive Scores 

Performance Total Score / Max Score 

 
All described scores were generated separately for each 

subtask (identification, warning, engagement). An overall 
total score is the sum of all subtask total scores. An 
operator’s overall performance for the experiment is 
calculated along the lines of subtask performance (by 
dividing the experiment’s total score by the maximum 
achievable points across all subtasks). 

B. Application of the Scoring Approach 

The scoring mechanism was used in a study with Fifty-
one (N = 51) subjects aged 18 to 57 years (M = 32.75, 
SD = 9.8) to examine the relationship between performance 
and emotion in the command-and-control task [15] described 
above. Task load was modulated across scenarios by varying 
the total number of tracks and the relative proportion of 
enemy tracks. This approach was based on the cognitive task 
load model validated with a command-and-control task by de 
Greef and Arciszewski [16]. Cognitive task analysis and the 
review of similar tasks covered in literature helped us to 
identify and to rank all relevant subtasks, their priorities and 
dependencies, as well as all possible behaviors associated 
with each subtask. Figure 4 illustrates that our 
implementation of the described scoring mechanism was 
sensitive to task load, as the overall performance decreased 
with higher task load. 
 

 

 
Figure 4.  The performance score was sensitive to the number of tracks 
within a scenario (1=6 tracks, 2= 12 tracks, 3= 18 tracks, 4= 24 tracks) 

IV. DISCUSSION 

The developed scoring system offers several benefits for 
measuring human performance in complex task 
environments. Using “accuracy” and “speed” as performance 
criteria, we were able to gain insights into the cognitive 
processes associated with specific subtasks. The scoring 
approach itself does not isolate the specific information 

processing resource involved but it provides separate scores 
for each subtask and all performance criteria that can be 
mapped to cognitive processing steps. As mentioned above, 
problems with visual attention and perception as well as 
object discrimination were reflected in a high negative speed 
score whereas problems occurring during the stage of 
decision-making and rule application lead to a high negative 
accuracy score. Thus, careful choice of categories and/or 
tasks allows researchers to map subscores to cognitive 
processes and determine possible causes of observed 
behaviors.  

However, a profound understanding of the experimental 
task and the cognitive processes involved is required to 
exploit these benefits. For example, being able to break 
down subtask performance and consider the hierarchical 
order of subtasks avoids misleading performance scores, but 
finding adequate ways for dealing with task omissions and 
conditional subtasks proved challenging.  

The following lessons learned are meant to raise 
awareness for issues we encountered and provide possible 
ways to address them. 

  

A. Lessons learned 

1) Task structure: In order to define the actions leading 
to increases in positive and negative scores, respectively, 
decision trees have emerged to be a valuable tool to test the 
logical order of every possible subtask sequence and its 
associated scores. 

2) Subtask priority: The priority of a subtask in the 
context of the overall task can be reflected in the amount of 
points earned on the corresponding positive/negative score. 
This allows the scoring mechanism to be adapted to other  
tasks environments, even beyond the command-and-control 
domain.  Keeping in mind the research question and 
hypotheses of the study also helped to assess the relevance of 
subtasks and the relationship between them. 

3) Conditional subtasks: Caution is advised when 
scoring conditional subtasks. Conditional subtasks are 
subtasks that occur in dependence of the outcome of a 
previous subtask. For example, in the described command-
and-control task, only hostile tracks have to be engaged. If 
the operator incorrectly identifies a friendly track as hostile 
and then engages it (correctly, from the operator's point of 
view), no points should be awarded, otherwise he could earn 
more points than the maximum possible. Therefore, correct 
actions in conditional subtasks must not be rewarded if the 
action was only correct because of a preceding error. 
Whether incorrect actions lead to points on the negative 
score should be determined in the specific task context. 

4) Task omissions: When determining point allocation, 
omission of necessary actions should neither lead to points 
on the positive nor on the negative score in order to separate 
omission errors from correct or incorrect explicit behavior. 
In case of the accuracy score, points on the positive score 
represent Hits in SDT and points on the negative score 
represent False Alarms in SDT as described above. Giving 
points for omissions would falsify this representation of SDT 
categories. This, however, does not apply if the omitted 
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action represents incorrect behavior. For example, if the 
performance criterion is speed, operators should be given 
points on the negative score when the omission represents a 
missed identification.  

5) Normalization: Normalization of the absolute 
performance score enabled comparisons of operator 
performance across conditions or scenarios, and even across 
different experiments. With a normalized performance score, 
it is possible to capture and analyze changes in performance 
over time (e.g., to compare implemented usability 
improvements or new interaction mechanisms). The impact 
of changes or improvements can then be analyzed at the task 
and even at subtask level. Test-retest reliability is ensured 
because the calculation of the score is independent from any 
dynamic components except the actions of the operator 
himself. 

B. Use With Other Tasks 

The developed scoring approach is not limited to use in 
command-and-control environments. It could also be 
generalized and adapted to other tasks that consist of 
multiple subtasks, including hierarchical task structures. 
Validation is still pending but the generalized concept is 
described below.  

As a first step, applicable performance criteria must be 
determined for the task at hand. For our task detailed above, 
we chose accuracy and speed but there may be other options. 
In our case, the operator has the option of performing a 
subtask correctly or incorrectly depending on the considered 
category. For instance, in the case of speed, correct means 
“within a time limit” and incorrect means “outside the time 
limit” but the scoring approach is not limited to these 
categories. The scheme provided in Table II can be adapted 
and enhanced to calculate performance metrics for each 
criterion and each subtask in other task environment. 

To assess multiple performance criteria, the above 
procedure can be repeated for each criterion separately. 
Performance across all subtasks can be calculated by 
dividing the sum of all subtask total scores by the sum of all 
subtask max scores (see Table III). It is also possible to 
quantify overall performance across all subtasks and 
categories. 

 

TABLE III.  GENERALIZED SCORING MECHANISM FOR TWO 
CATEGORIES AND TWO SUBSTASKS 

Scoring-
Components 

Conditions  

Category A (i.e., accuracy) 

Subtask 1 

Positive ScoreA1 Correct Decisions 

Negative ScoreA1 Incorrect Decisions 

Total ScoreA1 Positive ScoreA1 - Negative ScoreA1 

Max ScoreA1 ∑ All possible achievable Positive ScoresA1 

PerformanceA1 Total ScoreA1 / Max ScoreA1 

Scoring-
Components 

Conditions  

Subtask 2 

Positive ScoreA2 Correct Decisions 

Negative ScoreA2 Incorrect Decisions 

Total ScoreA2 Positive ScoreA2 - Negative ScoreA2 

Max ScoreA2 ∑ All possible achievable Positive ScoresA2 

PerformanceA2 Total ScoreA2 / Max ScoreA2 

Overall subtasks in category A 

Total ScoreA Total ScoreA1 + Total ScoreA2 

Max ScoreA Max ScoreA1 + Max ScoreA2 

PerformanceA Total ScoreA / Max ScoreA 

 

Category B (i.e., speed) 

Subtask 1 

Positive ScoreB1 Decisions made within 15 seconds. 

Negative ScoreB1 Decisions made in more than 15 seconds. 

Total ScoreB1 Positive ScoreB1 - Negative ScoreB1 

Max ScoreB1 ∑ All possible achievable Positive ScoresB1 

PerformanceB1 Total ScoreB1 / Max ScoreB1 

Subtask 2 

Positive ScoreB2 Decisions made within 15 seconds. 

Negative ScoreB2 Decisions made in more than 15 seconds. 

Total ScoreB2 Positive ScoreB1 - Negative ScoreB1 

Max ScoreB2 ∑ All possible achievable Positive ScoresB2 

PerformanceB2 Total ScoreB2 / Max ScoreB2 

Overall subtasks in category B 

Total ScoreB Total ScoreB1 + Total ScoreB2 

Max ScoreB Max ScoreB1 + Max ScoreB2 

PerformanceB Total ScoreB / Max ScoreB 

 

Overall categories 

Total Score Total ScoreA + Total ScoreB 

Max Score Max ScoreA + Max ScoreB 

Performance Total Score / Max Score 
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V. CONCLUSION 

Measuring human performance in complex task 
environments is a challenge, especially when multiple 
subtasks of varying priority are present or when subtasks 
depend on one another, resulting in a hierarchical task 
structure. With the reported scoring mechanism, we 
addressed some of these challenges and illustrated an 
approach to quantitatively assess human performance in 
complex experimental tasks. We have begun and illustrated 
first steps to generalize the scoring mechanism developed 
for our task environment, using SDT as a theoretical 
foundation, so that it can be adapted to different task 
environments and applicable performance criteria.  

One limitation of the reported approach is that the scoring 
mechanism is currently limited to subtasks with 
dichotomous responses (correct or incorrect). Whether (and 
how) more gradual responses could be mapped into the 
score will be investigated in the future. 
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