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Abstract—To integrate robots into humans’ environment, robots
need to make their decision-making process transparent to
increase humans’ trust in robots. Explanations from a robot are a
promising way to express “how” a decision is made and “why” the
decision made is the best. We performed a user study investigating
the effect of the explanations from a robot on humans’ trust. Our
setting consists of an interactive game-playing environment (the
partial information game Domino), in which the robot partners
with a human to form a team. Since in the game there are two ad-
versarial teams, the robot plays two roles: the already mentioned
partner with a human in a team, but also as an adversary facing
the second team of two humans. The robot’s explanations are
provided in human-understandable terms. Explanations from the
robot not only provide insight into the robot’s decision-making
process, but also help in improving humans’ learning of the task.
We evaluated the human participants’ implicit trust in the robot
by performing multi-modal scrutiny i.e., recording observations
of facial expressions and affective states during the game-play
sessions. We also used questionnaires to measure participants’
explicit trust and perception of the robot attributes. Our results
show that the human participants considered the robot with
explanations’ ability as a trustworthy team-mate. We conclude
explanations can be used as an effective communication modality
for robots to earn humans’ trust in social environments.

Keywords–Implicit Trust; Explicit Trust; Explanations; Human-
Robot Physical Interaction.

I. INTRODUCTION

Social robots have moved from manufacturing environ-
ments and are now deployed into human environments, such
as in hotels, shops, hospitals and as office co-workers. These
robots complement humans’ abilities with their own skills.
Hence, robots are expected to cooperate and contribute produc-
tively with humans as teammates. In recent years, the technical
capabilities of robotic systems have immensely improved,
which has led to an increase in the autonomy and functional
capabilities of existing robots [1]. As robots’ abilities increase,
their complexity also increases, but increased capability in
robots often fails to improve the competency of a human-
robot team [2]. Effective teamwork between humans and
robots requires trust. In situations with incomplete information,
where humans need to interact and work as teammates with
a robot, humans trust in their robot teammate is crucial.
In such cases, autonomous decision-making by the robot
creates unpredictable and inexplicable situations for human
teammates. Consequently, humans’ lack of insight into the
robot’s decision-making process leads to humans’ loss of trust
in their robot teammate. In critical situations, such as search-

and-rescue or to complete a time-sensitive task, humans cannot
afford to lose trust in robot teammates.

We hypothesise that the explanations from a robot are a
promising way to express how a decision is made and why the
decision-made is the best. Robots shall be required to explain
and justify their decisions to humans, and humans will tend
to accept those decisions as they realise the reasoning behind
them. We postulate that a robot’s decisions (which generate
the robot’s actions) can be communicated through explanations
to humans. These explanations will also make it possible for
humans to perceive and accept the robot as a trustworthy
teammate.

Trust is an important aspect for humans and robots to
perform cooperatively as a team [3]. Trust directly affects
humans’ willingness to receive and accept robot-produced
information and suggestions [4] [5]. The absence of trust in
human-robot interaction leads to disuse of a robot [6]. Ensuring
an appropriate level of trust is a challenge to the successful
integration of robotic assets into collaborative teams because
under-reliance or over-reliance on a robot can lead to misuse
of the robot [2].

Humans are desirous of trusting other humans, particularly
if explanations are provided. Trust appears to require expla-
nations [7]. In essence, trust-building encompasses a more or
less detailed understanding of the motives of a person we may
or may not trust. We accept explanations, or we may cast a
validity verdict upon them. Logically, trust and explanations
seem to be mutual companions in everyday life.

Artificial intelligence researchers, within the area of expert
systems, have also provided sufficient motivation to con-
sider the contribution of explanations [8] to building humans
trust [9] [10] and to the acceptability of these systems [11].
Hand-craft explanations have also shown to be promising
in providing enough transparency to humans [12]. Robots
have become increasingly important in human society, and it
seems timely and essential to understanding how to promote
their interactions with humans. An interaction, by definition,
requires communication between humans and robots [13].
Hence, explanations can be used as an effective communication
modality for robots, earning humans’ trust in a social envi-
ronment. By explanations, humans will also be able to track
the performance and capabilities of the robots. Hence, a clear
understanding of the robots’ decision-making process can also
lead to humans’ desire for interaction and acceptability and
will also help in establishing smooth and trustworthy human-
robot interactions.
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This study sets out to examine the effect of a robot’s
explanations on humans’ level of trust. In addition, we refer to
the explanations’ approach as English like sentences, because
in this way, humans can trace the performance of the robot.
We expect that, when humans understand the behaviour of the
robot, they will tend to trust the robot’s actions and will work
together as a team, to achieve a common goal.

For human-robot interaction, there has been a little empir-
ical evaluation of the influence of explanations on humans’
level of trust. Wang [9] used a different approach to increase
transparency by using a simulated robot to provide explana-
tions of its actions. Explanations did not improve the team’s
performance, although trust was identified as an influential fac-
tor only in the high-reliability conditions. Moreover, Wang [9]
used an online survey because human participants were not
present with a physical robot. Wang’s analysis of the survey’s
responses indicates improvements in humans acceptance of the
robot’s suggestions. One of the disadvantages of conducting an
online survey for evaluating humans’ perception of a robot’s
attributes is that the human participants act only as observers.
Such human perception is incomplete, since it is missing the
robot’s physical presence and interaction [2]. Thus, it is unclear
what happens in settings where humans and a robot interact
directly in the same environment. We focus here on a physical
setting where the robot communicates via explanations. We
investigate the change in humans’ perception of the robot from
a tool to a trustworthy teammate. By addressing this question,
findings from our research can serve to guide future work in
recognition of specific robots’ design metrics.

We explore the influence of explanations on humans’
trust. Our contribution consists of a User Study that takes a
more socially relevant approach by focusing on the physical
interaction between humans and an autonomous social robot.
We chose Domino, a team-based partial-information game, to
immerse interaction between humans and the social robot.
Game-playing scenarios are useful and powerful environ-
ments to establish human-robot interaction [14] because games
provide an external, quantifiable measure of the underlying
psychological state of a human’s trust [15]. Especially, multi-
player game environments, not only maintain social behaviour
when played in teams, but also develop trust dynamics among
teammates to achieve the common goal of wining the game.
Besides, we hope to enhance the intelligibility of the robot
by augmenting it with the communication ability through
explanations, to improve the clarity of its decision-making.

We selected Domino game as the basis for our experimental
paradigm for the following reasons. A game of Domino
involves two teams with two members of each team, where
each participant has incomplete information (the hand of each
player is not revealed to any other player), but cooperation
is required by members of a team to achieve a win. We
configured mix-teams of a human and a robot. The robot
plays two roles: first, team partner with a human, and second,
member of a human-robot team that competes with a team
of two humans. Because each player has different tiles, each
player has different resources. The environment in the game
Domino is partially observable.

We want to examine the effect of explanations on the
humans’ level of trust in an environment where a robot makes
decisions, and those decisions influence the outcome. The
primary motivation behind this study is the interaction between

humans and robots is changing from master-slave to peer-to-
peer. Hence, to model effective human-robot interaction, the
human-in-the-loop concept must be incorporated as frequently
as possible. Hence, we adopted a human-in-the-loop approach
by augmenting a robot with the capability of providing dif-
ferent types of explanations. Explanations shall make complex
behaviour of the robot more understandable and intuitive for
a human. We hope that explanations will lead to developing
the humans’ trust in the robot.

We divide this paper into different sections. Section II
surveys the literature on trust and explanations in the context of
human-robot interaction. Section III presents our human-robot
interaction scenario followed by the design description of our
robot as a team player. Section IV discusses the User Study in
detail, as well as the experimental design and the measurement
of dependent variables. Section V presents the results in detail,
taking into account the proposed hypotheses. Section VI shows
the correlation between the dependent variables. Section VII
presents the discussion and finally, Section VIII considers
the implications of this work on the human-robot interaction
community.

II. RELATED WORK

For decades, trust has been studied in a variety of ways
(i.e., interpersonal trust and trust in automation). However, in
human-robot interaction, there is much space to study the trust
that humans attribute to robots. There have been a growing
number of investigations and empirical explorations on differ-
ent factors that affect human-robot trust [16] [17]. Hancock [4]
reported on 29 empirical studies and developed a triadic model
of trust as a foundation to provide a greater understanding of
different factors that facilitate the development of humans’
trust in robots. The model’s three groupings of factors are
first, robot-related factors (anthropomorphism, performance
and behaviour), second, environmental-related factors (task and
team related factors) [4] and third, human-related factors (i.e.,
demographic attributes of humans) [1].

Robot-related factors [4], especially robot performance-
based factors, influence humans’ trust most dramatically.
Robot performance-based factors comprised of a robot’s func-
tional capability [18], etiquette in a robot (i.e., remained
attentive of errors) [19] [20], especially how the robot casts
the blame of error [2], its reliability and safety [5]. Previous
research [5] also provides additional support to precisely
address the significance of errors and feedback from error-
prone robots. In a situation where the robot’s low reliability
was clearly evident, even from early stages of interaction,
human participants continued to follow the robot’s instructions.

Most of the previous investigations regarding the influence
of explanations on humans’ trust have been conducted in
rule-based systems [10], intelligent tutoring systems [21],
intelligent systems (i.e., neural networks, case-based reasoning
systems, heuristic expert systems) [8] and knowledge-based
systems [22].

Intelligent tutoring systems try to convey knowledge on an
exclusive subject to a learning person. Nevertheless, intelligent
tutoring systems cannot clarify their behaviour and remain
restricted to particular tasks [23]. Expert systems [24] are sys-
tems that recommend answers to problems (i.e., financial deci-
sions, industrial procedure investigations). The corresponding
problems usually require a skilled human to solve them [7].
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The rule-based expert system Mycin [25] was the first expert
system to provide trace explanations of its reasoning to respond
to Why, Why-Not and How-To queries, but the comparative
benefits of these explanations were limited [8] [26]. Since
Mycin was incapable to justify its advice, it was observed that
physicians were reluctant to use it in practice [27].

Earlier work [28] confirmed that different types of expla-
nations not only improved the effectiveness of context-aware
intelligent systems but also contributed to stronger feelings of
humans’ trust. Although the main focus was on the influence of
the How-to, What-if, Why and Why-not explanations. However,
the results showed that Why and Why-not explanations were
an excellent type of explanation, which effectively helped to
improve the overall understandability of the system.

For human-machine trust, there has been little empirical
evaluation of the impact of explanations [11]. Dzindolet et.
al. [12] explored manually crafted explanations. Hand-crafted
explanations have been shown to be effective in providing
transparency and improved trust. However, since hand-crafted
explanations were static and created manually, they fail to
transfer the complexity of the decision-making to the team
members. Nothdurft et. al. [29] [30] focused on transparency
and the justification of decisions in human-computer interac-
tion. Glass et. al. [31] studied trust issues in technical systems,
analysing the features that may change the level of humans
trust in adaptive agents. They claim that designers should
“supply the user of a system with access to information about
the internal workings of the system”, but the evidence to
substantiate such claim is limited.

The systems, as mentioned earlier, deliberately focused
on the use of explanations to convey conceptual knowledge
and acceptability of these systems, such as the reliability and
accuracy of performance. However, the state-of-the-art may not
resolve the problem of non-cooperative behaviour and trust of
humans towards robots. To the best of our knowledge, there
is still a gap in current human-robot interaction literature, and
there is very little experimental verification that could show
that explanations promote and certainly affect humans trust in
and acceptance of robots.

Such systems, as mentioned earlier, deliberately focused
on the reliability and accuracy followed by explanations to
convey conceptual knowledge and their acceptability. However,
the state-of-the-art leaves open the problem of non-cooperative
behaviour and trust of humans towards robots. In particular,
there is very little experimental verification that could show
that explanations promote humans trust in robots.

It is important to realise that in addition to the physical ap-
pearance of a robot, human perception of the robot’s attributes
can also affect trust [2]. For example, prior to interacting with
a robot, humans develop a mental model of the expected func-
tional and behavioural capabilities of the robot. Nonetheless,
the human’s mental model evolves after interaction with the
robot. The mismatch between the human’s initial mental model
and the later mental model creates a detrimental effect on
the human’s trust [32]. A human’s mental model also defines
the human’s intentions for future use of robot [8]. Therefore,
explanations are valuable because explanations can shape the
humans’ mental model.

Finally, we suggest that our approach that enables a robot
to provide explanations for transparency and for justification of

Figure 1. Complete architectural overview of our human-robot interaction
scenario.

its reasoning is to be considered a robot’s functional capability,
which should be categorised as a robot-related factor.

III. HUMAN-ROBOT INTERACTIVE SCENARIO

Our human-robot interactive scenario is around a block-
type game known as Spanish Domino. A match is between two
teams with two players in each team, and it consist of several
hands; in each hand, each of the four player receives seven
random domino tiles. Game players take their turn clockwise
and aim for their couple to have the first player to release
all its hand. The hand is confidential to its owner. Thus, the
decisions a player makes are with partial information. At each
turn, a game player can perform only two actions,

1) to release a tile (by putting a tile with an endpoint
matching one of the open ends of the current board),
or

2) to pass (because to release a tile is impossible).

The game ends when no player can play a domino tile or when
a player runs out of the domino tiles.

Domino is a non-deterministic game, because of the ran-
dom shuffling and dealing of tiles to four players at the begin-
ning of every game. This initial hands’ aspect is an element
of non-determinism, but after each player has received their
hand, all actions are deterministic and successful. Figure 2
shows the complete set of domino tiles ranging from (0,0)
to (6,6) as used in the study. Because each tile is different,
all players have different resources, and team members must
cooperate without full knowledge of their partners’ resources
or the opposing teams’ resources.

During the match, the robot’s behaviour is completely
autonomous. Figure 1 shows the global architecture and the
modules involved in our software for human-robot interac-
tion [33]. Our knowledge-based robotic agent is capable
of performing rapid updates of knowledge while playing the
multi-player game of Domino with humans in the partial-
information environment and in teams. Information becomes
available to all players each time a player completes its turn;
either by releasing a tile, or passing.

Bayesian inference is an effective way to deal with such
partial observability. We incorporate Bayesian inference into
our knowledge-based robotic agent. By using Bayesian in-
ference, the knowledge-based robotic agent can update in-
formation about the environment (i.e., the current state of
the game). The update is performed after an observation. An
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Figure 2. Complete Set of domino tiles used in the study ranging from (0,0)
to (6,6).

observation provides new evidence, enabling the update of the
belief representation. These observations are forwarded to the
Knowledge-Base module.

The knowledge-based robotic agent controls the two roles
of the robot: firstly, as an adversary with two humans and
secondly, as a team partner with a human. Therefore, it
displays cooperation with human team partners, but is goal
oriented and competes with human opponents. We developed
the explanation-generation mechanism on top of the game-
playing mechanism.

We enable the robot to generates multiple static and dy-
namic explanations. The static explanations are based upon (1)
history and facts about the game, (2) rules of the game and (3)
game-play tips. While, dynamic explanations provide insight
into the knowledge-based robotic agent’s decision-making
process. These dynamic explanations would be suitable to an-
swer how-type and why-type questions. Furthermore, dynamic
explanations provide team members with the transparency for
the different factors involved in the decision-making process
of the knowledge-based robotic agent.

The mechanism for generating dynamic explanations is
meaningful for the strategic aspect of the game.

IV. USER STUDY

Using the human-robot interactive scenario discussed in
Section III, we conducted a User Study to investigate the effect
of a robot’s explanations on the humans’ level of trust and
how much the explanations are effective in changing humans’
perception of the robot attributes during an interactive task.

A. Hypotheses
Hypothesis 1 - Human participants would appreciate un-

derstanding about how the robot’s decisions are made (trans-
parency) and receiving informed justifications of the robot’s
choices in a partial information environment. Such human
inclination will be reflected by an increase in humans’ trust
in the robot.

Hypothesis 2 - Explanations that provide transparency and
supply justification for a robot’s decisions in a collaborative
(team-based) environment help in changing humans’ percep-
tion of the robot attributes.

B. Variables
The independent variable is the explanations of the robot at

the beginning of the first game and after the end of the match.
For the quantitative assessment, both subjective and objective

analysis of the interaction took place. The dependent variables
fall into three categories to analyse the impact of explanations:

1) Trust - Human teammates’ trust, which is not directly
observable [34], by using a 14-items subscale of the
Human-Robot Trust questionnaire [1] before and after
interaction with the robot.

2) Perception of Robot Attributes - We used Godspeed
questionnaire [35] [36] before and after interaction
with the robot to evaluate human perception of the
robot attributes related to trustworthiness [1]. We use
the Godspeed questionnaire because it is a standard-
ised measurement tool for interactive robots [35].
The Godspeed questionnaire uses a 5-point scale to
measure five key concepts in human-robot interaction.
(1) Anthropomorphism [37] is the characteristics of a
human form. (2) Animacy [38] is the perception of
a robot as a lifelike living entity. Perceiving things
as living creatures allows humans to distinguish be-
tween humans and machines [38]. (3) Likeability [39]
describes the first (positive) impression that humans
make in their mind of others. Previous research
investigated [40] that humans tend to consider robots
as social agents; hence deal with them in a similar
way. (4) Perceived intelligence [41] indicates how
intelligent; the human participants judge the robot
by its explanatory ability. (5) Perceived safety is the
perception of danger attributable to the robot during
the collaboration and the level of comfort the human
participants’ experience during the interaction [42].

3) Previous experience of human participants - Prior
relationship with non-human agents such as pets [43]
influence the interaction of a human with a robot.
Thus, to examine other factors such as prior experi-
ence with robots, we evaluated human participants’
demographical information with the following ques-
tions:

• Do you have any prior physical experience
with a robot?

• Have you ever watched a television show or
a movie that involves robots?

• Do you have any prior relationships with non-
human agents such as pets [43].

We also showed two pictures, each with a social
robot (i.e., Nao and Pepper) to human participants
and assessed their initial impression of the robots. We
also asked human participants to rate these images by
classifying them as (1. human-like, 2. machine-like,
3. child-like, 4. toy-like, and 5. avatar). Trust between
humans and animals may be a suitable analogy to
trust between humans and robots [2]. To examine
the nature of a human-animal relationship can help
in increasing the understanding of how a human
interacts with and trusts a robot [18].

C. Additional Measurement
Before starting the experiment, we instructed the human

participants about the procedure of the experiment. The hu-
man participants were allowed to ask any relevant questions
before starting the formal experiment. We asked the human
participants to maintain a safe distance from the robot, so no
human participant will push or damage the robot in any way.
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In addition, no human participant can interrupt the robot and
ask for explanations during a game.

The recognition of humans’ affective states and emotions is
one of the much-studied research questions at the moment [29]
that can be recognised via vision-based, audio-based, and
audio-visual recognition [44]. Therefore, we video-recorded
the experiment to examine the affective states and behavioural
responses of the human participants towards the robot. We also
maintained a history at the backend of the system to record
the moves played by the human participants. Also, we kept
a history of the human participants examination and use of
the robot’s explanations. This record of explanation usage was
used later to investigate, which type of explanations were ac-
cessed more i.e., static explanations or dynamic explanations.

D. Procedure of the Experiment
We adopted the approach of combining survey(s) with

an experiment to evaluate the humans’ perception and trust
towards the robot. We experimented in three-stages.

1) Stage-1 of the Experiment: During Stage 1, we evalu-
ated human participants’ demographics, initial perception and
trust towards the robot.

2) Stage-2 of the Experiment: Before starting the formal
game activity, the robot greeted the human participants and
provided verbal static explanations of how to play the game.

“We will play the block-type game of Domino with
double-six set of domino tiles. There are 28 tiles in
the set ranging from (0,0) to (6, 6). There are four
players in the game and each player will initially
receive a set of seven random tiles. . .!”

Next, human participants played repeated hands with the
robot in teams, until reaching a pre-defined score. After the
match, the human participants examined the explanations.
Following the explanations session, human participants played
more hands with the robot, until reaching a pre-defined score.
The second game-playing session aims at observing the effect
of explanations, and whether explanations improve a team’s
performance.

3) Stage-3 of the Experiment: Trust is a dynamic atti-
tude that changes over time [1] [3]. On the completion of
Stage 2 of the experiment, to elucidate the changes in trust by
human participants and their perception of the robot, human
participants filled out another human-robot trust questionnaire
and Godspeed questionnaire. Changes in the level of trust and
perception of the robot attributes will elicit the influence of
explanations from the robot. At the end of the experiment, the
robot thanked all the human participants for their participation.

E. Recruitment and Participation
This study was conducted in Griffith University Australia,

and there were a total of 33 human participants, (15 females
and 18 males) with ages ranging from 19 to 35 years old
(M = 28.33 ± 4.58). We recruited human participants through
general advertising, using posters on university notice board,
and communicating directly with students. Each human par-
ticipant received an invitation letter for the main objective of
conducting the experiment. Along with the invitation letter,
we also attached a brochure with a brief description of the
Domino game. We expected all human participants to start

Figure 3. (a) Robot is explaining how to play the game (b) Player 2 is
taking its turn (c) Human participants’ are checking the robot’s explanations

(d) Player 3 is taking its turn after the explanations’ session.

Figure 4. Statistics for Cronbach’s α for the customised scales used in the
experiment.

with the same common-sense model of the task (i.e., the
Domino game), which also helped us estimate what knowledge
the human participants have already possessed about the task.
Before taking part in the experiment, all human participants
provided their consent.

We offered an Aud 10 gift card as a token of appreciation to
every human participant. We configured human-robot matches,
with four participants i.e., one robot and three humans in each
team. There were 11 groups in total. Each group played two
matches with the robot. A single match consists of a maximum
of five hands in total, or until a pre-defined score is reached.
Each group played two matches, the first match before the
explanations’ session and the second after the explanations’
session.

V. EXPERIMENT RESULTS

Prior to conducting any analysis, we performed a reliabil-
ity analysis (Cronbach’s α) to assess the internal reliability
of the Human-Robot Trust Questionnaire [1] and Godspeed
Questionnaire [35] [36]. An α > 0.7 or higher is considered
acceptable, which indicates the reliability of the measuring
scale. Figure 4 shows Cronbach α for all the scales used in
the experiment.

A. Effect of Robot Explanations on Humans’ Trust
After performing the reliability analysis, we performed

a normality analysis by applying the Shapiro-Wilk test. The
Shapiro-Wilk test showed the dependent variable trust fit a
normal distribution satisfactorily. Therefore, we performed a
parametric paired sample t-test to analyse the effect of robot
explanations. We compared the levels of trust that human
participants had in their robot teammate after interaction,
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Figure 5. Difference in the level of trust of the human participants in the
robot before and after interaction - (**p < 0.01).

Figure 6. After interacting with the robot, the anthropomorphism ratings of
the robot decreased.

controlling for the levels of trust reported before interac-
tion. Results showed a significant difference (t(32) = -7.729,
p<0.001); Figure 5 displays much higher trust levels of human
participants towards the robot after interaction (M = 89.27 ±
6.44), when compared with their respective trust levels before
interaction (M = 58.24 ± 9.44). Overall, the analysis indicates
that the robot is successful in earning the trust of the human
participants’ based on the notable distinction between the trust
levels before interaction and after interaction.

B. Effect of Explanations in changing humans’ perception of
the robot.

We performed the Shapiro-Wilk test, which indicated that
the Godspeed questionnaire follows a normal distribution.
Following this, we performed paired sample t-test to scrutinize
the effect of explanations from the robot in changing humans’
perception of the robot.

1) Anthropomorphism: We analysed the decline in the
degree of anthropomorphism after interacting with the
robot: t(32) = 4.389, p<0.001 (refer to Figure 6). These values
reflect that the humans’ perception of anthropomorphism of the
robot was reduced significantly after interaction (M = 2.9 ±
0.59) when compared with before interaction (M = 3.4 ± 0.79).
The results indicate that the human participants considered the
robot less human-like, less natural and less conscious.

2) Animacy: The robot’s explanations created a positive
effect on the perception of the robot’s animacy : t(32) = -4.884,
p<0.001 (refer to Figure 7). We observed higher perception
ratings of the robot’s animacy after the interaction (M = 3.6 ±
0.71), when compared to before the interaction (M = 2.88 ±
0.50). The results show that the human participants appraise
the robot as more interactive and responsive.

Figure 7. The animacy ratings of the robot significantly increased, after
interacting with the robot.

Figure 8. After interacting with the robot, the Likeability ratings of the robot
greatly increased.

Figure 9. Difference in the perception ratings show the rise of the robot’s
Perceived Intelligence.

3) Likeability: Significant differences were found in the
likeability of the robot : t(32) = -3.522, p = 0.001. Figure 8
shows a significant difference in the perception ratings of the
robot after interaction (M = 4.07 ± 0.55), when compared with
the perception ratings before interaction (M = 3.60 ± 0.69).
The results show that the human participants considered the
robot pleasant and friendly.

4) Perceived Intelligence: Figure 9 shows the rise of the
robot’s perceived intelligence: t(32) = -5.502, p < 0.001. We
observed a significant difference between the pre-interaction
ratings (M = 3.70 ± 0.41) and the post-interaction ratings (M
= 4.23 ± 0.50). The results provide evidence that the human
participants considered a robot with explanatory capability to
be more intelligent, knowledgeable and competent.

5) Perceived Safety: Figure 10 shows that there is no sig-
nificant differences between the perceived safety levels before
and after interacting with the robot. Consequently, there were
no significant changes in this aspect as a result of interaction
with the robot.
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Figure 10. After interacting with the robot, there was no significant
difference in the level of Perceived Safety.

Figure 11. Correlation between trust and humans’ perception of the robot,
before interaction and after interaction - (??Correlation is significant at p <

0.01, ?Correlation is significant at p < 0.05).

VI. CORRELATION BETWEEN DEPENDENT VARIABLES

We also conducted Pearson’s (parametric) correlation to
analyse (1) how much humans’ trust and perception of the
robot are correlated with each other and (2) how much trust
impacts in changing humans’ perception of the robot.

We found no significant correlation between the dependent
variable trust and the anthropomorphism attribute. This result
applies to both cases, before and after interacting with the
robot.

Before interacting with the robot, we did not find any
correlation between trust and animacy, likeability and per-
ceived intelligence attributes of the robot. However, after
the interaction, as trust increased, we observed a significant
positive correlation between trust and the robot’s animacy,
likeability and perceived intelligence attributes. We also ob-
served a significant positive correlation between trust and the
perceived safety attribute before interaction with the robot, and
it did not change after interaction with the robot.

VII. DISCUSSION

Results from our preliminary analysis strongly support
our Hypothesis 1 by indicating that explanations increased
human participants’ trust in the robot. Moreover, explanations
also improved the humans’ perception of the robot attributes
associated with trust, which is our Hypothesis 2. However, after
interacting with the robot, the perception ratings of the anthro-
pomorphism attribute decreased, and in a sense, our results
partially support Hypothesis 2. Furthermore, for the perceived
safety attribute, we did not see any difference in the perception
ratings, neither before interacting nor after interacting with the
robot. We suggest that the human participants considered that

Figure 12. A summary of the quantitative data analysis results for trust.

the robot in the experiments conditions was not dangerous at
all.

Previous studies have shown the role of transparency in
building trust [12]. However, transparency alone may not be
sufficient to establish trust. Hence, we designed our explana-
tions to provide not only transparency about the mechanism for
the robot’s decisions, but also communicate justifications for
the underlying sophisticated reasoning. We aimed at explaining
the robot’s motive for each of the decisions. Additionally, we
believe explanations provide the human participants’ with an
insight into the concrete and individual factors involved in
the decision-making process of the robot. Therefore, in the
current study, explanations not only improved the trust of
human participants’ but also changed their overall impression
of the robot. The results help us gain insight into how to design
explanations to increase humans’ trust.

Furthermore, Figure 12 shows that items measuring the
robot’s explanatory ability: Provide Feedback, Provide Appro-
priate Information and Communicate with People are tightly
connected with the outcome.

Similarly, Figure 13 displays an increase in the ratings of
the attributes animacy, likeability and perceived intelligence.
This increase reflects that human participants’ adopted a model
of the robot that is more interactive, competent, knowledgeable
and intelligent. In terms of anthopomorphism, human partic-
ipants showed more concern by lowering the level of ratings
associated with anthropomorphism. Even if a robot looks like
a human, humans do not consider its capabilities to be human-
like. This is an interesting result, because regardless of the less
anthropomorphic perception, human participants still trusted
the robot.

Most of the human participants had their previous inter-
action with robots through fictitious media or movies; thus,
we believe that our results are not biased (or affected) by
the human participants’ previous experience with a physical
present robot. Similarly, we did not find any partiality or
differences in the results, for no-pet ownership with respect
to pet ownership.

We also examined human participants’ multi-modal
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Figure 13. Summary of results for the quantitative data analysis of human
participants’ perception of the robot.

scrutiny i.e., facial expressions and affective states during
the match and the explanations’ sessions. We observed that
human participants were unreserved, open to the robot, and
even trying to cuddle it from a distance. When the robot
was explaining the rules of the game, we noticed that human
participants maintained eye contact with the robot, which is
another signal of willingness to interact and affects trust. Dur-
ing the explanations’ session, we observed human participants’
facial expressions. These facial expressions show interest and
engagement in explanations. We examined human participants’
gestures and body movements while involved in a game. Play-
ers struggle to hide tiles, but reflected before making a move,
were attentive towards the robot when the robot was speaking
and describing its move and after the robot finished its turn,
participants focused on the released tile, assimilating further
the robot decision and play. As we mentioned, we provided
the human participants with a brochure that briefly described
the rules and mechanics of the Domino game. In addition,
the robot also provided explanations for the mechanics of the
game. Hence, our expectation is that all human participants
starting playing ability is similar, and approached the matches
with the same common-sense model. By evaluating the moves
of the players stored in our records, we observed the implicit
trust of human partners in a team. The records also show moves
where humans exhibit cooperation and sacrifice also to their
robotic partner.

Furthermore, the human participants’ learning of the task
domain enhanced, which is reflected by the increase in the
number of games the human-human team won, after the expla-
nations’ session. We also investigated the human participants’
use of strategies to select their moves, which was signifi-
cantly improved and became visible in the second match. For
example, the human participants considered playing random
tiles in the first match. After the explanations’ session, human
participants’ used some of the strategies i.e., preferred to play
tiles with the highest points and put doubles on the board
during the early stages of the hand.

In addition, we also kept a record of the number of times
a human participant (partner/adversary) accessed explanations
i.e., static or dynamic. We examined that the human partic-
ipants (regardless of team partners or opponents) accessed
the dynamic explanations more, to investigate the robot’s

Figure 14. Change in the impression of the robot (a) before interaction
(b) after interaction.

Figure 15. Change in the impression of the robot (a) before interaction
(b) after interaction.

Figure 16. Change in the impression of the robot (a) before interaction
(b) after interaction.

decisions.

VIII. CONCLUSION

Overall, our results confirm that, in a team-based collab-
orative environment, the explanations that disseminate trans-
parency and justification of a robot’s decisions facilitate
human-robot interaction.

Significant differences in the level of trust and perception
of the robot, before and after the interaction, confirm that
the robot has successfully earned the trust of the human
participants through its explanations’ ability. Besides, the
strong correlation between trust and perception of the robot
also suggests that the explanations helped change the overall
impression of the robot.

To date, humans have rarely encountered physical robots
in their lives, so their perception of robots may be affected
by fictitious media. We expect that, as the opportunity for
interaction with physically present robots increase, our study
will be taken into account for future robot design metrics. Con-
sequently, the findings of this study can be used to guide future
work to determine specific robot design standards. So far, our
work is the first to study the impact of explanations from a
robot on humans’ trust, by establishing peer-to-peer human-
robot interaction. Overall, the results suggest that explanations
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can potentially relieve the issue of misusing or under-utilizing
a robot, which usually happens in the “absence” of trust.
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