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Abstract—Humans selectively use only a small fraction of the
vast sensory data that arrives at their receptors. In vision,
eye movements are an important part of this selection process.
Eye movements arise from interacting bottom-up and top-down
factors, including social factors, and they provide important infor-
mation about cognitive processes. Tracking eye movements often
requires very specialized hardware that is suitable for laboratory
based studies, but less practical for online studies with remote
participants. Recently, a proxy for eye movements was introduced,
which facilitates large online studies of overt attention. In this
approach, participants’ mouse-clicks reveal parts of a static image
sequentially. Mouse-click locations can be recorded accurately
and reliably, without the need for a calibration procedure, and
mouse-click locations were found to correlate strongly with gaze
locations. However, while eye movements are often studied using
static scenes, they are also affected by motion cues, and by more
complex task-related dynamics. To facilitate the online study
of such influences, we adapted the mouse-based approach to
dynamic scenes, by continuously recording the location of the
mouse cursor, and continuously revealing only part of the display
surrounding the cursor. While our platform has been developed
primarily to support large, remote video saliency studies, the
same approach could be used to study overt attention, e.g., in
computer games, or to study more complex interactions, such
as co-operative tasks performed over video chat. This paper
describes our platform, FocalVid, which will be made open-source
on acceptance.

Keywords–eye tracking; visual saliency; video saliency; mouse-
contingent interface; Web design.

I. INTRODUCTION

In human-human interactions, gaze behavior and visual
preference choices are crucial since they influence and regulate
the dynamics of the interaction. Similar dynamics are also
present in Human-Computer-Interaction (HCI) scenarios. It is
important to fully understand the dynamics of gaze interactions
in these scenarios. Increasingly online studies are conducted
with remote participants, in addition to laboratory in-person
studies. Thus, it is timely to explore methodologies which
facilitate seamless recording of gaze and visual saliency for
a broader participant base that can be used across a variety of
hardware and operating systems. The presented methodology
makes it possible to explore remote human-human or human-
robot interactions by allowing the researchers to observe and
record participants’ visual selection data for various scenarios
involving video saliency, overt attention scenarios and co-
operative remote tasks. Such gathered data is valuable not
only in the field of HCI, but also in fields of computer
vision, ergonomics, user experience design and Human-Robot
Interaction (HRI) to name a few since it will ultimately enable
researchers to make design choices based upon gaze and
human visual preferences.

Eye movements and gaze patterns influence the dynam-
ics of social interactions. Eye movements/fixations and gaze
patterns are intertwined. Eye movements lead to instances of
gaze, but not all eye movements necessarily lead to socially
meaningful gaze instances. Theories [1] and models that have
been discussed in the literature [2] attempt to make sense
of these gaze patterns in social interaction, exploring the
intricacies of gaze behavior in mutual gaze, joint attention,
dyadic and triadic interactions. There is a need for new tools to
further explore different aspects of these models and theories.
Here, we introduce FocalVid as an effort towards this end.
FocalVid facilitates recording of visual attention patterns of
articipants while viewing videos in remote settings.

The correlation between visual selection and hand move-
ments [3], and also the close correlation between gaze and
cursor locations [4]–[8] have been established previously. This
chain of correlations is the main rationale behind (computer)
mouse-contingent methodologies, including FocalVid, which
utilizes participants’ controlled cursor movements on a visual
canvas to record proxies for gaze behavior. Up to now, eye
movement tracking has been conducted predominantly using
expensive equipment in controlled laboratory environments to
record participants’ eye movements [9], which is limited in
reach and typically cannot be used for remote, e.g., crowd-
sourcing studies [10]. FocalVid departs from this approach by
making use of a mouse-contingent methodology, which allows
the participants’ presence in a closed interaction loop involving
the participant and the scenario unfolding in a video that they
observe, facilitating broader participant reach due in remote
participation.

The presented platform is not only useful in the study
of gaze, but it is also useful in a multitude of experimental
scenarios such as: video saliency studies, video game usability
studies, and platform usability studies. The rationale that
FocalVid is based on closely correlates with the concept of
visual saliency [11], exploring the utilization of the bottom-up
saliency concept [12]–[14] to establish a relationship between
visual features and gaze directions. The field of visual saliency
is interested in points of attention in 2D and 3D scenes [15].
Such a relationship then makes it possible to evaluate the
findings gained with FocalVid against available findings from
the field of human visual saliency studies which could be
used to evaluate and benchmark the presented system. Our
approach extended the methodologies designed by Kim et
al. [4], Jiang et al. [16], and Jansen et al. [17] through the
redesign and extension of those approaches with the addition
of video playback. Such context has not been explored in detail
previously, and is a novel contribution of the present work. As
such, the main contribution of this study is the presentation
of a system that would make it possible to record participant
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visual selection for any given video scenario.
The remainder of this article is structured as follows.

Section II discusses related work, followed by a description
of the design and implementation of FocalVid (Section III).
Results of initial system tests are presented in Section IV and
discussed in Section V. Section VI concludes the article.

II. RELATED WORK

Related works are categorized into thematic areas: gaze,
visual perception and visual saliency which has close ties
with visual perception. Efforts relating to mouse-contingent
methodologies are also reviewed which directly relates to the
system designed in this study.

A. Gaze, Visual Perception and Eye-tracking methodologies
There is a rich history of research in the field of vision

which deals with eye movements, gaze, and visual perception.
There have been various attempts at the recording of eye
movement in the past 60 years [18]. These attempts initially
used more intrusive apparatus and since have moved toward
less intrusive solutions [19, p. 9]. Initially, eye movements
recording devices needed to be connected to the sclera such
as the apparatus designed by Yarbus [20]. He developed an
apparatus to accurately record eye movements using suction
caps which attach to the sclera. Eye movement recording
solutions have generally become less intrusive [9], often using
cameras and infrared illumination to improve contrast between
the pupil and surrounding tissue, but they still typically require
expensive specialized hardware. There have been two new
approaches that have challenged this tendency. Both of these
approaches are moving in the direction of more broadly
accessible methodologies and systems:

1) Appearance-based tracking: This approach attempts
using visible-light cameras to track participant’s eye
movements. This method of eye tracking makes it
possible to conduct remote studies using embedded
Webcams in participants’ personal computers [21]–
[23].

2) Mouse-contingent tracking: This approach is the main
focus of this study. These methodologies utilize cur-
sor location to determine participant’s visual selec-
tion. We elaborate on those issues in more detail in
Section II-C.

B. Visual Saliency
Visual saliency refers to ”bottom-up factors that highlight

image regions that are different from their surroundings” [24,
p.1], which make these regions in the visual field of interest to
viewer. As such, there is a connection between visual saliency
and eye movements: If a feature is highly salient, then there is
a high likelihood of eye movement patterns whose trajectory
dwells in that feature’s spatial distribution within the field
of view. One of the goals of the research field of visual
saliency is the creation of models that could anticipate these
highly salient features. These models are either hand-crafted
[12][14][25][26] or, recently, deep-learning based [27]–[29].
Visual saliency explores detection for both static and dynamic
scenarios [15]. Static scenarios mainly deal with static images
and dynamic scenarios mainly deal with videos. Even though
there are commonalities between the two settings, observation
patterns differ for these two instances: The duration of viewing

is different in the two, and dynamic cases have the extra
element of motion with respect to the observer.

A necessity in the field of visual saliency is benchmark
annotated data which models could be trained and tested
against. This could either be in the form of eye-tracking
benchmark data or crowdsourced benchmark data. Initially,
it was customary to use smaller eye-tracking datasets for
the training of hand-crafted models, but with the move to
deep learning based models, larger databases are needed.
Methodologies such as SALICON [16] become of use in these
cases since such a methodology allows for the gathering of
benchmark data from a broader participant base using services
like Amazon Mechanical Turk [22]. As such, the creation of
systems that make this type of data gathering possible would
be of value, especially relating to video saliency where such
solutions still are not readily available.

C. Mouse-contingent Methodologies
A current focus of the field of eye-tracking is the devel-

opment of methodologies for more efficient collection of eye
movements [4, p.4]. Such methodologies, including mouse-
contingent ones, would then enable researchers to conduct
experiments with a broader reach. Mouse-contingent method-
ologies make use of computer mouse and cursor location,
which can be reliably recorded, and encourage co-origination
of eye and mouse movements in various ways. These method-
ologies enable researchers to conduct saliency and usability
studies through online platforms, which can be a significant
advantage over time-consuming in-person laboratory exper-
iments with expensive specialized software and hardware.
Mouse-contingent methodologies have their roots in psychol-
ogy studies. A seminal study investigates the use of bubble-
shaped visual windows [30] for the evaluation of recognition
tasks. Both visual windows and visual scotomas [31] have
been explored extensively in the field of visual perception
psychology which has lead to the moving-window approach
in the field of HCI. An early example of such an approach
is RFV viewer [17]. There have been some renditions and
improvements of this model ever since [32][33] with the
newest additions being SALICON [16], and Bubbleview [4].
These platforms are all designed with static images in mind
and hence this creates the need for the design of a platform
that could be utilized for video saliency.

III. METHOD

In this section, the FocalVid system design (Figure 1) is
detailed. First, the fundamental moving visual window com-
ponents of the system are detailed (Section III-A), followed by
details regarding system interface (Section III-B) culminated
by system implementation details (Section III-C).

A. Controlling Video Visibility via Mouse Movements
Here, much like BubbleView [4], the concept of bubbles

was investigated as a base for the proposed platform [30][34].
This concept was then expanded upon by the incorporation of
opacity, visual moving windows, and addition of the ”graded
regions of stimuli” [17] in the form of concentric circles. Our
approach makes use of opacity instead of blurring used by
Kim et al. [4].

Our platform displays a video behind a semi-transparent
layer. This layer is nearly opaque over most of the video
frame, but it is more transparent around the mouse-cursor
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Figure 1. FocalVid system diagram.

location. The transparency is greatest within a small circle
around the cursor location, and increasingly opaque in circles
of increasing radius (Figure 2). This pattern reflects humans’
higher visual acuity closer to the fovea, and approximately
radially symmetric [35] decreases in acuity approaching the
periphery. The result is that the video can be seen most clearly
when gaze is centred on the cursor position. Participants must
co-ordinate mouse and gaze to clearly see any part of the video.
Importantly, partial transparency farther from the cursor allows
detection of salient cues, but greater transparency at the centre
encourages correspondence between gaze position and cursor
position.

In our initial implementation described in this article, the
circle sizes and transparencies are chosen by trial and error,
with the goal of maximizing correspondence between natural
gaze and mouse-cursor position. In the example of Figure 2,
we have intentionally made the circles too large, to illustrate
that this makes it too easy to see much of the scene without
having an intention to move the cursor. To reduce the visual
complexity of the display, as well as the complexity of the
parameter space, the radii of circles always increase in uniform
steps. We use a small number of circles, because displaying
greater numbers of circles is more computationally demanding.
Note, circle sizes and transparencies can be adjusted for the
implementation of specific experiments, and might depend,
among other factors, on the content displayed in the videos

Figure 2. Details relating to radial bubbles.

Figure 3. Get ready page: Here participants are asked to move their cursors
inside the boundaries of the present image and then click in order for the
experiment to begin. This is done so that participants’ cursor is located on

the canvas when the experiment begins.

and/or associated research questions with regard to the type of
data researchers intend to collect.

B. Experiment Interface
The interface is Web-based, and implemented with HTML

and JavaScript. The first page shows a short video (unrelated to
the main experiment) and allows participants to freely practice
using the interface without being evaluated.

The second page displays the first frame of the experi-
mental video, in order to familiarize the participants with the
general scene and points of interest, until the participant is
ready to begin the experiment (Figure 3). The participant must
move the mouse into the video canvas and click to begin. This
ensures that the participant’s attention is on the canvas when
the experiment begins.

The third page presents the main experiment interface
(Figure 4). This page includes one HTML canvas, with two
layers. The bottom layer displays the video, and the top layer
contains the semi-transparent overlay (Figure 2).

When the main experiment page has finished loading, a
timer starts, and the video plays automatically. Cursor positions
are detected via JavaScript “mousemove” events, time-stamped
using the timer, and stored in a database. “mousemove” events
report updates to the cursor location when the cursor is moved.
When the video ends, the interface loads a final “thank you”
page, and the experiment is complete.

C. Implementation Details
The implementation uses JavaScript, both in the client

browser, and in a Node.js environment on the server. The
client-side interface makes a secure HTTPS connection with a
Node.js server, using the fetch method. The system continually
transmits timestamped cursor positions to the server. Each
instance of the experiment is assigned a unique ID, which
is bundled with the cursor data, allowing multiple experiments
to run in parallel.

The system stores data using NeDB [36], a widely-used
NoSQL database that is compatible with Node.js. NeDB stores
data in a simple JSON text file. The database stores x and
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Figure 4. The main experiment page. Here participants’ cursor is centered
on the most inner circle of the co-centered circles. With the movement of

the cursor, positioning of the concentric circles is altered, bringing into
focus different elements in the video. In the upper figure the robot’s head is

focused on. In the lower figure the robot’s left hand is focused on.

y coordinates of the cursor, timestamps of the coordinates, a
unique identifier for each Webpage load, and a unique identifier
for each JSON object. These JSON objects are continuously
logged into the database. The unique identifier is created
using the crypto API in the client-side platform. This API
accommodates some cryptographic methods including random
key generation.

IV. RESULTS

To technically test the system and confirm that it works as
expected in a realistic experimental scenario, with a variety
of hardware and browser software, the authors served as
‘participants’ in a mock experiment. We used FocalVid to view
a video (with the duration of 20 seconds) of a simulated iCub
robot [37] performing a sorting task. We viewed the same
video twice, once focusing on the robot’s face (task 1), and
the other time focusing on the robot’s left hand, which was
moving objects into a box (task 2). iCub is an open-source
humanoid robot broadly used by researchers.

Figure 5 shows an example trajectory (horizontal and
vertical mouse positions versus time stamp) from the task 2.
The cursor pauses from time 3064 (ms) to 5232 (ms), at a
location on the robot’s left hand.

Recorded mouse-contingent data was then used to produce
a heatmap (Figure 6). Heatmaps are a visualization method
used to visualize density distributions of points in 2D and
3D settings [38]. This then further confirms that the system
is recording the proper mouse-contingent data at the proper
timestamp. Here, a random frame from the viewed video was
chosen for analysis. A heatmap of the recorded cursor data
belonging to all viewing instances was then produced using
the Seaborn library [39] in Python. This heatmap presentation
illustrates the kernel density estimation for the logged cursor
points in relation to the video frame. As seen in Figure 6, there
are two major areas of interest aligning with the robot’s face
and the robot’s left hand which is moving objects into the box.
Outlier data points can be observed as well.

Figure 5. Data log visualization of recorded mouse-contingent cursor
locations using FocalVid. The axes of the 3D graph represent x, y pixel

coordinates in the video canvas and t, the time in milliseconds since the start
of the video. Note that x & y refer to mouse locations in relation to the

video frame and t refers to the timestamp belonging to that cursor location
recording. An example of dwell of the cursor and hence the clearest visual

region on the robot’s left hand could be seen in this instance.

As another element of the technical evaluation of the sys-
tem, to test the participant cursor and interface correspondence
with the logged data, an additional set of recordings was made

Figure 6. Heatmap of the mouse-contingent points recorded through the first
two experiments using the authors. Here the data adjacent to a single frame
was processed. Two major clusters could be seen, one belonging to the face
area of interest (AOI) and the other belonging to the left hand AOI. Notice
that the hand AOI does not fully align with the hand location, possibly due

to presence of other highly salient features in the vicinity of hand, etc.
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Figure 7. Three samples of the ten ”4corners” experiment iterations
conducted, plotted side by side. Note that the mouse movements could start
immediately at the beginning of the experiment or with a delay, depending

on participants’ initial reaction time.

using the authors while viewing the same iCub video, assigned
with a new task (‘4corners’): The authors were instructed to
move their mouse in a clockwise direction, attempting to get
as close as possible to the four corners of the video frame in
sequence starting from the upper left hand corner followed by
the upper right hand corner and so forth. Example trajectories
can be seen in Figure 7. The corner point cursor data for the ten
recorded experimental instances were then extracted from this
plot. Note that there was some variance around the targets,
as is expected generally. In this case the variance was self-
selected, as the authors were not given instructions about how
to trade off speed and accuracy, or any other task constraints.

The final experiment conducted was the single point ex-
periment. The rationale for this experiment was to assess
the consistency of the system’s performance across different
operating systems, different browsers and screens. What was
tested was if dwell on a specific point in the video frame would
be accurately transmitted and recorded in the database. Authors
were tasked with an experimental setup in which they were
instructed to hover the mouse over the upper left hand edge of
the yellow box present in the iCub video scenario. In order to
achieve precision, cursor pointer was enabled in the interface.
Results were positive attesting to the correct transmission of
the data to database, with single cursor location being recorded
for the entirety of the time cursor was positioned on the yellow
box’s edge.

V. DISCUSSION
This presented platform makes use of opacity instead of

more widely used blurring for the purpose of distinguishing
foveal vs. peripheral vision. Blurring more accurately approx-
imates the difference in human perceptual abilities between
the fovea and the periphery. However, our goal is not to

approximate these differences, but simply to co-ordinate mouse
and gaze locations. Because opacity makes the underlying
image harder to see, we have found in pilot experiments that it
strongly encourages mouse motion close to the gaze position.
It will be an important next step to quantify this tendency, by
comparing mouse and gaze positions in a larger study, using
an accurate eye tracker.

VI. CONCLUSION AND FUTURE WORK
As laid out in this methodology paper, FocalVid could

be used to record and analyze participants’ mouse-contingent
visual selection data which can be used in laboratory studies,
but importantly, is likely to be highly advantageous for online
studies with remote participants. In this article, we detailed
the completed components of the presented system. It should
be noted that the presented system is functional as it stands
to record and conduct the needed analysis of the data. The
immediate expansions would elevate FocalVid to a better-
suited tool for other researchers, with its capability to produce
meaningful simplified outputs that they then could use towards
their research.

A limitation of our approach is that mouse movements are
slower than eye movements, for a given degree of accuracy
[40]. This difference will limit our approach with respect
to rapidly changing scenes. There are also other limitations
associated with the presented system which should be taken
into consideration when using the FocalVid interface:
• Participants can have different mouse types (travel

mouse vs. professional mouse), which affects cur-
sor tracking capabilities. These different mouse types
could lead to variability in points of interest tracking
precision. This should be taken into consideration
when using FocalVid.

• Participants can have different computer screens with
different sizes, contrast ratios and dynamic range.
Differences in screens lead to different visibility in the
semi-transparent region. Calibration protocols might
be needed to compensate for this.

• Participants can have computers with different pro-
cessing power capabilities. Processing power mini-
mum requirements should be in place for participants.

In addition to these system limitations, there is an innate
variability associate with participant populations which should
be taken into consideration when using the FocalVid interface:
• Participants have different hand-eye coordination abil-

ities (e.g. older persons may have deteriorated hand-
eye coordination compared to younger participants,
and other participants may suffer from conditions that
impair hand-eye coordination). This variability should
be taken into consideration while using the FocalVid
platform.

• Participant environmental setting cannot be controlled
precisely in remote studies (some participants might
be much more distracted due to environmental fac-
tors). As such, attention evaluation protocols should be
put in place in conjunction with this system to assess
participant attention and engagement in the task.

The system limitations could be mitigated by future system
improvements such as inclusion of a screen contrast cali-
bration process for the present system. Participant variability
limitations could be mitigated by incorporation of specific
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experimental conditions and participant selection criteria while
utilizing the FocalVid platform.

Immediate future works relating to this project could be
classified into time stamping improvements, in-depth system
verification and data analysis additions. The client-side compo-
nents of the presented system are processing intensive which
could lead to a possibility of lags between produced time-
stamp and video playback. Work is underway to improve
upon the time-stamping method such that in addition to the
present time-stamp, frame count for viewed video frames is
also recorded to the database so that lags could be identified
and adjusted for in the data processing step.

As part of the immediate future steps relating to this
project, experimental participant data would be gathered and
analysed. The authors are planning on testing of the gathered
data against the already labeled Hollywood2 dataset [41].
Regarding data processing, semantic segmentation [42]–[45],
and spatiotemporal data clustering and visualization [46]–[48]
could be explored. Long-term system verification could be in
the context of diversification of testing case scenarios to assess
broader system functionality.
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