
UI Design Pattern Selection Process for the Development of Adaptive Apps

Amani Braham

University of Sousse, ISITCOM

4011 Hammam Sousse, Tunisia

e-mail: amanibraham@gmail.com

Félix Buendía

Universitat Politècnica de Valencia

46022 Valencia, Spain

e-mail: fbuendia@disca.upv.es

Maha Khemaja

University of Sousse

4000 Sousse, Tunisia

e-mail: khemajamaha@gmail.com

Faiez Gargouri

University of Sfax

3029 Sfax, Tunisia

e-mail: faiez.gargouri@isims.usf.tn

Abstract—In User Interface (UI) development, UI design

patterns constitute a crucial solution that helps to resolve

design problems by reusing design knowledge. The diversity of

patterns would require deep developer experience to select

relevant patterns and would make it difficult to apply the right

patterns. This paper proposes an ontology of UI design

patterns that enables a potential UI design pattern selection

process. We focus particularly on the capability of the

Adaptive User Interface Design Pattern (AUIDP) framework

in selecting relevant UI design patterns using both ontological

and ranking reasoning. This is demonstrated through a

service-oriented tool that recommends appropriate patterns.

This tool is evaluated with regard to three main factors,

including the tool‘s usefulness and practicality, the developed

interface quality and the developer productivity. Results show

that the tool enhances developer’s accuracy in terms of

selecting relevant patterns and hastens the UI development

process.

Keywords-Adaptive User Interface; Interface specification

and design; UI design patterns; Ontology model.

I. INTRODUCTION

Currently, smartphones and mobile technologies are in
the process of an ever-increasing development. The
extensive use of mobile devices resulted in a notable increase
in the application development industry. This makes the
mobile application industry a multi-billion dollar industry
[1]. With the increase in the number of mobile applications
(a.k.a. apps), developers face a major challenge related to UI
development. The statistics presented by Myers et al. [2]
reported that the time required for developing user interfaces
reaches 50% of the time needed for software development,
and their corresponding source code includes 48% of the
whole code. These user interfaces are intended to be used by
various users with different profiles and needs, and also
using different types of devices. A study conducted in [3]
showed that 15% of the world’s population has some kind of
disability, which could be physical, cognitive, or sensory.
The great variety of disabilities that users may be affected by
has led to the emergence of adaptive interactive systems [4].
Hence, these systems open up new challenges, as users need

adaptive user interfaces that fit their corresponding
disabilities and requirements. Therefore, this kind of
interface is becoming one of the most dominant part of
adaptive systems. However, its development is not a trivial
task; it presents a high complexity and takes a long time in
such a way that developers often cannot fully cover disabled
user’s needs and preferences. Moreover, developing adaptive
user interfaces requires a multidisciplinary team with a deep
experience in using design knowledge, resolving design
problems, as well as choosing the relevant design solution.
Within this context, UI design patterns are introduced to
support the design of adaptive user interfaces [5], since they
attempt to educate designers to build user interfaces [6].
While hundreds of UI design pattern catalogues have been
developed and published [7], they tend to be overlooked in
practice. The major hurdle in considering these catalogues is
how developers can recognize the relevant patterns for
solving a specific design problem. This is due to the lack of
tools for selecting existing UI design patterns. This might
lead to applicability issues that create difficulties for
developers to properly select and apply UI design patterns,
and makes the design and development of adaptive user
interfaces a time consuming and tedious task. Therefore, it
becomes mandatory to find an intelligent way to handle,
select and use relevant design patterns, to increase the
reusability of design knowledge, to decrease the time and
complexity of the design and development process and,
finally, to improve the quality of adaptive user interfaces for
users with disabilities.

To tackle the above mentioned challenges, the remainder
of this paper presents the Modular UI DEsign Pattern
(MIDEP) ontology that enables a potential UI design pattern
selection process. This ontology is created using a specific
method and augmented with a set of inference rules that
provide intelligent support for developers to integrate
relevant UI design patterns while developing user interfaces.
The selection process is demonstrated through the AUIDP
framework, which allows semantic reasoning over the
proposed ontology in order to deliver UI design patterns that
contribute to the process of developing adaptive mobile
applications for users with disabilities.

242Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

mailto:amanibraham@gmail.com

The rest of this paper is organized as follows. Section II
reports related works that deal with design patterns modeling
methods and UI design patterns in software development.
Section III presents an overview of the AUIDP framework.
In Section IV, we introduce the UI design pattern selection
process. Section V presents the design pattern selection
process as a service-oriented tool. Section VI presents an
evaluation of the developed tool considering three main
factors. Finally, the last section outlines the conclusion and
opens up further research orientations.

II. RELATED WORK

This section goes through existing literature in order to
cover works related to design patterns modeling methods and
UI design patterns in software development.

A. Design patterns modeling methods

The cornerstone of design pattern concept was laid by
Christopher Alexander [8], in late 1970s, to deal with
problems occurring in building architecture and it was
initially defined as “a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution”. Such concept has been used in the Human
Computer Interaction (HCI) field and exploited as an
approach to design and evaluate interfaces [6]. Within this
context, several works proposed their own collections of
design patterns, offering solutions for specific design
problems. The pattern collection presented in [9] is
considered as one of the largest libraries that covers different
kinds of applications including Web and mobile. Likewise,
the Welie’s catalogue [10] includes 131 patterns for
interaction design and particularly for Web design. Besides,
Neil’s collection [7] comes with patterns for mobile
applications. Furthermore, Mushthofa et al. [11] introduced a
set of design patterns for designing websites. Despite the
large numbers of catalogues, patterns are usually expressed
in a traditional text-based representation with different and
inconsistent pattern attributes. To tackle the heterogeneity
issues, some standardization methods have been introduced.
In this sense, pattern languages have been introduced [12].
Nevertheless, these representations are not a satisfactory
solution since applying patterns requires a deep developer’s
comprehension in the context of use of each pattern. This
barrier makes accessing patterns more difficult for
developers. A machine-comprehensive representation is thus
required. In [13], the authors introduce usability patterns
models using ontologies. Furthermore, in [14] a
formalization of Gang of Four’s patterns (GoF) is modeled
by means of ontologies. In [15], the authors reveal the
formalization of Web design patterns based on ontologies. In
[16], Kultsova et al. developed an ontological model of UI
and interface pattern. However, all these works concern the
representation of a set of patterns in a specific area,
considering only its internal structure (e.g., patterns
attributes, and their constraints).

B. UI design patterns in software development

The development of adaptive user interfaces has been
investigated in various software development methods [17].

Nevertheless, there is a lack of effective design knowledge
reuse. The capability of UI design patterns has been
exploited in software development, since they allow
developers to reuse design knowledge [18]. In this context,
both works [19] and [20] are based on UI design patterns for
mobile development and application development,
respectively. Similarly, Coleti et al. [21] exploited the use of
mobile design patterns to support the development of
interfaces. However, in the aforementioned works, patterns
are identified and analyzed manually by developers, which
constitutes a tedious task. So, developers may face ambiguity
in selecting the right patterns. Tools and techniques are then
needed to retrieve relevant patterns and apply them to
support the UI development process.

C. Discussion

In line with this literature review, the proposed work
undertakes three main purposes: i) the specification of design
patterns, ii) the selection of patterns according to specific
design problems, and, iii) their applicability in UI
development process. To this end, we provide a consistent
and formal specification of UI design patterns by using
ontologies. Furthermore, we present a framework that allows
semantic reasoning to retrieve patterns and provides
mechanisms to integrate patterns in the development of
adaptive user interfaces for users with disabilities.

III. OVERVIEW OF THE AUIDP FRAMEWORK

The present framework contributes to the development of
adaptive mobile applications for users with disabilities
following a hybrid approach by combining model-based user
interface development methods with pattern-based methods.
The foundation of the proposed framework relies on the idea
that the user interface can be fully modeled by a set of model
fragments which is able to address a specific instance of UI
design pattern. Therefore, within the AUIDP framework, UI
design patterns constitute the basics for generating the final
user interface. The overall overview of the AUIDP
framework is depicted in Figure 1. It consists of four phases,
including: UI design pattern selection, pattern instantiation,
pattern integration, and, finally, user interface generation.

Furthermore, the AUIDP framework provides an
environment for multidisciplinary teams to design and
implement adaptive user interfaces in a consistent way by
addressing particularly the following main aspects:

Figure 1. Framework overview.

243Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

 Open and accessible: The proposed framework puts
UI design patterns at the fingertips of software
developers/designers so they could be used in
designing and developing the user interface.

 Modular: The user interface development process
within the AUIDP framework is achieved by
composing different UI design patterns.

 Code reuse: The developer has full access to the
source code of the adaptive UI to be developed.
Each UI design pattern that composes the interface is
delivered with the source code corresponding to its
design solution. This aspect speeds up the
development process, fosters reuse and thus reduces
the code that has to be developed.

In this paper, we focus on the UI design pattern selection

process. A detailed description of the component that deals
with the selection process is outlined in the next section.

IV. OVERVIEW OF UI DESIGN PATTERN SELECTION

COMPONENT

The purpose of this component is to automate the
selection process of UI design patterns for specific design
problems within the AUIDP framework. Handling this
process requires mechanisms and methods for searching,
classifying and selecting UI design patterns that will be
further used in future work for developing user interfaces. In
this regard, we rely on a rich repository of UI design
patterns. However, the large number of UI design pattern and
the complex relationships among them is becoming the
primary impediment for recognizing relevant patterns. In
addition to a textual description, a formal representation of
UI design patterns is therefore required as input of the design
pattern selection component. In the subsections below, we
introduce the MIDEP ontology and the methodology used
for the construction of this ontology; then, we examine the
architecture of the component that is adopted for selecting
relevant design patterns.

A. MIDEP ontology

The MIDEP ontology comprises knowledge about UI
design patterns, since the AUIDP framework aims to support
the design of adaptive mobile applications. This ontology
mainly represents the best practices of UI development for
users with special needs and uses information of design
patterns that are introduced in [22]. In order to build the
MIDEP ontology, we adopted the Neon methodology [23]
since it can help to re-engineer non-ontological resources
into ontologies, reuse existing ontologies, and thus assure
modularity that would lead to consider the multidisciplinary
aspect. In this regard, we identify the following three
scenarios, which are extracted from a set of nine scenarios
provided by the Neon method for building the MIDEP
ontology:

 Neon’s scenario 1: From specification to
implementation.

 Neon’s scenario 2: Reusing and re-engineering non-
ontological resources.

 Neon’s scenario 4: Reusing and re-engineering
ontological resources.

Figure 2 illustrates the main steps considered when
building the MIDEP ontology using a combination of the
three aforementioned scenarios. A detailed description of
each phase is outlined below.

1) Ontology requirement specification: The purpose of

this phase is to introduce the ontology scope and motivation.

It articulates the necessity of steps from step 1 to step 6 and

gives as a result a global glossory of terms.

a) Specification: The MIDEP ontology is proposed as a

modeling solution to tackle recurring design problems

related to user interfaces. Within this step, we have

identified a set of informal Computency Questions (CQs)

which are used to evaluate the effectiveness of the ontology

[24]. Some CQ examples are: What are the elements that

compose a design pattern? What solution design pattern will

provide? What are the relationships among design patterns

and user interfaces? Which kind of design problem

information could lead to better decision making for

selecting relevant design patterns? Which kind of

information could help to distinguish patterns that

contribute to the same design problem?

b) Non-ontological resource selection: Several design

pattern collections and catalogues have been developed.

Within this step, patterns that can be used to deal with Web

and mobile applications are reviewed, including the

Tidwell’s library [11], the Welie’s catalogue [12], and

Nilsson’s collection [25].

c) Non-ontological resource re-engineering: For the

aforementioned catalogues, we identified the attributes

adopted for structure design patterns.

d) Ontology selection: An ontology named ONTO [26]

for modeling the user interface is selected within this step.

e) Ontology resource re-engineering: Some concepts,

terms and attributes are extracted from the ontology selected

in the previous step.

Figure 2. Process overview for building MIDEP ontology.

244Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

f) Fusion: This phase aims to blend terms of glossaries

resulted from CQs, design pattern catalogues, and the

selected ontology.

2) Conceptualization: It concerns mainly the definition

of concepts and subconcepts, as illustrated in Figure 3.

3) Formalization: Once classes and subclasses are

defined, a formal model is built. To this end we used

Ontology Web Language version 2 (OWL2) as an ontology

respresentation language.

4) Implementation: The concepts introduced previously

are implemented using the Protégé editor tool.

B. Design pattern selection component architecture

This component incorporates two main modules, namely
the reasoning engine and the ranking calculation engine.
These modules interact among them to deal with the pattern
selection process, as illustrated in Figure 4.

The reasoning engine component takes as input design
problems that address mainly issues related to user
characteristics, as well as interaction design issues [27]. User
characteristic issues concern information about users, by
whom the final interface is intended to be used, including
user’s disability, interest, goal, task, and need. Interaction
design issues are information that comprise scattered data,
bad contrast of colors, and useless interface elements. Once
these issues are acquired from developers, the reasoning
engine provides real time reasoning. It uses the MIDEP
ontology in combination with a set of rules to decide on the
UI design patterns that should be retrieved.

Figure 3. MIDEP Ontology model.

Figure 4. AUIDP partial architecture.

The ranking calculation engine is in charge of refining

the set of design patterns resulted from the reasoning engine.
It computes the similarity between the input design problem
and the problem definition corresponding to design patterns
retrieved from the reasoning engine. To this end, the ranking
calculation engine applies the Cosine Similarity (CS)
measure [28], since it allows computing the similarity of text
documents. The CS values of each design pattern are
calculated using (1), where patterns’ problem and design
problems are defined by a vector of terms and a frequency
vector. For example, in (1), A and B are the frequency
vectors of patterns’ problem and design problems,
respectively. This engine uses the obtained CS values to rank
patterns, and generates the relevant UI design patterns that
have the highest similarity scores.

V. DESIGN PATTERN SELECTION AS A SERVICE

A. Implementation features

In order to implement the selection process, we
developed a service-oriented tool including reasoning and
ranking calculation services. It generates recommendations
of design patterns according to specific design problems
using a set of REpresentational State Transfer (REST) Web
services. To this end, we used the generic reasoner that is
considered as one of the inference engines supported by Jena
and serves as the basis for OWL and Resource Description
Framework Schema (RDFS) reasoners. It mainly exploits a
rule-based engine for reasoning over the proposed ontology
as well as for processing SPARQL queries.

B. Experiments and results

The procedure of design patterns selection phase within
the developed tool can be introduced by the following
experiment: A design problem “DP-1”, that includes
“LowVision” as users’ characteristic issue and “FontSize” as
interaction design issue, is considered in this experiment.

In the first step, the reasoning mechanism enables to
obtain the design patterns’ group, according to “DP-1”. In
this case, the reasoning engine triggers “rule 1” depicted in
Figure 5. As a result, a set of design patterns corresponding
to the selected pattern group is retrieved (Figure 6).

Figure 5. Example of DP rules: Rule1.

245Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

Figure 6. Design patterns instances.

In the second step, a set of design pattern’ instances
generated by the reasoning engine will be refined in order to
retrieve the most relevant design patterns. To this end, the
ranking engine calculates the CS between the design patterns
‘problem and DP-1. Table I presents the resulting CS values.

TABLE I. CS VALUES FOR DP-1

Value
Design Pattern

FontSizeSmall FontSizeMedium FontSizeLarge

 CS 0.316 0.534 0.534

Finally, the ranking engine returns the patterns with the
highest CS score. In this experiment, “FontSizeMedium” and
“FontSizeLarge” are the relevant patterns that are
recommended using our tool to resolve DP-1.

VI. EVALUATION

The developed service oriented tool for selecting design
patterns was evaluated in terms of being effectively usable
by the developer, considering the following factors: the
usefulness and practicality of the tool, the application’s
interface quality, and developer productivity. These factors
constitute the main requirements for the design pattern
selection process. To assess these factors, three main
research questions, were addressed as follows:

 RQ1: How can the tool assess the practicality for
design patterns recommendation?

 RQ2: How well can the developed tool enhance the
developer’s accuracy in using design patterns?

 RQ3: How can the tool hasten the UI development
process?

A. Tool validation (RQ1)

The usefulness and practicality of the proposed tool has
been verified by the development of a hybrid application
named Design Pattern Retrieve Application (DPRA) using
Ionic [29]. This application includes a main menu for
selecting the design problem, as illustrated in Figure 7. It
further covers functionalities to allow a multidisciplinary
team to view and extract relevant design patterns, as
presented in Figure 8 and Figure 9, in order to resolve design
problems.

B. Developer based evaluation (RQ2, RQ3)

1) Experimental setting: An experiment was designed in

which two groups of software developers were invited to

develop a location-based application that is able to track the

user’s current location and locate different points of interest.

Each group consisted of four developers having University

degrees in Computer Science and experience in creating

hybrid applications using the Ionic framework. The first

group, “Group-1”, was asked to develop the application

Figure 7. DPRA main menu.

Figure 8. Design patterns list.

Figure 9. Design pattern Description.

246Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

without any tool. The second group, “Group-2”, was

provided the developed tool to support their application

development. We conducted this study because we wanted

to track the interface quality and developer productivity

factors. The influence on the interface quality and developer

productivity were inspected by measuring the accuracy of

design patterns and by recording UI development time,

respectively. The accuracy is calculated using (2) and scaled

from 0 (0% accurate) to 1 (100% accurate), where the error

rate is the percentage of failed developed interfaces. In (3),

it is assumed that failed interfaces are interfaces that do not

consider appropriate design patterns.

2) Results: The first step consisted in calculating the

accuracy. In this case, the accuracy was about 33% for

“Group-1” and about 88% for the second group, which is

greater than the first accuracy value. These results outline

that the set of design patterns recommended from the

provided tool indeed enhances the accuracy of selecting

relevant design patterns used in the development of UIs.

Hence, the exploitation of the selected patterns makes the

location-based application developped by the second group

better than the application of the first one in terms of

considering a good ergonomic design. The second step was

to measure the amount of time for each group to fulfill the

application development. Results show that the

development time varied among the two groups: for

“Group-1”, the development took 9 days (12h/day, about

108 hours) while “Group-2”, whose implementation method

is based on the proposed tool, has taken only 5 days

(12h/day, about 72 hours). The development time is

dramatically reduced in the second group. This is due to the

fact that the tool permitted “Group-2” to quickly identify

relevant design patterns and extract their corresponding

code and reuse it in the application’s implementation instead

of reinventing the whole application code. In general, these

results indicate that the developed tool has a quite good

impact on enhancing the interface quality, as well as on

increasing developer productivity. Thus, the framework

presented in this work allows a potential selection of design

patterns. However, this framework has some limitations

since the design pattern selection process is restricted to

some UI design patterns. This lack can increase the

development rework as well as the inability to adapt to

changing disabled user’s needs.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented an ontology for UI
design pattern specification. Subsequently, we have
introduced the AUIDP framework’s main components,
which concern the UI design pattern selection phase,

including the reasoning and the ranking calculation engines.
Such phase is implemented using a service oriented tool and
evaluated considering the tool’s usefulness and practicality,
the interface quality, and the developer productivity. The
experimental results, obtained in this work, consolidate the
efficiency of the developed tool in terms of enhancing
developer’s accuracy in selecting relevant patterns and
increasing developer productivity. As part of future work, we
intend to generate adaptive UIs by using design patterns. So,
we will target our emphasis on covering phases that follow
the selection phase within the AUIDP framework. To
address the limitation of the proposed framework, we will
further extend the MIDEP ontology to cover the
heterogeneity of design patterns and we will work on
enhancing the developed service oriented tool functionalities.

REFERENCES

[1] Mobile application revenue generation. [Online]. Available
from: https://www.abiresearch.com/press/tablets-will-
generate-35-of-this-years-25-billion-/ [retrieved: December,
2019].

[2] B. A. Myers and M. B. Rosson, “Survey on user interface
programming,” In Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 195-202, 1992.

[3] World Health Organization, World health statistics 2016:
monitoring health for the SDGs sustainable development
goals, World Health Organization, 2016.

[4] P. Brusilovski, A. Kobsa, and W. Nejdl, “The adaptive web:
methods and strategies of web personalization,” Springer
Science & Business Media, 2007.

[5] M. Peissner, D. Häbe, D. Janssen, and T. Sellner, “MyUI:
generating accessible user interfaces from multimodal design
patterns,” In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems,
pp. 81-90, 2012.

[6] C. E. Wania, “Exploring Design Patterns as Evaluation Tools
in Human Computer Interaction Education,” MWAIS 2019
(9), 2019.

[7] T. Neil, “Mobile design pattern gallery: UI patterns for
smartphone apps,” “O'Reilly Media, Inc.”, 2014.

[8] C. Alexander et al., “A pattern language,” Gustavo Gili, pp.
311-314, 1977.

[9] J. Tidwell, “Designing interfaces: Patterns for effective
interaction design,” O'Reilly Media, Inc., 2010.

[10] M. van Welie, “Patterns in Interaction Design. [Online].
Available from : http://www.welie.com [retrieved: December,
2019].

[11] D. Mushthofa, M. K. Sabariah, and V. Effendy, “Modelling
the user interface design pattern for designing Islamic e-
commerce website using user centered design,” In AIP
Conference Proceedings, AIP Publishing LLC, vol. 1977, no.
1, pp. 020022, 2018.

[12] Y. Pan and E. Stolterman, “Pattern language and HCI:
expectations and experiences,” In CHI'13 Extended Abstracts
on Human Factors in Computing Systems, pp. 1989-1998,
2013.

[13] S. Henninger and P. Ashokkumar, “An ontology-based
infrastructure for usability design patterns,” Proc. Semantic
Web Enabled Software Engineering (SWESE), Galway,
Ireland, pp. 41-55, 2005.

[14] H. Kampffmeyer and S. Zschaler, “Finding the pattern you
need: The design pattern intent ontology,” In International
Conference on Model Driven Engineering Languages and
Systems, Springer, Berlin, Heidelberg, pp. 211-225, 2007.

247Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

https://www.abiresearch.com/press/tablets-will-generate-35-of-this-years-25-billion-/
https://www.abiresearch.com/press/tablets-will-generate-35-of-this-years-25-billion-/
http://www.welie.com/

[15] S. Montero, P. Díaz, and I. Aedo, “Formalization of web
design patterns using ontologies,” In International Atlantic
Web Intelligence Conference, Springer, Berlin, Heidelberg,
pp. 179-188, 2003.

[16] M. Kultsova, A. Potseluico, I. Zhukova, A., Skorikov, and R.
Romanenko, “A two-phase method of user interface
adaptation for people with special needs,” In Conference on
Creativity in Intelligent Technologies and Data Science,
Springer, Cham, pp. 805-821, 2017.

[17] I. Jaouadi, R. Ben Djemaa, and H. Ben Abdallah, “Interactive
systems adaptation approaches: a survey,” In Proceedings of
the 7th International Conference on Advances in Computer-
Human Interactions ACHI, pp. 127-131, 2014.

[18] P. Cremonesi, M. Elahi, and F. Garzotto, “User interface
patterns in recommendation-empowered content intensive
multimedia applications,” Multimedia Tools and
Applications, vol. 76, no. 4, pp. 5275-5309, 2017.

[19] T. Wetchakorn and N. Prompoon, “Method for mobile user
interface design patterns creation for iOS platform,” In 2015
12th International Joint Conference on Computer Science and
Software Engineering (JCSSE), IEEE, pp. 150-155, 2015.

[20] C. A. Cortes-Camarillo et al., “EduGene: a UIDP-based
educational app generator for multiple devices and
platforms,” International Journal of Human–Computer
Interaction, vol. 35, no. 3, pp. 274-296, 2019.

[21] T. A. Coleti et al., “Design Patterns to Support Personal Data
Transparency Visualization in Mobile Applications,”
International Conference on Human-Computer Interaction,
Springer, Cham, pp. 46-62, 2019.

[22] A. Braham, F. Buendía, M. Khemaja, and F. Gargouri,
“Generation of Adaptive Mobile Applications Based on
Design Patterns for User Interfaces,” In Multidisciplinary
Digital Publishing Institute Proceedings, vol. 31, no. 1, pp. 19,
2019.

[23] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-
López, “The NeOn methodology for ontology engineering,”
In Ontology engineering in a networked world, Springer,
Berlin, Heidelberg, pp. 9-34, 2012.

[24] M. Grüninger and M. S. Fox, “Methodology for the design
and evaluation of ontologies,” 1995.

[25] E. G. Nilsson, “Design patterns for user interface for mobile
applications,” Advances in engineering software, vol. 40, no.
12, pp. 1318-1328, 2009.

[26] M. Ansarinia. User Interface Ontolog. [Online]. Available
from: https://old.datahub.io/dataset/ui [retrieved: December,
2019].

[27] W. Iftikhar et al., “User Interface Design Issues In HCI,”
International journal of computer science and network
security, vol. 18, no. 8, pp. 153-157, 2018.

[28] A. Huang, “Similarity measures for text document
clustering,” In Proceedings of the sixth new zealand computer
science research student conference (NZCSRSC2008),
Christchurch, New Zealand, vol. 4, pp. 9-56, 2008.

[29] Ionic Framework. [Online]. Available from :
https://ionicframework.com/ [retrieved: January, 2020].

248Copyright (c) IARIA, 2020. ISBN: 978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions

https://old.datahub.io/dataset/ui

