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Abstract—Many elderly people have a high probability to
become patients with cognitive dysfunction. They could show
symptoms of attention disorder as well as execute function
disorder. These symptoms may cause unsafe driving in their
daily lives. The degree of these symptoms can be evaluated
through neuropsychological examination. However, the
correspondence relationship between these symptoms and
unsafe driving is uncertain. To address this challenge, we are
developing an unsafe-driving detection system, which requires
a few small wireless sensors to be attached to a driver and a
steering wheel. Because many patients with cognitive
dysfunction show symptoms of attention disorder, it is
generally assumed that they tend to be careless with safety
checking actions. Based on this assumption, we analyzed
driver’s checking actions at intersections. In our experiments,
14 patients with cognitive dysfunction and 13 adults without
cognitive dysfunction were evaluated while driving a real car.
Video analysis of the experiment focused on left turn collision
checking and left-right safety checking. Some results of the
analysis indicate that the number of safety checking actions
performed by patients with cognitive dysfunction is confirmed
to be significantly lower than those by adults without cognitive
dysfunction. Using the result of this analysis, we decided to use
a sensor-based safety-checking action detection method based
on calculations from wireless sensors. With this method, all
safety checking actions at left-turn intersections were
calculated. While the threshold value was decided between -
37.5 to -27.5 degrees, some relationships regarding safety-
checking between the patients with cognitive dysfunction and
the adults without cognitive dysfunction are found using the
chi-square test. The interactive evaluation system of safety-
checking actions in intersections which enables the feedback
for drivers can be constructed using the proposed sensors and
evaluation method.

Keywords - Cognitive dysfunction; Wearable Sensor; Safety
Checking Action; Driving Skill.

I. INTRODUCTION

When a part of our brain is affected by apoplexy, a brain
tumor or injury to the head, cognitive dysfunction symptoms,
including attention disorder and execute function disorder,
may appear. Although these symptoms can be improved
through medical treatment, it may be dangerous for the
patient to drive a car as part of his/her daily life, depending
on the degree of the symptoms.

In Japan, under road traffic law, a driving license can be
suspended or cancelled in cases of problems with

recognition, judgement or operation which are identified
through aptitude tests. However, there are no standard
guidelines for judging the driving aptitudes of patients with
cognitive dysfunction.

Shino et al. [1] revealed in their research that they found
that the elderly drivers who belong to the Mild Cognitive
Impairment (MCI) group had lower divided attention and
alternating attention than the elderly of the non-MCI group.
These elderly people were evaluated using Mini-Mental
State examination Test (MMSE), Wechslor Memory Scale-
Revised logical memory test (WMS-R) and the data from
driving recorders.

Park et al. [2] investigated the association between unsafe
driving performance and cognitive-perceptual dysfunction
among elderly drivers. In this research, the authors revealed
that unsafe driving performances are more prevalent among
elderly drivers than among younger drivers and unsafe
performances in steering operation are associated with
cognitive-perceptual dysfunction. They compared these
findings with the result from Cognitive-Perceptual
Assessment for Driving (CPAD) and the data from virtual
reality-based driving simulator research studies.

These research studies show that higher cognitive
dysfunction is related to unsafe driving. Therefore, in some
hospitals, neuropsychological examinations such as MMSE
or WMS-R are used to evaluate the severity of the
symptoms; however, the correspondence relationship
between these symptoms and unsafe driving is uncertain [3].

Driving simulators are used to measure the reaction time
to sudden dangers on the road and avoidance operations such
as braking and steering [4]-[6]. However, such driving
simulators do not provide a sense of acceleration and
deceleration to the users, and the visual resolution and
coverage angle of the display are limited. There simply is a
certain gap between real and virtual driving.

To solve this problem, Tada et al. [7] used a real car and
attached 3-dimensional acceleration and gyro sensors to the
wrists of the drivers. The study revealed that there were
some differences between the expert and the beginner drivers.
By attaching these sensors to the toe and the head of the
driver, it was clear that the general drivers’ driving technique
can be evaluated and more than 80% evaluation points
corresponded with the point that was indicated by the safety
driving instructor [8]. The system that was used in this
experiment was commercialized [9]. However, this system
was only used for evaluating the driving technique of general
drivers under experimental conditions.
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In order to adapt this system for cognitive dysfunction
patients who want to restart driving, we have been
developing an unsafe-driving detection system [10]. It is
installed in real cars and captures the cognitive dysfunction
driver’s behaviors using wearable wireless motion sensors
and a Global Positioning System (GPS) sensor. For lane
changing operations, deceleration for planned slowdown
[11], and safety checking when parking [12], the unsafe-
driving detection system has demonstrated its ability to
separate patients with cognitive dysfunction from adults
without such dysfunction.

In this study, we focus on the differences in safety
checking actions at intersections. Using the results of video
analysis with patients' driving data acquired from
experiments conducted on a specially designed private
course, the method which enables us to separate the patients
with cognitive dysfunction and adults without cognitive
dysfunction was decided and the results are presented. In
Section 2, we introduce several examples of research that
support the background of the research field, and describe
the positioning of our research. In Section 3, we describe the
materials that were used in our experiment and the method
concerning how to calculate an effective value to facilitate
the analysis of driver behavior from the sensor data. In
Section 4, we show the experimental design and the
participants’ information. In Section 5, video-based and
sensor-based results are shown, respectively. In Section 6,
we describe the results and considerations of the experiment.
In Section 7, we conclude this research with future prospects.

II. RELATED WORKS

Using a real car, evaluations of unsafe driving caused by
the symptoms of cognitive dysfunction have been conducted.
To detect unstable driving, Sumida et al. [13] measured the
triaxial angular velocity and acceleration of real cars at a
driving school using a 3-dimensional acceleration sensor, a
gyro sensor and GPS. Unstable driving was detected on both
curved roads and straight roads. Chin et al [14] tried to
facilitate safe behaviors with social support. In this research,
only 3-dimensional acceleration sensors and gyro sensors
were used to detect unsafe driving. In both studies, the
authors used a real car with sensors. However, the motions of
the car do not always represent unsafe driving. Bi et al. [15]
revealed in their research that unsafe driving of elderly
drivers can be detected with a sensor which included 3-
dimensional acceleration and gyro sensors and was attached
to both wrists of the drivers like a watch. However, the
unsafe driving which can be detected with these sensors is
limited to the behavior of some motions of the driver’s arms.

III. THE CALCULATION OF SENSOR ANGLES TO DETECT

SAFETY CHECKING ACTION

Figure 1 shows the small wireless wearable motion
sensors used in our unsafe-driving detection system. The
sensors are parts that were manufactured using the Objet
system [9][10]. All sensors are synchronized and can
measure triaxial angular velocity and acceleration. The black
sensor box also holds the GPS sensor. Figure 2 shows the

sensors attached to the driver’s head, wrist and right leg toe,
as well as the car’s steering wheel and dashboard, to measure
their movements. These sensors were used under the
approval of the ethics committee of The Toyama Prefectural
University, Japan. In this paper, we focus on the differences
in safety checking actions at intersections, and only the
sensor on the head and the car were used in this analysis. The
relative yaw angle of the subject’s head was used to evaluate
the safety-checking action. This angle value was calculated
from the head and car body yaw angle, and the calculation
method of the yaw angle value is shown below.

Figure 1. Wireless wearable motion sensors.

Figure 2. Attached position of sensors.

The sensor measures the three dimensional angular
velocity (ωx, ωy, ωz) and the three dimensional acceleration
(ax, ay, az) at the interval time Δt. We adopt the kalman filter
method to calculate the attitude of the sensor to the ground
from those data. By defining four real numbers (t, x, y, z) in
the quaternion which represents the sensor direction as the
system state of the kalman filter, the sensor direction can be
calculated by the iteration of the following steps:

<Prediction step>
As the sensor attitude changes by the angular velocity of

the sensor, the predicted sensor attitude xk|k-1=(tk|k-1, xk|k-1, yk|k-

1, zk|k-1)
T is given from the previous sensor attitude xk-1|k-1=(tk-

1|k-1, xk-1|k-1, yk-1|k-1, zk-1|k-1)
T by

 xk|k-1Fxk-1|k-1 

where F is the state transition matrix which is calculated
from the angular velocity and the interval time.

<Update step>
As the predicted sensor attitude can be corrected by the

observed gravity direction, the updated sensor attitude xk|k is
calculated by

 xk|k = xk|k-1+K y, 

Wireless Sensors
GPS
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where K is the kalman gain, and y is the measurement
residual which is calculated from the acceleration and the
predicted sensor attitude. The updated sensor attitude xk|k

becomes the previous values of the next step.

We can calculate the sensor attitude xk|k (k=1,2,3…) by
the iteration of the above steps from the initial sensor attitude
x0|0 =(1,0,0,0)T, and the yaw angle k for each of the steps is
calculated from the sensor attitude by

 k = . 

This yaw angle is clockwise, so the value of the car body
sensor is increased when the car turns right, and vice versa.
As the yaw angle is based on the ground, the head direction
in the car is calculated by subtracting the yaw angle of the
car body sensor from the yaw angle of the head sensor.

IV. EXPERIMENT THROUGH A SPECIALLY DESIGNED

DRIVING COURSE

A private course was designed at Toyama Driving
Education Center, Japan, for the purpose of video analysis
for safety-checking actions and acquiring the sensor data for
objective evaluation. The experiment was conducted with the
subjects equipped with wearable wireless sensors shown in
Figure 1 while driving real cars on a private course. Figure 3
shows the top view of the private course designed for the
experiment. The course includes several road types such as
T-shaped, cross-shaped, and signalized/non-signalized,
with/without stop sign, and roads with several kinds of speed
limits. The course takes 10–15 minutes to drive. There are
four types of turnings at T-shaped intersections (shown in
Figure 4). In this study, type ①/② are called left/right turn at
T-junction and type ③/④ are called right/left turn at branch.
The intersections with turnings are selected for analysis
because no safety checks were necessary at many of the
intersections without turnings. Table 1 shows all types of
intersections on the private course. In Table 1, ①, ②, ③,
and ④ are denoted by LT, RT, RB, and LB, while the right
and left turn at the cross intersections are denoted by RC and
LC, respectively.

Figure 3. Specially designed private course.

Figure 4. Types of in-out directions at T-shaped intersection on the course.

TABLE I. ATTRIBUTE OF EACH INTERSECTION

Intersection 1 2 3 4 5 6 7 8 9
Type RB LB RT RB LT LC LT LB LT

Intersection 10 11 12 13 14 15 16 17 18
Type LB LC LB LT RC LT LB RT RT

The subjects were males and females between 20 – 60
years old and consisted of 14 patients with cognitive
dysfunction and 13 adults without cognitive dysfunction. All
14 patients had various cognitive dysfunction symptoms and
were positioned border-line to be allowed to restart driving
after the examination in the hospital. The experiments were
conducted with all the sensors shown in Figure 1. Multiple
video cameras were installed inside and outside the car to
record the driving behavior in detail. These video cameras
recorded a front, side, and back view of the cars and drivers.

V. ANALYSIS USING THE RECORDED VIDEO

When crossing an intersection, checking for left-turn
collision accident and left and right checking are essential.
The former is necessary only when turning left since we
have left-hand traffic in Japan, and the latter is necessary at
all intersections except when checking for the left at RB, and
the right at LB intersections. Therefore, 45 checking actions
are necessary on the private course. From the preview of the
video, the following hypothesis was established: the number
of safety actions carried out by patients with cognitive
dysfunction is significantly lower than the ones by adults
without cognitive dysfunction. Experiments were conducted
under the approval of the ethics committee of the Toyama
Prefectural University. The video analysis for all 45
checking points was performed by six adult evaluators with
valid driving licenses who are accustomed to driving in their
everyday lives. These evaluators belong to the same
organization as the authors and they are not related to this
study. Table 2 shows the results of each evaluation by video
analysis with T-test. One of the results indicates a significant
difference (p < 0.05) and 2 results indicate a tendency of
difference (p < 0.1) between the patients with cognitive
dysfunction and the adults without cognitive dysfunction.
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TABLE II. T-TEST RESULT

evalu
ator#

T-test (for all checking
on all intersections)

T-test (for left checking
on left-turn)

1 t(25) = 2.105, p = 0.023 t(25) = 1.912, p = 0.033
2 t(25) = 1.665, p = 0.054 t(25) = 2.206, p = 0.018
3 t(25) = 1.458, p = 0.079 t(25) = 1.806, p = 0.042
4 t(25) = 0.455, n.s. t(25) = 1.158, n.s.
5 t(25) = 0.517, n.s. t(25) = 0.906, n.s.
6 t(25) = 0.122, n.s. t(25) = 0.546, n.s.

As a result of video analysis, it was clear that when the
drivers check for left-turn collision, they also do left forward
checking. Table 2 also shows the result of the T-test which
calculated the significance of drivers’ behavior focusing on
the safety checking for left on left-turn. This result indicates
that focusing on left side checking on left-turn leads to a
significant difference between the patients with cognitive
dysfunction and adults without cognitive dysfunction on
safety-checking. Almost all of the safety checking actions at
intersections are done before the entrance into the
intersections and there is a tendency for the head angle to
become bigger as the drivers approach the intersection.

For the reasons mentioned above, the safety checking
detection sequence for left-turn intersections was decided to
be as follows.

Step 1. Determination of the time range before and after the
intersection.
To extract the sensor data including the safety-
checking motion for left/right-turn from the data of
the whole course, the time range before and after the
target intersection is determined from GPS data
according to the following criteria.
[start time: Ts] The time of GPS data nearest to the

point that is 30 m before entering the target
intersection or the point that is 5 m after exiting the
previous intersection closer to the target
intersection.

[end time: Te] The time of GPS data nearest to the
point that is 5 m after exiting the target intersection.

Step 2. Estimation of the straight-running direction before
entering the intersection.
When the driver performs the safety checking before
entering the intersection, it is thought that the car is
going straight or has stopped and the direction of the
car does not change. To extract such straight-running
range, the straight-running direction of the car is
estimated by the following steps.
(1) Calculate the weighted average direction d0 from

the yaw angle of the car as follows:

d0 = , 

where

w0k = , 

and Tk is the time of the data and  is the
experimentally determined value from the
standard deviation of the car yaw angle. In this
weight value, the component before the
exponential emphasizes the first section of the
time region and the component of the
exponential emphasizes the direction at the time
of straight-running.

(2) Calculate the modified weighted average
direction d1 as follows:

 d1 = , 

where

 w1k = , 

and 1 is the experimentally determined value
from the angle region of the next step. This
calculation pulls the angle d1 to the most
frequently appeared angle near d0, and the most
frequently appeared angle means that the car was
going into that direction for the most part.

Step 3. Extraction of the time range of the straight-running
before entering the intersection.
Due to the influence of the sensor noise, the
calculation error and the natural small steering offset
of the car, the calculated direction of the car is not
completely constant even if the driver thinks that the
car is going straight. So, we determine the time range
of the straight-running from the point when the car
direction enters within degrees to the point when
the car direction becomes more than degrees.

Step 4. Extraction of the angle of left-checking
The head direction of the car can be calculated by
subtracting the car yaw angle from the head yaw
angle. We define the angle of left-checking as the
minimum of the head direction in the range of the
straight-running before entering the intersection and
the angle of the right-checking as the maximum of
that.

The safety-checking angle that was calculated according
to the above sequence may have the drift error which was
caused by the sensor. To decrease the effect of the drift error,
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drivers head angle was reset when drivers looked toward the
front every time they came close to the intersections.

VI. DETECTION WITH UNSAFE-DRIVING DETECTION

SYSTEM

We processed the sensor data with the method shown in
Section V and obtained the left-checking angles of the left
turn. There are 27 subjects and 12 left-turn intersections in
the course, but one intersection of one subject was excluded
because he took the wrong turn at the intersection. In
addition, in order to exclude cases when the car did not go
straight for a sufficient amount of time before the
intersection, we decided not to include data collected in cases
when Step 3 of the previously mentioned method was less
than 3 seconds. There were 18 cases that were under 3
seconds out of the 323 left-turn intersections; therefore, 305
cases were analyzed.

Assuming a threshold head angle can determine the
safety checking actions, the relationship between the safety
checking count was measured by the threshold angle and the
driver’s status. Patients with cognitive dysfunction or adults
without cognitive dysfunction were tested from the threshold
angle values of -60 to -15 degrees. Figure 5 shows the result
of the chi-square test. It indicates that there is some
relationship while head angle values are between -27.5 to -
37.5 degrees. The T-test was performed to the ratio at which
the person did their safety checking at the angle over/under -
32.5 degree. Consequently, a significant difference was
confirmed between the patients with cognitive dysfunction
and adults without cognitive dysfunction t(20) = 1.8276, p
=0.0413 < 0.05.

Figure 5. Wireless wearable motion sensors.

VII. DISCUSSION

According to the results from the experiment, we
conclude that the patients with cognitive dysfunction and
adults without cognitive dysfunction can be separated by the
head angle value just before the intersections. However,
there are some differences between the results of the video-

based subjective evaluations and the results of the sensor-
based evaluations. The designed private course had various
kinds of intersections in terms of shape, signalized/non-
signalized, with/without stop sign, road width, speed limits,
the time allowance to do safety-checking, and so on. By
focusing on each feature, the differences between the two
groups can be even clearer. The data is not sufficient for
making satisfactory combinations with these features.
Therefore, a further study that focuses on the effective
combination of the features is expected to contribute to the
supplement amount of data for distinguishing the two
groups. It can also be concluded that the head angle
movement threshold value calculated from the sensors can
be used to separate the two groups. This study has not yet
clarified the reasons for -37.5 to -27.5 degree as the best
angle for separation. This leads to the hypothesis that the
driver’s safety checking is less than these values or includes
many indirect checkings by way of the mirror or the
checkings done with more eye movements and less head
movements. This can be examined in a further studies using
an eye-tracking system to analyze the driver’s safety-
checking actions in detail. In addition, the proposed safety
checking action detection method may need changes. The
angle calculation method which is shown in Section Ⅲ may 
have a calculation error, because it calculates under the
assumption that gravity acceleration is always constant and
the direction is always 90-degree angle to the ground. This
can cause errors when the car is accelerating or turning.
Also, the accuracy of each parameter explained in Section Ⅴ 
for detecting the safety checking action, requires adequate
improvements for the effective detection. At the moment,
manual resetting of the driver’s head angle on every
intersection is required. In order to reset automatically, the
average head angle before the intersections can be used in
future works.

VIII. CONCLUSION

This paper presented an unsafe-driving detection
system. We conducted experiments equipped with video
cameras and wearable wireless motion sensors using real
cars. It was discovered that the safety checking actions of
patients with cognitive dysfunction can be significantly
confirmed by conducting a subjective evaluation and sensor
based calculation with a basic set of checking actions.

ACKNOWLEDGMENT

We would like to thank Toyama Driving Education
Center and Toyama rehabilitation Hospital and ATR-
Sensetech Corporation for the cooperation in the
experiments. This work was supported by JSPS KAKENHI
Grant Number 15K01472.

REFERENCES

[1] M. Shino, M. Nakanishi, R. Imai, H. Yoshitake, and Y. Fujita,
Investigation of Driving Behavior and Cognitive Ability

233Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions



Concerning Planning Process during Driving of Elderly
Drivers, International Journal of Automotive Engineering,
vol. 9, No. 3, pp. 138-144, 2018.

[2] S. Park et al., "Association Between Unsafe Driving
Performance and Cognitive-Perceptual Dysfunction in Older
Drivers," PM&R, vol. 3, no. 3, pp. 198-203, 2011,
doi:10.1016/j.pmrj.2010.12.008.

[3] A. Schanke and K. Sundet, “Comprehensive Driving
Assessment: Neuropsychological Testing and On‐road 
Evaluation of Brain Injured Patients”, Scandinavian Journal
of Psychology, vol. 41, Issue 2, pp. 113-121, 2000.

[4] T. Tanaka et al., "Driver Agent for Encouraging Safe Driving
Behavior for the Elderly", In Proceedings of the 5th
International Conference on Human Agent Interaction (HAI
'17), pp. 71-79, 2017, doi: 10.1145/3125739.3125743.

[5] I. Jonsson, M. Zajicek, H. Harris, and C. Nass, "Thank You, I
Did Not See That: In-car Speech Based Information Systems
for Older Adults, CHI '05 Extended Abstracts on Human
Factors in Computing Systems, pp. 1953-1956, 2005,
doi:10.1145/1056808.1057065.

[6] A. E. Akinwuntan, J. Wachtel, and P. N. Rosen, “Driving
simulation for evaluation and rehabilitation of driving after
stroke”, J. of Stroke and Cerebrovascular Diseases, vol. 21,
Issue 6, pp. 478-486, 2012, doi:
10.1016/j.jstrokecerebrovasdis.2010.12.001.

[7] M. Tada et al., “A Method for Measuring and Analyzing
Driving Behavior Using Wireless Accelerometers”, The
IEICE transactions on information and systems (Japanese
edition) J91-D(4), pp. 1115-1129, 2008 (in Japanese).

[8] M. Tada, M. Swgawa, M. Okada, K. Renge, and K. Kogure,
“Automatic Evaluation System of Driving Skill Using
Wearable Sensors and Its Trial Application to Safe Driving

Lecture”, The IEICE Technical Repport, vol. 108, no. 263,
PRMU2008-88, pp.1-6, Oct. 2008 (in Japanese).

[9] Objet, https://www.sensetech.jp/service.html
[retrieved:01/2020] (in Japanese)

[10] T. Toriyama et al., “A Study of Driving Skill Evaluation
System Using Wearable Sensors for Cognitive Dysfunction”,
IEICE Tech. Rep., vol. 113, no. 272, WIT2013-48, pp. 29-34,
Oct. 2013 (in Japanese).

[11] T. Toriyama, A. Urashima, and Yoshikuni, Detection System
of Unsafe Driving Behavior Significant for Cognitive
Dysfunction Patients, HCI International 2017 – Posters’
Extended Abstracts. HCI 2017. Communications in Computer
and Information Science, vol. 713, pp. 391-396, 2017.

[12] T. Toriyama, A. Urashima, and T Kanada, Detection of
Checking Action on Parking Significant for Cognitive
Dysfunction Patients, HCI International 2018 – Posters’
Extended Abstracts. HCI 2018. Communications in Computer
and Information Science, vol. 713, pp. 404-409, 2018.

[13] Y. Sumida, M. Hayashi, K. Goshi, and K. Matsunaga,
“Evaluation of Unstable Driving Using Simple Measurement
Device on Driving Behavior”, Information Processing Society
of Japan, vol. 57, No. 1, pp. 79-88, 2016 (in Japanese).

[14] H. Chin, H. Zabihi, S. Park, M. Y. Yi, and U. Lee,
"WatchOut: Facilitating Safe Driving Behaviors with Social
Support", In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems
(CHI EA '17), pp. 2459-2465, 2017, doi:
10.1145/3027063.3053188

[15] C. Bi et al., "SafeWatch: A Wearable Hand Motion Tracking
System for Improving Driving Safety", 2017 IEEE/ACM
Second International Conference on Internet-of-Things
Design and Implementation (IoTDI), Pittsburgh, PA, USA pp.
223-232,2017.

234Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions


