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Abstract—Various kinds of vibrotactile information have been
recorded from real textures and used to present high-quality
tactile sensations via tactile displays. However, it is unrealistic to
collect large amounts of vibrotactile data under many different
conditions. Thus, we develop a method whereby recorded data
can be changed to represent conditions differing from those at
the time of initial recording. In the first step, we construct a
data generation model using a Generative Adversarial Network
(GAN). The model makes simple calculations and generates un-
known data from recorded acceleration data obtained by rubbing
real objects. The model can generate three-axis, time-series data.
To evaluate the quality of the data generated, we devised a
string-based tactile display and presented generated vibrotactile
information to users. Users reported that the generated data were
indistinguishable from real data.

Keywords—Acceleration; Generative Adversarial Networks; Vi-
brotactile Display.

I. INTRODUCTION

Currently, various tactile displays have been developed, and
a lot of applications that enable users to touch virtual objects
are released. The quality of such applications is measured by
the extent of realism felt when the virtual objects are touched.
It is difficult to create realistic tactile sensations. In particular,
realistic surface reproduction is challenging because touching
is bidirectional, thus affected by object condition. If the
object surface, physical characteristics, or rubbing speed differ
between the contactor and the contacted object, the induced
phenomena differ. To ensure high-quality tactile sensation, it
is necessary to collect and analyze data under various condi-
tions [1][2]. However, many conditions were not addressed in
the cited works. For example, Strese et al. [2] collected six
types of data (accelerations, pressures, temperatures, images,
sounds, and magnetic field powers) for 108 textures, under
various conditions, using a pen-type device. However, there are
many more than 108 textures, and not all rubbing directions
or contact angles were explored.

To solve this problem, our method eliminates the need
for vibrotactile signal data from real objects; vibrotactile
stimulation is created employing existing recorded data on
real textures. We do not collect data from real objects; we
generate alternative data under conditions different from those
at the times of the original recordings. This reduces the cost of
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data collection and greatly expands the utility of vibrotactile
displays.

In the first step, we generate vibrotactile acceleration data
by acceleration data collected from rubbing real objects. The
generated data can be used as output signals for vibrotactile
displays [3][4]. Today, accelerometers are both small and
inexpensive; a collection of acceleration data is simple. Thus,
we use the data to generate new data with the aid of a
Generative Adversarial Network (GAN) [5]. GANs generate
images that find many applications in super-resolution [6]
and audio synthesis; some sounds are very similar to the hu-
man voice [7][8]. GANs can generate high-quality time-series
data. Our data generation model is based on WaveGAN [7],
which was developed for audio synthesis. We generate nine
types of time-series data based on real textures. We create
data spectrograms to evaluate realism. We perform a user
study employing a vibrotactile display to evaluate whether
the vibrotactile stimuli were realistic. We explored whether
it was possible to mix the characteristics of two textures by
combining two types of label data in the input.

Our principal contribution is that we generate time-series
data using a GAN originally developed for audio synthesis.
The training data of the model are accelerations recorded by
rubbing real objects. Our model has a simpler architecture than
an earlier model [9], and thus requires fewer computational
resources. We generate three-axis time-series data for vibro-
tactile displays that require more than two datasets [3]. The
three-axis data facilitate the analysis and recognition of tactile
signals.

The structure of this paper is as follows. This section
describes the purpose of our research and our approach. In
Section II below, we review related work. Section III describes
our model architecture; Section IV deals with data generation.
Section V describes the user study. Section VI presents a pre-
liminary experiment on multi-label (merged) data generation.
Section VII draws conclusions and describes our future plans.

II. RELATED WORK

Vibrotactile displays reproduce real textures, including
the mechanical vibrations of actuators [10], electrostatic
forces [11], and so on. Some real-object data are available,
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but a complete dataset would be unimaginably large. We
initially use a GAN to generate data based on the three-
axis accelerations of real textures. GANs are machine-learning
models generating images that may be simple or complex;
the latter include super-high-resolution images [6] and images
translated from other images [12]. A GAN features a generator
and a discriminator that, respectively, generate and classify
training and test data. The discriminator accurately classifies
the two types of data. The generator creates data that the
discriminator cannot initially classify. After repetitive training
of the generator and the discriminator, the generator generates
data that are almost the same as the training data.

A few scholars have used GANs to generate data for tactile
displays. Ujitoko et al. [9] employed a GAN generating time-
series data equivalent to texture images. The model featured
an encoder and a generator that, respectively, transformed
texture images into labeled vectors and generated spectro-
grams using the recoded accelerations and the labels. The
spectrograms were transformed into tactile signals for pen-type
vibrotactile displays. The model generated nine types of high-
quality, one-axis time-series data that only found applications
in simple (i.e., pen-type) vibrotactile displays. It appeared that
the computational demand was high; the model featured many
neural networks. Our model is simpler than the model, and we
generate three-axis acceleration data that are available for more
types of situations (e.g., displaying, analyzing, and recognizing
the vibrotactile signals) than one-axis data. We employ a GAN
originally developed for audio synthesis; some such GANs
generate high-quality sounds [7][8]. Acceleration data, like
sounds, are time-series data. Specifically, we employed the
WaveGAN of Donahue et al [7]. The model architecture is
simple. However, Donahue et al. were concerned that spectro-
grams served as both inputs and outputs; it was thought that
spectrogram inversion might compromise quality. Thus, we did
not use spectrograms.

III. THE ARCHITECTURE OF OUR GAN

Table I shows the architecture of our GAN. “C” refers
to the several classes of training data. “n” refers to batch
size. The table shows the architecture of the generator and the
discriminator, and the input and output layers; the intermediate
layers are hidden layers. The input data propagate to the output
layer. The kernel shapes of each convolutional layer are shown,
as are the output data shapes of all layers.

As mentioned above, we employed WaveGAN. However,
WaveGAN generates only a single data type. We thus addi-
tionally implemented a conditional GAN [13] that generates
class-specified data by attaching class labels c to the training
data. In this GAN, all data are associated with a class label
c and a noise z. This allowed us to generate many types of
data using one-hot vectors as labels. The vectors have values
of either zero or one, and their lengths are the same as the
number of classes. Each class vector has the value of one and
all others have values of zero The model applies convolution
to each axis, and the convolution operates three-acceleration
data but only in the time direction.

We describe the details of the generator and the discrim-
inator. The inputs of the generator are random noise vectors
based on uniform —1 to 1 distributions. The vector length is
1x100 and is combined with a label vector when input. The
output depends on the training data. The discriminator inputs
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TABLE I. THE ARCHITECTURE OF OUR GAN.

Generator Kernel Size Output Shape
Input : Uniform(-1,1)+C' (n, 100+C)
Dense (100+C, 49152) (n, 49152)
Reshape (n, 3, 16, 1024)
LeakyReLU (o = 0.2) (n, 3, 16, 1024)
Trans Conv2D (Stride = (1, 4)) (1, 25, 512, 1024) (n, 3, 64, 512)
LeakyReLU (o = 0.2) (n, 3, 64, 512)
Trans Conv2D (Stride = (1, 4)) (1, 25, 256, 512) (n, 3, 256, 256)
LeakyReLU (o = 0.2) (n, 3, 256, 256)
Trans Conv2D (Stride = (1, 4)) (1, 25, 128, 256) (n, 3, 1024, 128)
LeakyReLU (a = 0.2) (n, 3, 1024, 128)
Trans Conv2D (Stride = (1, 4)) (1, 25, 64, 128) (n, 3, 4096, 64)
LeakyReLU (o = 0.2) (n, 3, 4096, 64)
Trans Conv2D (Stride = (1, 4)) (1, 25, 1, 64) (n, 3, 16384, 1)
Output : Tanh (n, 3, 16384, 1)
Discriminator Kernel Size Output Shape

Input : Training data or Generated data
Conv2D (Stride = (1, 4))

(n, 3, 16384, 1+C)
(1, 25, 1+C, 64) (n, 64, 4096, 64)

LeakyReLU (o = 0.2) (n, 64, 4096, 64)
Phase Shuffle (n, 64, 4096, 64)
Conv2D (Stride = (1, 4)) (1, 25, 64, 128) (n, 64, 1024, 128)
LeakyReLU (o = 0.2) (n, 64, 1024, 128)
Phase Shuffle (n, 64, 1024, 128)
Conv2D (Stride = (1, 4)) (1, 25, 128, 256) (n, 64, 256, 256)
Phase Shuffle (n, 64, 256, 256)
LeakyReLU (o = 0.2) (n, 64, 256, 256)
Conv2D (Stride = (1, 4)) (1, 25, 256, 512) (n, 64, 64, 512)
LeakyReLU (o = 0.2) (n, 64, 64, 512)
Phase Shuffle (n, 64, 64, 512)
Conv2D (Stride = (1, 4)) (1, 25, 512, 1024) | (n, 3, 16, 1024)
LeakyReLU (o = 0.2) (n, 3, 16, 1024)
Reshape (n, 49152)

Output : Dense (49152, 1) (n, 1)

are either training or generated data. The outputs are data
that have been manipulated by the discriminator layers. We
use the WGAN-GP [14] as a loss function; the discriminator
outputs are used to calculate losses. We employed PhaseShuffle
(Donahue et al. [7]) to generate data effectively. The phases
of the layer activations are perturbed using —n to n samples
before being input to the next layer. We used the weight
initialization method of He et al. [15] to each convolution layer
in both models.

IV. DATA GENERATION

We generated data using the model described above and
confirmed that the data exhibited the characteristics of training
data. We first used an earlier dataset to explore whether the
model could generate similar data. Second, we used acceler-
ation data collected by rubbing real textures with an index
finger. We explored whether the model was valid when the
methods used to collect training data differed.

A. Data Generation Using Lehrstuhl Fiir Medientechnik Hap-
tics Texture Database

1) Training Settings: We used nine textural, three-axis
acceleration datasets (Figure 1) from the Lehrstuhl Fiir Me-
dientechnik (LMT) Haptic Texture Database [16] as training
data; these were the data employed by Ujitoko et al. [9]. The
data were collected by rubbing various textures in one direction
using a pen-type device; the sampling rate was 10 kHz.

Table II shows the hyperparameters used to train the model.
The discriminator input was normalized to a value between
—1 to 1. We extracted 6,000 random datasets, each containing
16,384 sequential points, for each texture, and employed these
for training. We generated a three-axis time-series dataset
featuring 16,384 sequential points. We trained the model for
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Figure 1. Textures that were chosen from the LMT Haptic Texture Database
for this experiment.

40 epochs using a Windows PC with two GPUs (NVIDIA
GTX1080 Ti); training required about 47 hours. We found that
we succeeded in training the model quickly using the general-
purpose GPU and a PC.

TABLE II. THE HYPERPARAMETERS USED.

Name ‘ Value

Batch size 64

Phase Shuffle 2

Loss WGAN-GP

WGAN-GP A 10

Generator updates per discriminator 2

Optimizer Adam (@ =1le-4, 8 1=05, 8 2=09)

2) Results: We drew spectrograms of the training and
generated data (Figure 2) to determine whether they were
similar. We extracted three classes. The three spectrograms
on the left show training data (Ground Truths); the three
on the right display the generated data. We computed the
spectrograms in a wave format using a 256-point short-time
Fourier transform (STFT) with a Hamming window of 256 and
a hop size of 128. All values were normalized to between 0
and 1. The spectrograms show that the generated data exhibited
the characteristics of training data. In particular, the generated
“Bamboo” data were indistinguishable from the training data.
Therefore, the model well-learned the characteristics of the
training data. However, the generated data did not reproduce
the characteristics of “Granite Type Veneziano” ; the generated
data differed from the training data.

Ground Truth
X-axis Y-axis

Generated
X-axis Y-axis

Z-axis

Figure 2. Spectrograms of each labeled class in the LMT Haptic Texture
Database.

B. Data Generation Using Real Texture Data

1) Training Settings: We obtained three-axis acceleration
data by rubbing nine textures (Figure 3) with an index finger
bearing a three-axis accelerometer. “Artificial Grass” was a
spiky artificial grass. “Cloth” was a silky cloth. “Carpet” was
a hard carpet. “Cork Sheet” was a plate-like cork. “Punched
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Plastic Sheet” was a smooth punched plastic plate. “Tile” was
a patterned tile. “Place Mat 01, 02, and 03” were placemats
made from different materials. Figure 4 shows an overview of
the data collection. The collector was one of the authors (male,
24 years of age). All textures were traced from left to right
for 6 seconds at about 5 cm/s. The sampling rate was about
1 kHz. A metronome was used to ensure that the speed was
approximately constant. The angle between the finger and each
texture was about 45°. Each texture was sampled 80 times. We
removed the first and last 1,000 points of sequential data.

We used the hyperparameters employed above (Table II).
We created about 40,000 data points from 10 repeats of each
collected data because the collected data lengths were shorter
than 16,384 points. We extracted 6,000 random datasets each
of 16,384 three-axis, time-series sequential points from the
data on each texture; these served as training data. We trained
the model for 40 epochs using the PC described above; training
required about 46 hours, and was thus relatively fast even
though the data differed from those in the LMT Haptics
Texture Database.

Artificial
; Clom i

Place
02

Punched
Plastic
Sheet

Figure 4. Overview of data collection.

2) Results: Figure 5 shows sample spectrograms prepared
in a manner similar to dataset generation. The data exhibit
the characteristics of training data; all generated and training
data were identical. Therefore, we found that the model can
generate data effectively, even using the training data that is
different from the LMT Haptics Texture Database.

V. THE USER STUDY

To evaluate the quality of data generated by our model, we
presented vibrotactile stimuli to users. We employed the col-
lected data described above as training data. Ten participants
(eight males and two females, age 22-24 years) were enrolled.
The work was approved by the Ethics Committee of the
University of Tsukuba (authorization number 2019R299) and
written informed consent was obtained from all participants.

We performed two user studies. First, we explored whether
vibrotactile stimuli based on generated data could be distin-
guished from those based on training data. The more difficult
this was, the more effectively our model learned the data
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Ground Truth Generated
X-axis Y-axis Z-axis X-axis Y-axis Z-axis

Carpet

Tile

: I w’}\\f[\ u

Place
Mat 03

Figure 5. Spectrograms for each labeled class of collected data. The
spectrogram settings are the same as those of Figure 2.

characteristics. Second, we explored the realism of vibrotactile
stimuli based on training and generated data. We used the
task design of Ujitoko et al. [9] and the vibrotactile display
proposed by Saga et al. [3] (Figure 6 left). A finger pad
was connected via threads to four motors on the four corners
of the tablet. The strings were wound to deliver vibrotactile
stimuli; the X-axis and Y-axis vibrations were independently
controlled. This was appropriate because our model generated
three-axis time-series data. The generated data is not only
applied for 1l-axis vibrotactile displays but also used for
vibrotactile displays that need more types of data like it.
We used the first 4,000 training and generated data points to
present vibrotactile sensations; we were careful to ensure that
data repetition did not affect sensation.

A. Procedure of the User Studies

Figure 6 shows an overview of the user studies and the
vibrotactile display employed. Each participant placed an index
finger on the pad and moved the finger from left to right on the
surface of the display over two different predefined paths; s/he
received vibrotactile stimuli created by test or generated data
and was asked to identify the path that employed generated
data. S/he then rubbed the real texture and scored realism using
a Visual Analog Scale [17]. To control movement speed, we
used a guide bar (on a screen) to indicate where to move. Each
participant followed the movement of the bar; the finger moved
at approximately 5 cm/s. The display order of training and
generated trial data were randomized. We performed 10 repeat
experiments for each texture; thus, each participant performed
90 tests. We explored participant views via a questionnaire.
All experiments were concluded in approximately 1 hour.

Figure 6. Left: An overview of the experiments. Right: The string-based
vibrotactile display.
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B. Result and Discussion

The top panel of Figure 7 shows the correct identification
frequencies ( “Correct answer rates” ) of stimuli created using
generated data. A value close to 50% indicated that a partic-
ipant failed to distinguish training from generated data. Thus,
the closer the value to 50%, the more effective the model.
All values were about 50%. It was not possible to distinguish
the training from the generated data. When completing the
questionnaires, most participants indicated that they could not
distinguish the data. Thus, the model generated data very
similar to real acceleration data. The correct answer rates of
most participants were 40-60% for each texture. Notably, seven
participants exhibited 50% correct answer rates for “Carpet”
(a rough texture).
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Artificial Cloth Carpet CorkSheet  Punched Tile Place Mat Place Mat Place Mat
Grass Plastic

Sheet
60
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w o
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Rate of realism (%)
&
8

Artificial Cloth Carpet CorkSheet  Punched Tile Place Mat Place Mat Place Mat
Grass Plastic
Sheet

® Training data " Generated data

Figure 7. Top: The correct answer rate for each texture. Bottom: The realism
of each texture.

The bottom panel of Figure 7 deals with realism; the values
are the averages of all answers. If the values for generated data
are close to those for training data (as was indeed the case for
all textures), the two types of data were similar. The paired
Student’s t-test revealed no significant difference between the
training and generated data for any texture; vibrotactile stimuli
created using generated data were as realistic as those prepared
to employ training data. In contrast, significant differences
between training and generated data were evident for some
textures in the work of Ujitoko et al. [9]. Our model may
generate higher-quality data.

The realism scores were 50-70% for all textures except
“Cloth” and “Tile.” Saga et al. [3] reported realism scores of
50-70% using the vibrotactile display that we employed to
present real textures. Thus, our vibrotactile display performed
well. Turning to the two textures with lower values: “Cloth”
scored poorly because the vibrotactile display did not repro-
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duce the stimuli well. The display preferentially reproduces
rough textures (the fingertip vibrations are large) and, thus,
not silky textures such as “Cloth”. In the future, we will use a
different display. The “Tile” value was low because the stimuli
were weak, explained by the fact that the accelerations were
small. The “Tile” featured a gutter (Figure 3) that affected
changes in acceleration; these were small because the gutter
was shallow and fingertip vibration thus very low. This will
be improved by changing the data collection method and
the display. The bottom panel of Figure 7 reveals almost no
difference between the realism of generated and training data,
even for “Tile” (Figure 5). Therefore, it appears that the
model succeeded in generating data effectively.

VI. DATA GENERATION WITH THE MERGED LABEL

We explored whether the model generated unknown data
when we varied the input label; we performed a preliminary
experiment. We merged two input labels and generated data.
Before we generated data for “Place Mat 03”, we merged the
label for data generation based on “Tile” with the “Place
Mat 03” input label. In the “Tile” label, the index for “Tile”
ranged from O to 1. The “Place Mat 03” index was 1.

Result of data generation with a merged label

X-axis Y-axis Z-axis
Value of 5 7
Tile label
(Place Mat 03
label was one)

e

Result of data generation with a single label
X-axis Y-axis Z-axis 0.25

Tile [ 05 | o
WLl » i i 1
Place s T
Matos |l 0.75 o
o ST o
1.0 e
bl .

Figure 8. Spectrograms of all labeled generated signals.

Figure 8 shows the results. The two images on the left show
the data generated using the standard single labels. The four
images on the right show the data generated using multiple
labels. The spectrograms change as the label values vary. The
greater the value of the “Tile” label, the more mixed the data
characteristics become, especially on the X-axis. Thus, the
model is likely to generate unknown data if we manipulate the
input label. We will determine what types of data the model
generates under various conditions.

VII. CONCLUSIONS AND FUTURE WORK

We used GANSs to generate vibrotactile signals. Our GAN
is based on WaveGAN [7] and a conditional GAN [13].
We generated three-axis time-series data; earlier work created
only one-axis data. The model is smaller than the earlier
model. The training was complete in about 46 hours using
a general-purpose GPU and PC. Three-axis data can be used
for vibrotactile displays that are more elaborate than one-axis
pen-type displays. In the user study, we found that vibrotactile
stimuli based on generated data were as realistic as stimuli
based on training data. In the future, we will deliver real
textures using higher-quality vibrotactile displays than the ones
used by Saga et al. [3]. We will also explore whether the
model can generate unknown data when we manipulate the
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input label; our preliminary experiment suggests that this is
likely. We will examine the data generated when we merge
three or more labels.
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