ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

Natural Language User Interface
For Software Engineering Tasks

Alexander Wachtel, Jonas Klamroth, Walter F. Tichy

Karlsruhe Institute of Technology
Chair for Programming Systems Prof. Walter F. Tichy
Am Fasanengarten 5, 76131 Karlsruhe, Germany
Email: alexander.wachtel @kit.edu, jonas.klamroth@student.kit.edu, walter.tichy @kit.edu

Abstract—In this paper, we present the idea to use natural
language as the user interface for programming tasks. Pro-
gramming languages assist with repetitive tasks that involve the
use of conditionals, loops and statements. This is what is often
challenging users. However, users can easily describe tasks in
their natural language. We aim to develop a Natural Language
User Interface that enables users to describe algorithms, including
statements, loops, and conditionals. For this, we extend our cur-
rent spreadsheet system to support control flows. An evaluation
shows that users solved more than 60% of tasks. Although far
from perfect, this research might lead to fundamental changes
in computer use. With natural language, programming would
become available to everyone. We believe that it is a reasonable
approach for end user software engineering and will therefore
overcome the present bottleneck of IT proficients.

Keywords—Natural Language Processing; End User Develop-
ment; Natural Language Interfaces; Human Computer Interaction;
Programming In Natural Language; Dialog Systems.

I. INTRODUCTION

Since their invention, digital computers have been pro-
grammed using specialized, artificial notations, called pro-
gramming languages. Programming requires years of training.
However, only a tiny fraction of human computer users can
actually work with those notations. With natural language and
end user development methods, programming would become
available to everyone and enable end users to program their
systems or extend their functionality without any knowledge of
programming languages. Myers [1] and Scaffidi [2] compared
the number of end users and professional programmers in
the United States. Nearly 90 million people use computers
at work and 50 million of them use spreadsheets. In a self-
assessment, 12 million considered themselves as programmers,
but only 3 million people are professional programmers. Ac-
cording to Liberman [3], the main question in the End User
Development (EUD) area of research is, how to allow non-
programming users who have no access to source code, to
program a computer system or extend the functionality of
an existing system. In general, spreadsheets have been used
for at least 7000 years [4]. The created spreadsheets are not
only the traditional tabular representation of relational data
that convey information space efficiently, but also allow a
continuous revision and formula-based data manipulation. It is
estimated that each year hundreds of millions of spreadsheets
are created [5].

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

Our Vision

Programming languages assist with repetitive tasks that
involve use of loops and conditionals. This is what is often
challenging for spreadsheet users. We work on Natural Lan-
guage User Interface (NLUI) that enables users to describe
algorithms in their natural language and provides a valid output
by the dialog system for given user description:

e Find the maximum element of a set:
Use an auxiliary variable. Initialize the variable with
an arbitrary element of the set. Then visit all the
remaining elements. Whenever an element is larger
than the auxiliary variable, store it in the auxiliary
variable. In the end, the maximum is in the auxiliary
variable.

e Selection sort of a set:
The result is a vector. Initially it is empty. Find the
minimal element of the set and append it to the vector.
Remove the element form the set. Then, repeatedly
find the minimum of the remaining elements and move
them to the result in order, until there are no more
elements in the set.

e Switching sort of an array:
If there are two elements out of order, switch them.
Continue doing this until there are no more elements
out of order. Out of order means that an element is
larger than its right neighbor. The right neighbor of
an element x[i] in a vector x is x[i+1].

Ordinary, natural language would enable almost anyone to
program and would thus cause a fundamental shift in the way
computers are used. Rather than being a mere consumer of
programs written by others, each user could write his or her
own programs [6]. However, programming in natural language
remains an open challenge [7].

Our paper is structured as following: section II describes
our previous work on NLUI. Followed by the Section II-D
that presents our current work on control flows, discussing
conditional and loop statements. Section III evaluates proto-
type in an user study. Section IV presents related work in the
research areas of programming in natural language, End User
Programming and natural language dialog systems. Finally,
section V presents a conclusion of our topic and future work.

34

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

II. NATURAL LANGUAGE USER INTERFACE

In 1979, Ballard et al. [8][9][10] introduced the Natural
Language Computer (NLC) that enables end users to program
simple arithmetic calculations using natural language.

A. Dialog System

In 2015, first prototype of an assistant has been presented
that uses natural language understanding and a dialog man-
agement system to allow inexperienced users to manipulate
spreadsheets with natural language [11]. Motivated by a pilot
study based on the selected problems from Frey’s book Mi-
crosoft Excel 2013 [12] the system requests missing informa-
tion and is able to resolve ambiguities by providing alternatives
to choose from. Furthermore, the dialog system must resolve
references to previous results, allowing the construction of
complex expressions step-by-step. The system architecture
consists of a user interface responsible for human interaction,
as well as a natural language understanding and a dialog
management unit (See Figure 1).

User

!

User Interface

User Request
Pattern Matching

Natural Language
Understanding

Dialog Decision

wAnswer
Dialog Ma:emeD
Annotated &

Structured Input

Spreadsheet

Knownledge
Base Software

Figure 1. Architecture Overview

In a first step, the natural language understanding
unit (NLU) performs essential language analysis relying on
a basic vocabulary specifically built to cover the system’s do-
main. Synonyms are substituted using a handcrafted synonym
database. Mathematical terms and numerical values as well
as references to regions within the spreadsheet are tagged. In
the following step, the system groups elements representing a
sentence or clause to enable subsequent analysis.

The purpose of the dialog management unit (DMU) is to
deal with the tree structure that has been created by the NLU
unit, resolve references, create a valid spreadsheet formula and
generate a human-like response to the user input.

Reference

Add 5 and 4. Multiply 7 by the

Sum up 4 and 5. Multiply by 7.
Reference

Figure 2. Resolution of references

previous result.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

The evaluation of the prototype exceeded expectations.
80% of 170 tasks have been solved successfully. The system
helped users to solve tasks and received positive feedback from
nearly two thirds of the users. Inspired by the Turing Test, the
authors asked 17 independent spreadsheet users to formulate
requests for particular calculation tasks. Each task was an-
swered by both, the prototype and a human, independently.
Afterwards the participants were encouraged to identify the
computer generated response. This however turned out to be
surprisingly hard to decide. With 34 decisions made in total,
47.1% falsely identified the dialog system answer as human.
This result indicates that the prototype is capable of generating
suitable responses for sufficiently specific requests within the
language domain.

B. Active Ontologies

In early 2016, the natural language dialog system has been
extended with a natural language dialog system based on active
ontologies which enables the user to create and manipulate
excel sheets without having to know the complex formula lan-
guage of excel [13]. Our system is able to resolve references,
detect and help resolve ambiguous statements and ask for
missing information if necessary. While already quite powerful
this system was not able to handle conditions properly or
understand statements involving loops or instructions affecting
multiple cells. In this paper, we will present an approach on
how to attack these weaknesses.

By adding additional information to an ontology, such
as a rule evaluation system and a fact store, it becomes an
execution environment instead of just being a representation
of knowledge. Sensor nodes register certain events and store
them in the fact store. An evaluation mechanism tests the new
facts against the existing rules and performs the associated
action if one or more rules apply to the stored facts. The old
system consists mainly of two active ontologies. One in charge
of interpreting the user input and one generating answers
according to the interpretation.

In our system each rule is represented by a separate node in
the active ontology. By connecting nodes the developer decides
which type of facts are relevant to which node. In [13], we
presented four different types of nodes:

1) Gather-Nodes: These nodes gather the information of
all children nodes and only create a new fact if all
necessary children facts exist.

2) Selection-Nodes: These nodes gather all information
of their children and pass on the most fitting accord-
ing to some score.

3) Pass-Nodes: These nodes bundle all obtained infor-
mation of their children into 1 new fact.

4) Sensor-Nodes: These nodes are the "leaves” of the
ontology and react directly to the user input.

Each node-type can be seen as one possible evaluation
mechanism. While with these types a developer is able to cover
most parts of standard domains of dialog systems one can think
of far more complex ones. This is where our new system comes
into play. By allowing the developer to use his own evaluation
mechanisms we created an infinite amount of new possibilities
what our system is capable of.

35

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

C. Interactive Spreadsheet Processing Module

Interactive Spreadsheet Processing Module (ISPM) [14] is
an active dialog management system that uses machine learn-
ing techniques for context interpretation within spreadsheets
and connects natural language to the data in the spreadsheets.
First, the rows of a spreadsheet are divided into different
classes and the table’s schema is made searchable for the dialog
system (See Figure 3).

A | B C
1 Table 1: persons CAPTION
2 name SUPER HEADER
3 | first name last name | age HEADER
4 group A GROUP HEADER
5 | Sloane Morgan 37 DATA
6 Dustin Brewer 33 DATA
| 7 | Valentine Yates 38 DATA
8 | Michael Gregori 50 DATA
9 group B GROUP HEADER
10 | Ina Hoffman 40 DATA
11 | Oliver Hopkins 27 DATA
12 | Damon Vasquez 22 DATA
13 | Mark Richards 25 DATA

Figure 3. A spreadsheet table annotated with row labels

In the case of a user input, it searches for headers, data
values from the table and key phrases for operations. Implicit
cell references like “’people of age 18 are then resolved to
explicit references using the schema. Using the ISPM, end
users are able to search for values in the schema of the table
and to address the data in spreadsheets implicitly, e.g., What
is the average age of people in group A? (See Figure 4).

persons nalme last name age
|
first name
ceoald ||] o
group B [RN B N

Figure 4. Context detection of user input

Furthermore, the system enables users to select (88%
successfully solved), sort (88%), group (75%) and aggregate
(63%) the spreadsheet data by using natural language for end
user software engineering.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

D. Control flows

Two new modules have been developed to extend the
current system for support of control flows. The first module
is capable of handling conditional instructions and the second
is able to understand statements that contain loops.

1) Conditional Statements: Conditional instructions are
often hard to understand due to their complex grammatical
and contextual structure. Also references are complicated to
resolve in this kind of sentences. The advantage of conditions
is that they have a small set of key-words (such as if, in case of,
etc.) that indicate that the user uses a conditional statement. In
domain of spreadsheet manipulation to be able to understand,
the condition has to result in a boolean operation. These two
facts enable us to develop a specialized service dealing with
conditional statements. We react to the keywords and try to
find a boolean value in the user input. If we can not find
any boolean operation, dialog system asks the user directly for
it. After user answers, it is just recognizing which action the
user wants to perform. Unconditional statements were already
supported in our older system, so we can rely on it to find the
proper action.

As already annotated if gets recognized as a condition
keyword. The system already knows that it is dealing with
a conditional statement. Al is greater than 3 is a boolean
operation and may be used as condition. The trivial statement
save 5 in Bl can be easily recognized as unconditional action
and handled by our system (See Figure 5).

start Al is greater than 3 save 5 in B1

Condition Keyword Boolean Statement Unconditional Action

Figure 5. Example for a conditional statement

2) Loop Statements: Dealing with statements that affect
more than one cell can be seen as a looped instruction. In that
case, the target of the instruction is the loop variable. Knowing
this, we can handle it in a similar way we used for conditional
statements. In contrast to conditions, loop do not necessarily
have to contain clear keywords. Often times these keywords
are hidden within the sentence like for all, for each, as long
as. However, there may also be explicit instruction like do
something three times.

Once any of these keywords are recognized, the system has
to find the corresponding action and execute it for the given
range of cells. In order for our active ontology to be able
for recognition the proper action, we introduced a Looptarget.
This is an operator that acts like a normal cell and is able to
be recognized by normal actions (such as save, multiply), but
at the same time indicates that it can be executed on a range of
cells. Once activated by a loop keyword, the loop service reacts
to actions containing the regarding targets. In this case, next
step is to split input into several instructions for each cell of
the given range. This may also be combined with conditional
instructions. User input add 2 to B2 for each cell of column A

36

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

which is greater than B2 is correctly handled by our system
(See Figure 6).

start

Non-loop action Loop Keyword Range

Figure 6. Example for a loop statement

3) Sample Dialog: To demonstrate the extended features,
we present a short dialog between the NLUI and user. For
each iteration of the dialog we listed the user input (User), the
operation the system executed as consequence of this input
(NLU) and the response generated by the system (DMU):

User: Write 30 in all cells of column A
NLU: save(30, A:A)

DMU: Already done. Is there anything else i can do?

User: Subtract 10 from each cell between Al and A10
NLU: save(Al:A10 - 10, A1:A10)
DMU: Ok, I did that for you.
Can I do something else for you?
User: No
DMU: Alright
... After a break, user turns back to the NLUI
User: For each cell of column A which is greater than 25
add 2 to B2
NLU: conditionalAction(A:A>25, save(B2 + 2, B2))

User: If A3 is greater than A2 write 2 in A3 else in B3
NLU: conditionalAction(A3>A2, save(2, A3), save(2, B3))
DMU: Ok, I did that for you.

User: If AS is greater than BS
NLU: NoAction
DMU: I see you used a condition.
What do you want to do if the condition is true?
User: Save 4 in B3
NLU: conditionalAction(A5 > B5, save(4, B3))
DMU: Everything done as you wished.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

III. EVALUATION

To evaluate the quality of our system we conducted an user
study. We asked 12 participants to solve given tasks by using
our system and recorded their experience with it. In detail we
asked for each task

e whether they were able to solve the task,
e if the system was helping them to solve the task,

e if the system output was natural,

and if the system was able to understand their input.

The participants were Non-native English speakers and the
majority of them have never used our system before. Most of
them stated that they knew and already used excel before, but
not on a regular basis.

Since we already evaluated our system for standard arith-
metic tasks, response time as well as scalability in our last
paper [13], we specifically designed the tasks to test the
discussed control flow features. e.g.:

e Insert the specified value 10 into all cells of a column.

e Multiply all cells in a range (between Al and A10)
that are greater than 2 by 3.

e If the value in cell A3 is greater than A2, they should
add 2 to B1, else to B2.

The results show that the users where able to solve more
than 60% of the tasks at least partially and found our system
as useful in over 60% of the cases (see Figure 7). Additionally
nearly 70% of the system outputs were considered as natural
by the participants. The participants stated in over 50% of
the cases that the system didn’t understand their input. The
improvement of the systems output has to be worked on.
Overall, the system’s quality was rated at 3.33 out of 5 stars,
and except for one participant all participants said that they
would use our system.

Overall rating of the system is good _ | |

The response speed of the system is good | | ‘

1 will use this dialog system frequently - | | ‘

[} 20 40 60 80 100

M Strongly agree W Agree D@ Neither agree nor disagree ODisagree OStrongly disagree

Figure 7. Overall results in %

While this result demonstrates that our system is far from
perfect it also shows that there is added value when using the
system especially for inexperienced users. Knowing that nearly
half of the unsolved tasks stemmed from the same question and
the most common problem were synonym problems which are
easy to fix the results we achieved are auspicious. Since our
system will most likely only improve in coming versions due
to the growing number of services and the size of our word
databases we consider this a promising approach.

37

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

IV. RELATED WORK

The idea of programming in natural language was first
proposed by Sammet in 1966 [15], but enormous difficul-
ties have resulted in disappointingly slow progress. One of
the difficulties is that natural language programming re-
quires a domain-aware counterpart that asks for clarification,
thereby overcoming the chief disadvantages of natural lan-
guage, namely ambiguity and imprecision. In recent years,
significant advances in natural language techniques have been
made, leading, for instance, to IBM’s Watson [16] computer
winning against the two Jeopardy! world champions, Apple’s
Siri routinely answering wide-ranging, spoken queries, and
automated translation services such as Google’s becoming
usable [17][7]. In 1979, Ballard et al. [8][9][10] introduced
their Natural Language Computer (NLC) that enables users to
program simple arithmetic calculations using natural language.
Although NLC resolves references as well, there is no dialog
system. Metafor introduced by Liu et al. [18] has a different
orientation. Based on user stories the system tries to derive
program structures to support software design. A different
approach regarding software design via natural language is
taken by RECAA [19]. RECAA can automatically derive UML
models from the text and also keep model and specification
consistent through an automatic feedback component. A lim-
ited domain end-to-end programming is introduced by Le.
SmartSynth [20] allows synthesizing smartphone automation
scripts from natural language description. However, there is
no dialog interaction besides the results output and error
messages.

Paterno [21] introduces the motivations behind end user
programming defined by Liberman [3] and discusses its basic
concepts, and reviews the current state of art. Various ap-
proaches are discussed and classified in terms of their main
features and the technologies and platforms for which they
have been developed. In 2006, Myers [1] provides an overview
of the research in the area of End-User Programming. As he
summarized, many different systems for End User Develop-
ment have already been realized [22][23][24]. However, there
is no system such as our prototype that can be controlled with
natural language. During a study in 2006, Ko [22] identi-
fies six learning barriers in End User Programming: design,
selection, coordination, use, understanding and information
barriers. In 2008, Dorner [25] describes and classifies End
User Development approaches taken from the literature, which
are suitable approaches for different groups of end users.
Implementing the right mixture of these approaches leads
to embedded design environments, having a gentle slope of
complexity. Such environments enable differently skilled end
users to perform system adaptations on their own. Sestoft [26]
increases expressiveness and emphasizing execution speed of
the functions thus defined by supporting recursive and higher-
order functions, and fast execution by a careful choice of
data representation and compiler technology. Cunha [27] real-
izes techniques for model-driven spreadsheet engineering that
employs bidirectional transformations to maintain spreadsheet
models and synchronized instances. Begel [28] introduces
voice recognition to the software development process. His
approach uses program analysis to dictate code in natural
language, thereby enabling the creation of a program editor
that supports voice-based programming.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

NLyze [29], an Add-In for Microsoft Excel that has been
developed by Gulwani, Microsoft Research, at the same time as
our system. It enables end users to manipulate spreadsheet data
by using natural language. It uses a separate domain-specific
language for logical interpretation of the user input. Instead of
recognizing the tables automatically, it uses canonical tables
which should be marked by the end user. Another Gulwani’s
tool QuickCode [30] deals with the production of the program
code in spreadsheets through input-output examples provided
by the end user [24]. It automates string processing in spread-
sheets using input-output examples and splits the manipula-
tions in spreadsheet by entering examples. The focus of his
work is on the synthesizing of programs that consist of text
operations. Furthermore, many dialog systems have already
been developed. Commercially successful systems, such as
Apple’s Siri, actually based on active ontology [31], and
Google’s Voice Search [32][33] cover many domains. Refer-
ence resolution makes the systems act natural. However, there
is no dialog interaction. The Mercury system [34] designed by
the MIT research group is a telephone hotline for automated
booking of airline tickets. Mercury guides the user through
a mixed initiative dialog towards the selection of a suitable
flight based on date, time and preferred airline. Furthermore,
Allen [35] describes a system called PLOW developed at
Stanford University. As a collaborative task agent PLOW can
learn to perform certain tasks, such as extracting specific
information from the internet, by demonstration, explanation,
and dialog.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the new idea to use of natural
language as the user interface. Nowadays, users can easily
describe a tasks including conditionals, loops and statements
(See Section I). To enable the system for end user development,
these parts should be recognized correctly by the system. In the
current version of our prototype, the system supports control
flows, such as conditionals and loops, but the challenge is to
understand the user input at run time and put the different
statements in the right order. There is a lot of work on our
system still needs to be done. The goal is to implement valid
scripts from natural language input that describes some sorting
algorithm. We are also exploring ways to extend the system
functionality with the help of the dialog. The system needs
to be extended for handling graphs, and charts. Furthermore,
there are some properties of tables, which are not considered
in the current system and can potentially lead to problems.

REFERENCES

[11 B. A.Myers, A.J. Ko, and M. M. Burnett, “Invited Research: Overview
End-User Programming,” CHI, 2006.

[2] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers of end
users and end user programmers,” in Visual Languages and Human-
Centric Computing, 2005.

[3] H. Liberman, F. Paterno, M. Klann, and V. Wulf, “End-user devel-
opment: An emerging paradigm, human-computer interaction series,
volume 9,” 2006.

[4] M. Hurst, “The interpretation of tables in texts,” University of Ediburgh,
Ph.D., 2000.

[5] R. Abraham, “Header and Unit Inference for Spreadsheets Through
Spatial Analyses,” in IEEE Symposium on Visual Languages - Human
Centric Computing, 2004.

38

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Copyright (c) IARIA, 2017.

W. E. Tichy, M. LandhéuBer, and S. J. Korner, “Universal Programma-
bility - How AI Can Help. Artificial Intelligence Synergies in Software
Engineering,” May 2013.

C. L. Ortiz, “The Road to Natural Conversational Speech Interfaces,”
IEEE Internet Computing, March 2014.

B. W. Ballard and A. W. Biermann, “Programming in natural language:
NLC as a prototype,” Association for Computing Machinery (ACM),
Volume 10, 1979.

A. W. Biermann and B. W. Ballard, “Toward Natural Language Com-
putation,” American Journal of Computational Linguistics, Volume 6,
Number 2, 1980.

A. W. Biermann, B. W. Ballard, and A. H. Sigmon, “An experimental
study of natural language programming,” International Journal of Man-
Machine Studies, 1983.

A. Wachtel, S. Weigelt, and W. F. Tichy, “Initial implementation of
natural language turn-based dialog system,” International Conference
on Intelligent Human Computer Interaction (IHCI), December 2015.

C. D. Frye, “Microsoft Excel 2013, Step by Step,” O’Reilly Media,
2013.

A. Wachtel, J. Klamroth, and W. F. Tichy, “A Natural Language
Dialog System Based on Active Ontologies,” The Ninth International
Conference on Advances in Computer-Human Interactions, April 2016.

A. Wachtel, M. T. Franzen, and W. F. Tichy, “Context Detection In
Spreadsheets Based On Automatically Inferred Table Schema,” 18th
International Conference on Human- Computer Interaction, rated with
Best Paper Award, October 2016.

J. E. Sammet, “The Use of English as a Programming Language,”
Communication of the ACM, March 1966.

D. Ferrucci, “Building Watson: An Overview of the DeepQA Project,”
Association for the Advancement of Artificial Intelligence, 2010.

H. Liu and H. Liebermann, “Toward a programmatic semantics of
natural language,” Visual Languages and Human Centric Computing,
2004.

H. Liu and H. Lieberman, “Metafor: Visualizing stories as code,” 10th
international conference on Intelligent user interfaces, 2005.

S. J. . Korner, M. LandhéuBer, and W. F. Tichy, “Transferring Research
Into the Real World - How to Improve RE with Al in the Automotive
Industry,” 2014.

V. Le, S. Gulwani, and Z. Su, “SmartSynth: Synthesizing Smartphone
Automation Scripts from Natural Language,” Proceeding of the 11th
annual international conference on Mobile systems, applications, and
services (MobiSys), 2013.

F. Paterno, “End user development: Survey of an emerging field for
empowering people,” in ISRN Software Engineering, vol. 2013, 2013.

A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI conference on Human factors in computing systems.
ACM, 2004.

S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” in ACM, 2012.

A. Cypher, “Watch what I do: programming by demonstration,” in MIT
Press, 1993.

C. Dorner, M. Spahn, and V. Wulf, “End user development: Approaches
towards a flexible software design,” in European Conference on Infor-
mation Systems, 2008.

P. Sestoft and J. Z. Sorensen, “Sheet-defined functions: Implementation
and initial evaluation,” 2013.

J. Cunha, J. P. Fernandes, and J. Mendes, “Bidirectional Transformation
of Model-Driven Spreadsheets,” Springer Lecture Notes in Computer
Science, 2012.

A. Begel, “Spoken Language Support for Software Development,” Ph.D.
Thesis, Berkeley, 2005.

S. Gulwani and M. Marron, “NLyze: Interactive programming by natu-
ral language for spreadsheet data analysis and manipulation,” SIGMOD,
2014.

S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN, 2011.

ISBN: 978-1-61208-538-8

[31]

[32]

(33]

[34]

[35]

D. Guzzoni, “Active: A unified platform for building intelligent web
interaction assistants,” in IEEE, Web Intelligence and Intelligent Agent
Technology Workshops, 2006.

J. R. Bellegarda, “Spoken Language Understanding for Natural Inter-
action: The Siri Experience,” Springer New York, 2014.

J. D. Williams, “Spoken dialogue systems: challenges and opportunities
for research,” 2009.

S. Seneff, “Response planning and generation in the MERCURY flight
reservation system,” 2002.

J. Allen, N. Chambers, and G. Ferguson, “PLOW: A Collaborative
Task Learning Agent,” Association for the Advancement of Artificial
Intelligence, 2007.

39

