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Abstract— Gaze tracking functionalities provide a new way of 

interacting with electronic devices. As things are now, they are 

often limited to one specific device and require proprietary 

hardware and software. We propose a solution for web 

applications to counteract those limitations. By using the latest 

web technologies, we ensure platform independence. Due to 

the design and modularity of our solution, gaze tracking 

solutions become interchangeable. Web applications can easily 

consume gaze data provided by a generic event-based web-

interface. The main contribution of this work is a universal 

calibration and mapping functionality. The raw data of 

miscellaneous gaze trackers can be processed and trans-

formed, so that the gaze points are stabilized and correctly 

mapped onto screen coordinates. In the present paper, we 

describe the three-layer-architecture we use. Our work shows 

how to combine recent web technologies and algorithms to 

supply gaze tracking functionalities in a generic way. 
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I.  INTRODUCTION 

In the last decades, eye tracking technologies were 
developed and established for analyzing human eye and 
gaze movements. In the fields of neuroscience, psychology 
and marketing, but also in the field of human computer 
interaction it became a widely accepted tool. However, the 
technology has not been accessible for the consumer market 
for a long time. No affordable solutions existed, since most 
systems were based on expensive hardware components. 
With ongoing development of algorithms and processing 
units, affordable software solutions reached the consumer 
market. 

Even mobile devices are capable of gaze tracking now, 
but existing solutions are still very limited. The diversity of 
gaze tracking hardware and software makes it hard to 
integrate gaze tracking functionalities into existing applica-
tions. 

While trying to simplify the process of application 
development for desktop computers and mobile devices, a 
wide range of approaches emerged to handle this 
complexity. Applications can be written in different 
programming languages and even with web technologies to 
use them as “enriched web applications” in a browser.  
1 Authors contributed equally to the work 

The latter one is advantageous for developing multi-
platform applications, because a browser is available on 
almost every platform. 

This motivates our research group to develop a gaze 
tracking framework based on web technologies. Previous 
works include a client-side web interface to connect mis-
cellaneous gaze trackers to web applications. In this way, 
web applications can simply consume gaze events, without 
caring about the actual source.  

Since gaze tracking affords high accuracy measurements 
and algorithms are quite sensible to various condition 
changes, most systems require regular re-calibrations. This 
makes it necessary to switch to a calibration software, which 
is usually supplied by the manufacturer of the eye tracker. In 
order to overcome this obstacle, we move the entire 
processing of the raw gaze data into the browser. The 
processing unit includes a calibration procedure and a 
mapping function, which transforms raw gaze data to 
display coordinates. This way the user can control the entire 
process through an arbitrary browser, without switching 
between applications. 

The developed solution claims for general usage in web 
applications, but is actually part of the research project 
Adaptable and Adaptive Multimedia Systems (AAMS), 
which is an interdisciplinary research project driven by 
cluster 3 of the ScienceCampus Tuebingen [22]. The 
members of this cluster are from Tuebingen [23], Freiburg 
[24] [25] and Stuttgart [26]. The overall goal is to support 
self-regulated versus external-regulated learning from 
multimedia. Knowing that learning is a very individual 
process, future learning environments should automatically 
adapt to the needs of a user. In order to reach that target, 
advanced techniques have to be developed. Monitoring the 
gaze and eye movements allows to analyze the user’s 
learning behavior and momentary emotional state, which 
gives the opportunity to make adaptations on the system. 
Furthermore gaze trackers can act as input devices to 
enhance the accessibility. 

Before describing our concept of in-browser calibration 
and mapping, we will give an overview of related work in 
the field of eye tracking technology in section II. In 
particular, we focus on the use of gaze tracking together 
with web applications like E-Learning environments. After 
that, we will introduce the frameworks we used or dev-
eloped that enable web applications to consume gaze data 
provided by miscellaneous eye trackers as part of the 
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systems architecture in section III followed by known issues 
in section IV. 

Next we present the results of user studies we performed 
with two different gaze tracking systems in section V. The 
first system consists of a desktop computer and a high-cost, 
hardware-based eye tracker for professional use and the 
second system is an unmodified tablet with a front camera 
available for the consumer market. We evaluated the 
accuracy of both the stationary hardware system and the 
tablet with a user test to be able to compare those solutions.  

We describe our E-Learning environment and motivate 
the usage of eye tracking in future applications like e-
learning, accessibility or games in section IV. 

We finally discuss the project in the conclusion in 
section VII. 

II. RELATED WORK 

Since eye trackers are entering the consumer market and 
even have been integrated in the first mobile devices, the 
development of gaze tracking applications got more and 
more attention. Besides traditional applications for analyzing 
the perception of users, a broad range of different 
applications appeared over the years.  

The idea to use gaze tracking for interactive systems as 
an input device is actually quite old. One of the main 
challenges is to find a suitable way to allow the user to select 
or to confirm something. The first approach to solve the so 
called “midas problem” was dwell time selection, which was 
first suggested by Ware and Mikaelian [19]. The user has to 
fixate a target for a specific amount of time to perform a 
dwell time selection. Naturally this technique introduces 
some latency to the process. To ensure that the user is able 
to keep the fixation point inside the boundaries of the target 
until the dwell time is reached, the target has to be of a 
minimum size, which depends of course on the accuracy of 
the tracker. 

Jacob [11] discussed different gaze interactions such as 
object selection, object movement and scrolling for text. 
Drewes [8] examined different gaze selection methods on 
mobile devices and introduced a new technique based on 
gaze gestures. Dybdal [9] investigated on the feasibility of 
different eye control techniques performed on small 
smartphone displays and compared them to alternative 
selection methods like finger-strokes and accelerometer-
based techniques. Stellmach et al. [17] examined on 
different modalities of gaze-supported pan and zoom. A 
gaze-directed panning with mouse-wheel or touch-based 
zooming yielded high acceptance among the study 
participants.  

There are several options to provide gaze data for web 
applications. Biedert et al. [4] developed a browser plugin to 
transfer the data from the eye tracker into the browser. 
Another browser-independent approach, developed by 
Wassermann, Hardt and Zimmermann [20], is a generic 
interface via HTML5 websockets. The interface technique 
of Wassermann et al. was developed as early part of the 
AAMS project and is also used in the scenario of using an 
SMI native eye tracker in combination with the newly 
developed in-browser calibration framework. 

There are several promising ideas to use gaze data within 
web applications. Besides using the gaze data as an input 
device, it is possible to improve the usability of web 
applications by taking additional knowledge about the user’s 
interaction into account.  

One idea is to use the user’s gaze point to make a 
prediction on what he will do next. Rozado’s, Shoghri’s and 
Jurdak’s studies [16] show that the gaze data can be used to 
predict which link is likely to be clicked next. With this 
additional information, the web content can be prefetched in 
order to speed up the browsing experience. 

Alt et al. [2] investigated on adaptation and tailoring of 
web content based on gazing behavior. With a case study, 
they were able to prove that the adaptation induced a 
significant increase of the user’s attention.  

Similar attempts exist in the field of E-Learning 
environments. Several research groups investigate on the 
integration of eye tracking into E-Learning environments [7] 
[18] [15]. Copeland and Gedeon [6] investigated on the 
gaze-based prediction of reading comprehension. Their 
results have shown, that the number of fixations and total 
duration of fixations are suitable measures for subject 
familiarity and extent of answer-seeking. 

E-Learning environments can make use of such 
measurements to offer additional assistance to the learner 
whenever suitable. One example is iDict, a translation aid 
for language courses, which displays tooltips to support the 
learner in case difficulties arise [10]. 

III. ARCHITECTURE 

Gaze trackers can be classified in two main categories. 
Software-driven solutions have the advantage of being 
independent of additional devices except for a camera, thus 
reducing expenses. In contrast, most external modules 
include a dedicated capturing engine like an infrared camera 
with a special illumination unit, which makes the recog-
nition of pupils more robust. 

During the development of the framework, we used two 
different devices. On the one hand a hardware eye tracker 
from SensoMotoric Instruments (SMI), on the other hand an 
Amazon Kindle Fire tablet with a built-in front camera. 

To be able to use both (or even other) devices for gaze 
tracking, we developed a three-layer-architecture: layer 1, 
which includes the gaze tracking hardware with its drivers, 
layer 2 including different ways to enable the commu-
nication between layer 1 and 3, and layer 3, the JavaScript-
based gaze data processing unit as a web frontend which 
receives the gaze data from the communicator and provides 
functionalities for third party applications to use the gaze 
data. 

Using this three-layer-architecture, gaze tracking 
functionalities can be provided on different devices and for 
different applications. These three layers are exchangeable if 
required, e.g. irrespective of the underlying hardware (layer 
1), the communicator can be enabled to send the gaze data to 
the frontend. Moreover, the application that uses the gaze 
data can be exchanged, e.g. it does not matter whether it is 
an E-Learning-platform or a game. Fig. 1 shows the three-
layer-architecture. 
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Figure 1. The three layer architecture guarantees interchangeability. 

A. Layer 1: Hardware Layer 

The base layer is the gaze tracking hardware with its 
proprietary drivers. Whether you use a purpose-built gaze 
tracking hardware, a desktop computer with a webcam or a 
mobile device with a built-in camera, you still need drivers 
to receive image data from the camera. 

The SMI eye tracker is a typical, purpose-built gaze 
tracking solution which consists of the gaze tracking 
hardware and the proprietary software. The SMI eye tracker 
works with a video camera in combination with an infrared 
LED, which creates a reflection on the user’s eyeball. The 
vector between the reflection and the centre of the pupil can 
be used to calculate the direction of the gaze. We use the 
iTrackServer as described in the following section to capture 
the gaze data in order to use it in the context of the three-
layer-architecture. 

The tablet is equipped with a front camera, which can 
provide a video stream of the user. By detecting the eyes in 
the image, it is possible to compute the gaze point of the 
user. We use the Snapdragon SDK [1] to do this in an 
efficient way. The SDK includes several facial processing 
algorithms which can be executed in real time. The 
Snapdragon SDK is compatible with Android devices 
equipped with appropriate Snapdragon processors.  

For the gaze tracking functionality, we use the face 
recognition module of the Snapdragon SDK. Properties of 
detected faces are stored in FaceData objects, which 
includes the following information: 

 Blink Detection - information about how wide the user’s 

eyes are opened 

 Gaze - information about the gaze point of the user 

 Smile Value - probability of the user’s smile 

 Face Orientation - orientation of the user’s head in all 

three axes 

For our purpose we are mainly interested in the provided 
gaze points. They are presented in a normalized, two-
dimensional camera space with values between -1 and 1. 
The origin is defined by the optical axis of the camera. We 
implemented a mapping algorithm to map this raw data onto 
screen coordinates, seen in Fig. 2, which is described below.  

 

Figure 2. Visualization of gaze tracking 

Since we want to use the gaze data in web applications, 
we embedded a webview [3] in our native application. The 
data is then delivered in a JSON format by injecting code 
into the webview. We will describe this in more detail in the 
next section. 

B. Layer 2: Communication Layer 

Layer 2 is a communication interface between layer 1 
and layer 3, for sending the uncalibrated raw gaze data from 
the gaze tracker to the gaze-data processing unit. This 
interface is implemented in a generic and customizable way, 
ensuring that hardware and processing software can be 
exchanged. 

Benjamin Wassermann and Adrian Hardt from the 
Stuttgart Media University developed a universal interface 
called iTrack [20] as part of the project AAMS. It was 
mainly implemented to provide an interface between data 
from SMI eye trackers and a browser. It consists of two 
parts: an iTrackServer and a JavaScript file called itrack.js. 
The iTrackServer is a command line tool, providing a 
websocket server to forward the data from the SMI software 
to a browser. The corresponding JavaScript is embedded 
into a web page to receive data from the websocket server. 

Websockets offer a bidirectional communication 
between different hardware and software, but Android 
prohibits a device-local websocket communication between 
an Android web view and its wrapping native application for 
security reasons. This fact denies the use of a native 
webbrowser while having access to the systems front 
camera. In contrast, a webview does not have these 
limitations.  

Moreover, building a client-server-architecture on a 
single device to establish a communication between native 
Android code and the contained webview is not an 
appropriate solution. This is why we developed a second 
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way to let layer 1 communicate with layer 3: an injection 
adapter based communicator (injection communicator). 

To establish a reliable connection between Android code 
and the contained webview, we extended the iTrack library 
with an injection communicator which uses JavaScript event 
emitting and event handlers. Depending on the availability 
of websockets, layer 2 provides a fallback mechanism in the 
form of the injection communicator, enabling the layer 1 
software to send the gaze data by triggering JavaScript 
events.  

According to the availability of the communication 
interface, layer 3 automatically chooses the data source to 
handle the raw gaze data. 

C. Layer 3: JavaScript-based processing 

Irrespective of the underlying gaze tracking hardware or 
communication, layer 3 is implemented in JavaScript to 
work in a browser. This browser can be a typical browser on 
a desktop computer or a webview integrated in a mobile 
App. Due to the usage of the extended iTrack library, layer 3 
is able to automatically choose the data source through its 
fallback mechanism. If neither the websocket, nor the 
injection communication is available, layer 3 can simulate 
incoming data by using the mouse or touch coordinates as 
gaze data for testing purposes. 

Like JavaScript emits mouseIn or mouseOut events 
when the cursor enters or leaves an object in the browser, 
the iTrack library emits gaze events like gazeIn or gazeOut. 
These events can be handled by conventional event handlers 
in JavaScript, providing a gaze-tracking API that is usable in 
different contexts. 

Since the iTrack library requires previously calibrated 
and mapped gaze data (as provided when using a calibrated 
eye tracker), we extended the library to be able to handle 
raw gaze data. 

The incoming gaze messages contain two-dimensional 
coordinates of a gaze point. Depending on the hardware and 
its drivers, this data might be normalized within distinct 
limits (e.g. [-1;1]), having its origin defined by the optical 
axis of the camera (Figure 2), but it is not implicitly the case. 
Therefore the calibration procedure has to be able to handle 
different scales and offsets of the raw data. Next we will 
describe our calibration procedure for mapping the (raw) 
gaze data to screen coordinates. 

1) Calibration 

Mapping the gaze data to screen coordinates can be done 
in different ways. Hardware suppliers like SMI provide their 
own software to calibrate and map the raw data, depending 
on particular hardware. 

To be independent from proprietary software and to meet 
the requirements of different display sizes, pixel densities 
and camera positions, we developed a semi-automatic 
calibration procedure which runs in a webbrowser or 
webview. In the following, we give an overview of our 
calibration procedure. 

While calibrating, the user is asked to gaze at reference 
points shown on the display, see Figure 3. These points are 
successively shown for a short while to collect the user’s 
gaze data. The recording of gaze-data is shortly interrupted 

after the reference position moved to avoid wrong 
measurements due to the latency of the user's focus. 

The resulting gaze data is usually noisy and contains 
some outliers. A simple solution to identify outliers is to 
look at the distances between each acquired point and the 
centroid of all points. 

 

Figure 3. Screenshot of our calibration screen. We subsequently display a 

target point (grey targets are in fact currently invisible). 

Those distances are compared to the mean of all 
distances among points. Points with a large relative distance 
are rejected from the further processing. The known screen 
coordinates of the reference points and the collected raw 
gaze data are used to approximate the transformation 
parameters for both horizontal and vertical direction. This is 
a straightforward fitting problem, called linear regression, 
which can be solved by a least-squares technique [27]. 

 

Figure 4. Acquired (noisy) data points, which build the basis to fit the 

mapping functions. 

Since the accuracy of the calibration is influenced by 
conditions of attendance, such as head movement or correct 
gazing, a stability index is computed to check the quality of 
the calibration. If the index falls below a certain threshold, 
the user is informed about the problem and the calibration 
process will automatically restart. 

Our described approach is quite simple and could be 
replaced by a more advanced technique. For example, a 
support vector machine (an advanced learning algorithm for 
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classification and regression analysis) could be used to learn 
a mapping function from the data. During the development 
process we tested a so called epsilon-SVR to fit a mapping 
function. The epsilon-SVR has the advantage that it is more 
robust against outliers and therefore does not need a pre-
filtering step. For our testing purpose, we used the Java 
implementation of libsvm [5] on the tablet. The 
improvements were relatively low in comparison to the loss 
of performance. Therefore, we kept our first approach. 

2) Mapping and Filtering  

The x- and y-components of the raw gaze points are 
mapped according to two independent, linear functions. The 
parameterization is provided by the previously described 
calibration procedure. 

The signal of a gaze tracker can be relatively unstable, 
because it includes a certain amount of noise and also 
measures micro saccades of the eye. Especially, when we 
use the data as a pointing device, we want to smooth those 
small changes, as they are very disturbing for the user. 
Conventional smoothing algorithms, like moving averages 
(a series of averages of different data subsets), are unsuitable 
for this task, since those introduce large delays subsequent 
to a saccade. For this reason, we have to treat fixations and 
saccades separately. Furthermore, we have to ensure 
robustness regarding outliers. Špakov [14] compared several 
eye movement filters for the usage in HCI applications. The 
comparison was based on the introduced delay, smoothness 
and closeness to the idealized data. The outcome of this 
study was that algorithms with state detection (“fixation” 
and “saccade”) and adapted processing generally performed 
better than others. The type of smoothing we use during a 
fixation is less important and can be quite simple. Kumar 
presented an algorithm [12], which uses a one-sided 
triangular filter to smooth the data points during fixations. 
For each new data point, we determine whether it is the start 
of a saccade, a continuation of the current fixation or a 
single outlier during a fixation. For further readings and 
instructions, we refer to the existing works [12] [13]. 

In addition to the smoothing effect, the algorithm 
indirectly generates information about the start and end of 
fixations. This side product can be used to generate high 
level gaze events as proposed by Wassermann et al. [20]. 

In addition, one could consider more specialized filtering 
solutions. For example, the stability could be enhanced for 
gaze pointing tasks, such as activating a button on a website, 
by including knowledge about the position of such gaze 
sensitive areas in the algorithms. Reasonable results were 
obtained by a “speed reduction” algorithm such as described 
by Xinyong, Xiangshi and Hongbin [21]. This method 
reduces the risk that the cursor temporarily leaves the target 
area due to eye jitter or noise. Especially dwell time 
selection benefits from this behaviour. Since our solution 
should be as universal as possible, we did not directly 
include the algorithm in our framework. 

IV. KNOWN ISSUES 

Gaze tracking is complex, especially on mobile devices 
without purpose-built hardware. A reasonable use in 
applications demands in general high reliability and 

robustness. There are additional requirements depending on 
the purpose. Real time applications require a high-frequent 
data supply and applications such as gaze pointing require 
high precision. 

A. Performance 

Since the framework is based on JavaScript, its 
performance depends on the JavaScript performance of the 
device. As things are now, the performance of the Android 
webview [3] we used on the Kindle Fire tablet is limited: our 
measurements have shown, that the webview is able to 
process around four frames per second, irrespective of the 
application which uses the gaze data. 

B. Latency 

The latency between a user’s gaze and the mapped result 
plays an important role. When using gaze tracking as a real-
time application, the latency must be as low as possible. We 
developed our gaze tracking framework and the 
communication layer with low-latency in mind: single gaze 
messages can be dropped if the frontend is not able to 
process those. Since the performance of the webview is 
limited, the latency can grow up to about 250 ms, which 
makes real-time applications unusable. 

Latency is also caused by smoothing algorithms, 
especially when large time windows are used. Therefore 
filtering algorithms should be parameterized, such that a 
reasonable balance between latency and smoothing is given. 
In addition, it is important that algorithms treat saccades and 
fixations differently. It is evident that fixations require 
stability, whereas a saccade demands an immediate 
response. 

C. Accuracy 

The accuracy of a gaze tracking solution means that the 
distance between the user’s actual gaze point and the 
calculated gaze point on the screen should be as small as 
possible. It is influenced by many factors, which can be 
classified into algorithmically minimizable influences, 
unavoidable hardware influences and outside influences. 

Lens-distortions for example can be minimized by 
algorithms, whereas the display size or the monocular 
camera position cannot be manipulated. Outside influences, 
like the user’s position, his distance to the screen and 
movement or influences like light conditions, can be 
optimized but not avoided. 

The degree of influence of these factors vary, depending 
on the eye tracking hard- and software. 

V. TESTING WITH USERS  

As described before, one of the most important parts of a 
gaze tracking solution is its accuracy. Within this project, we 
developed a gaze tracking software for a mobile device, 
extended the iTrack library and built an in-browser 
calibration algorithm. We developed an appropriate 
browser-based calibration checker software to be able to 
give a general statement about the accuracy of this solution. 

Due to the fact that the framework works on both, 
desktop computers and mobile devices, we are now able to 
compare (a) the desktop solution with a hardware-based eye 
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tracker, (b) the hardware-based eye tracker combined with 
the in-browser calibration, (c) the mobile solution with the 
software-based eye tracker and a calibration process written 
in native Android code and (d) the software-based eye 
tracker combined with the in-browser calibration. 

TABLE 1. OVERVIEW OF OUR DIFFERENT TEST-SETTINGS 

calibration Desktop Mobile 

native a c 

in-browser b d 
 
We invited people to an appropriate user test to find out 

if the results are comparable and probably determine a factor 
to compare the accuracy of those solutions. We tested the 
four different calibration methods with 45 subjects. Most of 
them had never used an eye tracker before, neither a 
stationary one nor a mobile one. 

A. Testing a calibration 

It is at first required to calibrate the gaze tracking 
software to test a calibration. The calibration shows 
reference points on the display and meanwhile collects gaze 
data of the subject to determine the mapping function from 
raw data to gaze points. The calibration checker acts in a 
similar way, after collecting data it saves the reference 
points’ coordinates with the actual gaze points' coordinates 
in a plain text format. Subsequent to the user test, we 
aggregated and evaluated the collected data. 

B. Test conditions 

Both, the stationary eye tracker and the mobile device, 
were placed on a table to avoid influences of movement of 
the hardware. The subjects sat on chairs and were told to 
move as little as possible. We tested in a low-distraction 
environment and under constant conditions concerning 
lighting to reduce ambient impacts on the results. 

C. Test procedure 

Every subject was asked to test both, the stationary gaze 
tracker as well as the mobile solution. Both devices support 
a native calibration and our in-browser calibration, so every 
subject had to calibrate and evaluate four times. We shuffled 
the order of calibration processes randomly between subjects 
to avoid systematic errors. 

In every situation, the calibration procedure was started 
first. Afterwards, the calibration checker was started to 
collect data for the evaluation of the calibration. 

SMI provides a proprietary calibration method built into 
the software shipped with the hardware. Since SMI does not 
disclose its calibration algorithms, we cannot provide any 
information on them. 

When calibrating the SMI device, the software creates a 
plain text configuration file. This file contains calibration 
parameters in the form of (a) screen points from the 
calibration, (b) numeric RAWLEFT and RAWRIGHT 
values and (c) numeric COEFFLEFT and COEFFRIGHT 
values and is used by the SMI software to map the raw data 
to screen coordinates. The iTrackServer then sends the 
resulting data of the software to a websocket, which makes it 
impossible to use the SMI eye tracker raw data in an 

uncalibrated state. Since the in-browser calibration needs to 
be tested with an uncalibrated gaze tracker, we overwrote 
the values of (b) and (c) in the mentioned file with random 
numbers. The resulting calibration file was then loaded into 
the SMI calibration software to simulate an uncalibrated 
state. 

D. Evaluation 

The collected data consists of plain-text files containing 
the two-dimensional coordinates of the reference points and 
the actual gaze coordinates for each of the calibration 
methods. The absolute distance between the reference point 
and the actual gaze point describes the mean absolute error 
(MAE). 

TABLE 2. STATISTICAL DATA OF THE EVALUATION 

 Desktop Kindle 

 Browser Native Browser Native 

MAE [px] 89.6 80.0 176.9 163.7 

Std deviation [px] 15.7 14.9 27.2 25.0 

Sample size 20,812 20,330 19,260 18,780 

Outlier count  271 977 1,023 834 

Outlier-ratio [%] 1.30 4.81 5.31 4.44 

 
The aggregated data contains between 1.30 % and 

5.31 % outliers, which are points with distances greater than 
the threshold of 500 pixels (marked grey in TABLE 3 
below). This threshold is about half the display size of the 
mobile device, so we decided to reject those outliers from 
further processing. These outliers can occur (a) through 
distraction of the subject, followed by a gaze point outside 
of the calibrated area or even outside of the monitor, (b) by 
saccades of the eyes of the subject, which are not 
measureable or (c) due to measuring inaccuracy of the gaze 
tracking hard- or software (also due to external influences 
like reflections). 

TABLE 3. NUMBER OF GAZE POINTS WITH A DISTANCE TO THE 

REFERENCE GREATER THAN GIVEN ERROR 

 Desktop Kindle 

Error [px] Browser Native Browser Native 

> 0 9,196 8,712 8,160 8,160 

> 1 9,196 8,711 8,160 8,160 

> 10 9,195 8,532 8,096 8,136 

> 100 5,749 1,852 5,351 5,610 

> 500 170 401 414 475 

> 1,000 63 231 155 82 

> 10,000 3 205 0 0 

> 100,000 3 205 0 0 

 
Excluding those outliers, the mean distances between the 

reference points and the gaze points vary from about  
80 pixels (desktop) up to about 180 pixels (mobile device). 
In Figure 5, these mean absolute errors are shown with the 
standard deviation (SD). Compared to the desktop eye 
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tracking solution, the mean distance between the reference 
and the actual gaze point of the mobile solution is more than 
twice as high which gives hints to a greater inaccuracy of the 
webcam based gaze detection quality. 

 

 

Figure 5. Mean absolute error (MAE) between the reference points and the 

gaze points in pixels with standard deviations 

Figure 6 shows the calibration result from one of the test 
persons with the SMI eye tracker using the in-browser 
calibration. Crosses illustrates the reference points shown on 
the screen, the point near each of the crosses is the collected 
gaze data. Figure 7 shows the data from the same subject 
using the mobile gaze tracker with the in-browser calibration 
as well. Again, the cross illustrate the reference points, 
whereas the collected gaze data is shown as squares (upper 
reference), triangles (right), lines (lower) and circles (left). 

 

Figure 6. Calibration checker result from the SMI eye tracker, the cross 
show the target, the points show the actual values 

As can be seen in the graph, the accuracy of the mobile 
gaze tracker using the same algorithm as the desktop is 
comparatively poor. About 26 % of the collected gaze points 
show an error less than 100 pixels, which is approximately 
one third of the amount of the desktop’s native eye tracker 
(In-Browser calibration: 64 %, native calibration: 74 %). 

The desktop eye tracker is a solution for professional 
use, providing binocular optics with purpose-built infrared 

illumination and proprietary software. In contrast, the 
mobile solution is built from a consumer tablet with a single 
front camera. Keeping these facts in mind, the mobile 
solution is in fact not as accurate as the desktop solution, but 
quite usable to get an estimate of the gaze point of the user. 
In the next section, we introduce possible applications for 
eye tracking.  
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Figure 7. Calibration checker result from the Kindle tablet, the cross show 

the target, the other signs show the actual values 

VI. POSSIBLE APPLICATIONS 

Eye tracking does not necessarily require high precision 
gaze tracking hardware. Depending on the context of use, it 
might be sufficient to be able to distinguish a few screen 
points. 

A. E-Learning 

In the area of E-Learning, gaze tracking provides new 
possibilities for both, the learners and lecturers. For instance, 
the individual learning process could be supported by 
automatic adaption of content or interfaces. By deriving 
information about the emotional and cognitive state of a 
user, we can adapt the learning environment and content to 
their specific needs. For example, the system can provide 
additional information (e.g. a “Bubble Help”) if it discovers 
that the user has problems in understanding the content. It is 
also possible to classify different types of learners (e.g. 
“visualizer”, “verbalizer”, “intermediate”) in order to be able 
to present the knowledge in the most suitable form. 
Furthermore the accessibility can be extended by supplying 
an additional input device.  

The lecturer can also take advantage by better 
understanding how people learn. He can evaluate peoples’ 
eye movement with heat maps, determining which parts of 
the learning matter seem to be the most interesting parts for 
a particular learner.  

B. Accessibility 

Moreover, gaze tracking is an interesting field of 
research for accessibility. Providing hardware-independent 
gaze tracking can optimize functionalities on websites or in 
software. People with disabilities can take advantage of this 
technology, even if they do not own purpose-built gaze 
trackers. 

129Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions



Providing different ways to navigate through web 
contents improves the accessibility of a website. However, it 
is not standardized how to connect miscellaneous gaze 
trackers with web applications, which can be done using our 
gaze tracking framework. 

C. Games 

Games, especially browser-based games, can take 
advantage from this technology to provide a new user 
experience and enable attention-awareness. Using eye 
tracking as an input device, it is possible to replace the 
mouse or keyboard input with gaze data, e.g. for moving 
around in a virtual world. 

Furthermore, gaze-supporting games can respond to the 
user’s gaze with changing graphics, e.g. supply additional 
information for the gameplay when looking in one of the 
screen corners. An interdisciplinary field of use are serious 
games and e-learning games. 

VII. CONCLUSION AND OUTLOOK 

In this work we have presented a concept of providing 
gaze data to web applications in a generic way. The concrete 
implementation of the calibration functionality is kept 
intentionally very simple and could be substituted by more 
advanced algorithms. It is also thinkable, that other gaze 
trackers afford higher polynomial mapping functions to 
achieve accurate results. 

User tests proved the capability of our approach for two 
possible systems. We looked at two extremities, a desktop 
computer in combination with a purpose-built eye tracker 
and a low-cost solution on an unmodified tablet without any 
external hardware. 

As expected, the accuracy is highly dependent on the 
quality of the supplied raw data. Inaccuracies actually limit 
the practical use in applications. Primarily real-time usage, 
such as forms of user interactions, are very critical and 
demand high accuracy and low latency.  

For the purpose of antagonizing this issue, one could 
deploy alternative user-interaction techniques. In some case 
it may be feasible to use eye or head gestures. Gestures do 
not require absolute precision and are therefore more robust 
with regard to noise and calibration inaccuracies. In spite of 
those advantages, gestures are not always suitable and 
cannot fully substitute a gaze pointer. On the other hand, we 
expect that the accuracy, especially of low-cost solutions, 
will be improved dramatically in the near future.  

With this work, we made a contribution for the AAMS 
project towards innovative, auto-adaptive E-Learning 
environments of tomorrow. The very next steps will include 
the integration of our framework into the E-Learning system 
developed and used in the project AAMS called Adaptive 
Learning Module (ALM) and the implementation of several 
gaze tracking-based functionalities. 
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