
Cross-Platform Web Framework for Gaze Tracking

New opportunities for mobile interaction

Nicolai Harich1, Simon Gebauer1

Computer Science and Media
Stuttgart Media University

Nobelstrasse 10, 70569 Stuttgart, Germany
contact@nicolaiharich.com, mail@simon-gebauer.de

Holger Schmidt, Gottfried Zimmermann

Responsive Media Experience Research Group
Stuttgart Media University

Nobelstrasse 10, 70569 Stuttgart, Germany
schmidtho@hdm-stuttgart.de, gzimmermann@acm.org

Abstract— Gaze tracking functionalities provide a new way of

interacting with electronic devices. As things are now, they are

often limited to one specific device and require proprietary

hardware and software. We propose a solution for web

applications to counteract those limitations. By using the latest

web technologies, we ensure platform independence. Due to

the design and modularity of our solution, gaze tracking

solutions become interchangeable. Web applications can easily

consume gaze data provided by a generic event-based web-

interface. The main contribution of this work is a universal

calibration and mapping functionality. The raw data of

miscellaneous gaze trackers can be processed and trans-

formed, so that the gaze points are stabilized and correctly

mapped onto screen coordinates. In the present paper, we

describe the three-layer-architecture we use. Our work shows

how to combine recent web technologies and algorithms to

supply gaze tracking functionalities in a generic way.

Keywords-Gaze tracking; cross-platform; calibration; eye

tracking; gaze events; interaction; gaze-enhanced web; e-

learning; real-time; adaptivity; adaptive e-learning

I. INTRODUCTION

In the last decades, eye tracking technologies were
developed and established for analyzing human eye and
gaze movements. In the fields of neuroscience, psychology
and marketing, but also in the field of human computer
interaction it became a widely accepted tool. However, the
technology has not been accessible for the consumer market
for a long time. No affordable solutions existed, since most
systems were based on expensive hardware components.
With ongoing development of algorithms and processing
units, affordable software solutions reached the consumer
market.

Even mobile devices are capable of gaze tracking now,
but existing solutions are still very limited. The diversity of
gaze tracking hardware and software makes it hard to
integrate gaze tracking functionalities into existing applica-
tions.

While trying to simplify the process of application
development for desktop computers and mobile devices, a
wide range of approaches emerged to handle this
complexity. Applications can be written in different
programming languages and even with web technologies to
use them as “enriched web applications” in a browser.
1 Authors contributed equally to the work

The latter one is advantageous for developing multi-
platform applications, because a browser is available on
almost every platform.

This motivates our research group to develop a gaze
tracking framework based on web technologies. Previous
works include a client-side web interface to connect mis-
cellaneous gaze trackers to web applications. In this way,
web applications can simply consume gaze events, without
caring about the actual source.

Since gaze tracking affords high accuracy measurements
and algorithms are quite sensible to various condition
changes, most systems require regular re-calibrations. This
makes it necessary to switch to a calibration software, which
is usually supplied by the manufacturer of the eye tracker. In
order to overcome this obstacle, we move the entire
processing of the raw gaze data into the browser. The
processing unit includes a calibration procedure and a
mapping function, which transforms raw gaze data to
display coordinates. This way the user can control the entire
process through an arbitrary browser, without switching
between applications.

The developed solution claims for general usage in web
applications, but is actually part of the research project
Adaptable and Adaptive Multimedia Systems (AAMS),
which is an interdisciplinary research project driven by
cluster 3 of the ScienceCampus Tuebingen [22]. The
members of this cluster are from Tuebingen [23], Freiburg
[24] [25] and Stuttgart [26]. The overall goal is to support
self-regulated versus external-regulated learning from
multimedia. Knowing that learning is a very individual
process, future learning environments should automatically
adapt to the needs of a user. In order to reach that target,
advanced techniques have to be developed. Monitoring the
gaze and eye movements allows to analyze the user’s
learning behavior and momentary emotional state, which
gives the opportunity to make adaptations on the system.
Furthermore gaze trackers can act as input devices to
enhance the accessibility.

Before describing our concept of in-browser calibration
and mapping, we will give an overview of related work in
the field of eye tracking technology in section II. In
particular, we focus on the use of gaze tracking together
with web applications like E-Learning environments. After
that, we will introduce the frameworks we used or dev-
eloped that enable web applications to consume gaze data
provided by miscellaneous eye trackers as part of the

123Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

systems architecture in section III followed by known issues
in section IV.

Next we present the results of user studies we performed
with two different gaze tracking systems in section V. The
first system consists of a desktop computer and a high-cost,
hardware-based eye tracker for professional use and the
second system is an unmodified tablet with a front camera
available for the consumer market. We evaluated the
accuracy of both the stationary hardware system and the
tablet with a user test to be able to compare those solutions.

We describe our E-Learning environment and motivate
the usage of eye tracking in future applications like e-
learning, accessibility or games in section IV.

We finally discuss the project in the conclusion in
section VII.

II. RELATED WORK

Since eye trackers are entering the consumer market and
even have been integrated in the first mobile devices, the
development of gaze tracking applications got more and
more attention. Besides traditional applications for analyzing
the perception of users, a broad range of different
applications appeared over the years.

The idea to use gaze tracking for interactive systems as
an input device is actually quite old. One of the main
challenges is to find a suitable way to allow the user to select
or to confirm something. The first approach to solve the so
called “midas problem” was dwell time selection, which was
first suggested by Ware and Mikaelian [19]. The user has to
fixate a target for a specific amount of time to perform a
dwell time selection. Naturally this technique introduces
some latency to the process. To ensure that the user is able
to keep the fixation point inside the boundaries of the target
until the dwell time is reached, the target has to be of a
minimum size, which depends of course on the accuracy of
the tracker.

Jacob [11] discussed different gaze interactions such as
object selection, object movement and scrolling for text.
Drewes [8] examined different gaze selection methods on
mobile devices and introduced a new technique based on
gaze gestures. Dybdal [9] investigated on the feasibility of
different eye control techniques performed on small
smartphone displays and compared them to alternative
selection methods like finger-strokes and accelerometer-
based techniques. Stellmach et al. [17] examined on
different modalities of gaze-supported pan and zoom. A
gaze-directed panning with mouse-wheel or touch-based
zooming yielded high acceptance among the study
participants.

There are several options to provide gaze data for web
applications. Biedert et al. [4] developed a browser plugin to
transfer the data from the eye tracker into the browser.
Another browser-independent approach, developed by
Wassermann, Hardt and Zimmermann [20], is a generic
interface via HTML5 websockets. The interface technique
of Wassermann et al. was developed as early part of the
AAMS project and is also used in the scenario of using an
SMI native eye tracker in combination with the newly
developed in-browser calibration framework.

There are several promising ideas to use gaze data within
web applications. Besides using the gaze data as an input
device, it is possible to improve the usability of web
applications by taking additional knowledge about the user’s
interaction into account.

One idea is to use the user’s gaze point to make a
prediction on what he will do next. Rozado’s, Shoghri’s and
Jurdak’s studies [16] show that the gaze data can be used to
predict which link is likely to be clicked next. With this
additional information, the web content can be prefetched in
order to speed up the browsing experience.

Alt et al. [2] investigated on adaptation and tailoring of
web content based on gazing behavior. With a case study,
they were able to prove that the adaptation induced a
significant increase of the user’s attention.

Similar attempts exist in the field of E-Learning
environments. Several research groups investigate on the
integration of eye tracking into E-Learning environments [7]
[18] [15]. Copeland and Gedeon [6] investigated on the
gaze-based prediction of reading comprehension. Their
results have shown, that the number of fixations and total
duration of fixations are suitable measures for subject
familiarity and extent of answer-seeking.

E-Learning environments can make use of such
measurements to offer additional assistance to the learner
whenever suitable. One example is iDict, a translation aid
for language courses, which displays tooltips to support the
learner in case difficulties arise [10].

III. ARCHITECTURE

Gaze trackers can be classified in two main categories.
Software-driven solutions have the advantage of being
independent of additional devices except for a camera, thus
reducing expenses. In contrast, most external modules
include a dedicated capturing engine like an infrared camera
with a special illumination unit, which makes the recog-
nition of pupils more robust.

During the development of the framework, we used two
different devices. On the one hand a hardware eye tracker
from SensoMotoric Instruments (SMI), on the other hand an
Amazon Kindle Fire tablet with a built-in front camera.

To be able to use both (or even other) devices for gaze
tracking, we developed a three-layer-architecture: layer 1,
which includes the gaze tracking hardware with its drivers,
layer 2 including different ways to enable the commu-
nication between layer 1 and 3, and layer 3, the JavaScript-
based gaze data processing unit as a web frontend which
receives the gaze data from the communicator and provides
functionalities for third party applications to use the gaze
data.

Using this three-layer-architecture, gaze tracking
functionalities can be provided on different devices and for
different applications. These three layers are exchangeable if
required, e.g. irrespective of the underlying hardware (layer
1), the communicator can be enabled to send the gaze data to
the frontend. Moreover, the application that uses the gaze
data can be exchanged, e.g. it does not matter whether it is
an E-Learning-platform or a game. Fig. 1 shows the three-
layer-architecture.

124Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

Figure 1. The three layer architecture guarantees interchangeability.

A. Layer 1: Hardware Layer

The base layer is the gaze tracking hardware with its
proprietary drivers. Whether you use a purpose-built gaze
tracking hardware, a desktop computer with a webcam or a
mobile device with a built-in camera, you still need drivers
to receive image data from the camera.

The SMI eye tracker is a typical, purpose-built gaze
tracking solution which consists of the gaze tracking
hardware and the proprietary software. The SMI eye tracker
works with a video camera in combination with an infrared
LED, which creates a reflection on the user’s eyeball. The
vector between the reflection and the centre of the pupil can
be used to calculate the direction of the gaze. We use the
iTrackServer as described in the following section to capture
the gaze data in order to use it in the context of the three-
layer-architecture.

The tablet is equipped with a front camera, which can
provide a video stream of the user. By detecting the eyes in
the image, it is possible to compute the gaze point of the
user. We use the Snapdragon SDK [1] to do this in an
efficient way. The SDK includes several facial processing
algorithms which can be executed in real time. The
Snapdragon SDK is compatible with Android devices
equipped with appropriate Snapdragon processors.

For the gaze tracking functionality, we use the face
recognition module of the Snapdragon SDK. Properties of
detected faces are stored in FaceData objects, which
includes the following information:

 Blink Detection - information about how wide the user’s

eyes are opened

 Gaze - information about the gaze point of the user

 Smile Value - probability of the user’s smile

 Face Orientation - orientation of the user’s head in all

three axes

For our purpose we are mainly interested in the provided
gaze points. They are presented in a normalized, two-
dimensional camera space with values between -1 and 1.
The origin is defined by the optical axis of the camera. We
implemented a mapping algorithm to map this raw data onto
screen coordinates, seen in Fig. 2, which is described below.

Figure 2. Visualization of gaze tracking

Since we want to use the gaze data in web applications,
we embedded a webview [3] in our native application. The
data is then delivered in a JSON format by injecting code
into the webview. We will describe this in more detail in the
next section.

B. Layer 2: Communication Layer

Layer 2 is a communication interface between layer 1
and layer 3, for sending the uncalibrated raw gaze data from
the gaze tracker to the gaze-data processing unit. This
interface is implemented in a generic and customizable way,
ensuring that hardware and processing software can be
exchanged.

Benjamin Wassermann and Adrian Hardt from the
Stuttgart Media University developed a universal interface
called iTrack [20] as part of the project AAMS. It was
mainly implemented to provide an interface between data
from SMI eye trackers and a browser. It consists of two
parts: an iTrackServer and a JavaScript file called itrack.js.
The iTrackServer is a command line tool, providing a
websocket server to forward the data from the SMI software
to a browser. The corresponding JavaScript is embedded
into a web page to receive data from the websocket server.

Websockets offer a bidirectional communication
between different hardware and software, but Android
prohibits a device-local websocket communication between
an Android web view and its wrapping native application for
security reasons. This fact denies the use of a native
webbrowser while having access to the systems front
camera. In contrast, a webview does not have these
limitations.

Moreover, building a client-server-architecture on a
single device to establish a communication between native
Android code and the contained webview is not an
appropriate solution. This is why we developed a second

125Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

way to let layer 1 communicate with layer 3: an injection
adapter based communicator (injection communicator).

To establish a reliable connection between Android code
and the contained webview, we extended the iTrack library
with an injection communicator which uses JavaScript event
emitting and event handlers. Depending on the availability
of websockets, layer 2 provides a fallback mechanism in the
form of the injection communicator, enabling the layer 1
software to send the gaze data by triggering JavaScript
events.

According to the availability of the communication
interface, layer 3 automatically chooses the data source to
handle the raw gaze data.

C. Layer 3: JavaScript-based processing

Irrespective of the underlying gaze tracking hardware or
communication, layer 3 is implemented in JavaScript to
work in a browser. This browser can be a typical browser on
a desktop computer or a webview integrated in a mobile
App. Due to the usage of the extended iTrack library, layer 3
is able to automatically choose the data source through its
fallback mechanism. If neither the websocket, nor the
injection communication is available, layer 3 can simulate
incoming data by using the mouse or touch coordinates as
gaze data for testing purposes.

Like JavaScript emits mouseIn or mouseOut events
when the cursor enters or leaves an object in the browser,
the iTrack library emits gaze events like gazeIn or gazeOut.
These events can be handled by conventional event handlers
in JavaScript, providing a gaze-tracking API that is usable in
different contexts.

Since the iTrack library requires previously calibrated
and mapped gaze data (as provided when using a calibrated
eye tracker), we extended the library to be able to handle
raw gaze data.

The incoming gaze messages contain two-dimensional
coordinates of a gaze point. Depending on the hardware and
its drivers, this data might be normalized within distinct
limits (e.g. [-1;1]), having its origin defined by the optical
axis of the camera (Figure 2), but it is not implicitly the case.
Therefore the calibration procedure has to be able to handle
different scales and offsets of the raw data. Next we will
describe our calibration procedure for mapping the (raw)
gaze data to screen coordinates.

1) Calibration

Mapping the gaze data to screen coordinates can be done
in different ways. Hardware suppliers like SMI provide their
own software to calibrate and map the raw data, depending
on particular hardware.

To be independent from proprietary software and to meet
the requirements of different display sizes, pixel densities
and camera positions, we developed a semi-automatic
calibration procedure which runs in a webbrowser or
webview. In the following, we give an overview of our
calibration procedure.

While calibrating, the user is asked to gaze at reference
points shown on the display, see Figure 3. These points are
successively shown for a short while to collect the user’s
gaze data. The recording of gaze-data is shortly interrupted

after the reference position moved to avoid wrong
measurements due to the latency of the user's focus.

The resulting gaze data is usually noisy and contains
some outliers. A simple solution to identify outliers is to
look at the distances between each acquired point and the
centroid of all points.

Figure 3. Screenshot of our calibration screen. We subsequently display a

target point (grey targets are in fact currently invisible).

Those distances are compared to the mean of all
distances among points. Points with a large relative distance
are rejected from the further processing. The known screen
coordinates of the reference points and the collected raw
gaze data are used to approximate the transformation
parameters for both horizontal and vertical direction. This is
a straightforward fitting problem, called linear regression,
which can be solved by a least-squares technique [27].

Figure 4. Acquired (noisy) data points, which build the basis to fit the

mapping functions.

Since the accuracy of the calibration is influenced by
conditions of attendance, such as head movement or correct
gazing, a stability index is computed to check the quality of
the calibration. If the index falls below a certain threshold,
the user is informed about the problem and the calibration
process will automatically restart.

Our described approach is quite simple and could be
replaced by a more advanced technique. For example, a
support vector machine (an advanced learning algorithm for

126Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

classification and regression analysis) could be used to learn
a mapping function from the data. During the development
process we tested a so called epsilon-SVR to fit a mapping
function. The epsilon-SVR has the advantage that it is more
robust against outliers and therefore does not need a pre-
filtering step. For our testing purpose, we used the Java
implementation of libsvm [5] on the tablet. The
improvements were relatively low in comparison to the loss
of performance. Therefore, we kept our first approach.

2) Mapping and Filtering

The x- and y-components of the raw gaze points are
mapped according to two independent, linear functions. The
parameterization is provided by the previously described
calibration procedure.

The signal of a gaze tracker can be relatively unstable,
because it includes a certain amount of noise and also
measures micro saccades of the eye. Especially, when we
use the data as a pointing device, we want to smooth those
small changes, as they are very disturbing for the user.
Conventional smoothing algorithms, like moving averages
(a series of averages of different data subsets), are unsuitable
for this task, since those introduce large delays subsequent
to a saccade. For this reason, we have to treat fixations and
saccades separately. Furthermore, we have to ensure
robustness regarding outliers. Špakov [14] compared several
eye movement filters for the usage in HCI applications. The
comparison was based on the introduced delay, smoothness
and closeness to the idealized data. The outcome of this
study was that algorithms with state detection (“fixation”
and “saccade”) and adapted processing generally performed
better than others. The type of smoothing we use during a
fixation is less important and can be quite simple. Kumar
presented an algorithm [12], which uses a one-sided
triangular filter to smooth the data points during fixations.
For each new data point, we determine whether it is the start
of a saccade, a continuation of the current fixation or a
single outlier during a fixation. For further readings and
instructions, we refer to the existing works [12] [13].

In addition to the smoothing effect, the algorithm
indirectly generates information about the start and end of
fixations. This side product can be used to generate high
level gaze events as proposed by Wassermann et al. [20].

In addition, one could consider more specialized filtering
solutions. For example, the stability could be enhanced for
gaze pointing tasks, such as activating a button on a website,
by including knowledge about the position of such gaze
sensitive areas in the algorithms. Reasonable results were
obtained by a “speed reduction” algorithm such as described
by Xinyong, Xiangshi and Hongbin [21]. This method
reduces the risk that the cursor temporarily leaves the target
area due to eye jitter or noise. Especially dwell time
selection benefits from this behaviour. Since our solution
should be as universal as possible, we did not directly
include the algorithm in our framework.

IV. KNOWN ISSUES

Gaze tracking is complex, especially on mobile devices
without purpose-built hardware. A reasonable use in
applications demands in general high reliability and

robustness. There are additional requirements depending on
the purpose. Real time applications require a high-frequent
data supply and applications such as gaze pointing require
high precision.

A. Performance

Since the framework is based on JavaScript, its
performance depends on the JavaScript performance of the
device. As things are now, the performance of the Android
webview [3] we used on the Kindle Fire tablet is limited: our
measurements have shown, that the webview is able to
process around four frames per second, irrespective of the
application which uses the gaze data.

B. Latency

The latency between a user’s gaze and the mapped result
plays an important role. When using gaze tracking as a real-
time application, the latency must be as low as possible. We
developed our gaze tracking framework and the
communication layer with low-latency in mind: single gaze
messages can be dropped if the frontend is not able to
process those. Since the performance of the webview is
limited, the latency can grow up to about 250 ms, which
makes real-time applications unusable.

Latency is also caused by smoothing algorithms,
especially when large time windows are used. Therefore
filtering algorithms should be parameterized, such that a
reasonable balance between latency and smoothing is given.
In addition, it is important that algorithms treat saccades and
fixations differently. It is evident that fixations require
stability, whereas a saccade demands an immediate
response.

C. Accuracy

The accuracy of a gaze tracking solution means that the
distance between the user’s actual gaze point and the
calculated gaze point on the screen should be as small as
possible. It is influenced by many factors, which can be
classified into algorithmically minimizable influences,
unavoidable hardware influences and outside influences.

Lens-distortions for example can be minimized by
algorithms, whereas the display size or the monocular
camera position cannot be manipulated. Outside influences,
like the user’s position, his distance to the screen and
movement or influences like light conditions, can be
optimized but not avoided.

The degree of influence of these factors vary, depending
on the eye tracking hard- and software.

V. TESTING WITH USERS

As described before, one of the most important parts of a
gaze tracking solution is its accuracy. Within this project, we
developed a gaze tracking software for a mobile device,
extended the iTrack library and built an in-browser
calibration algorithm. We developed an appropriate
browser-based calibration checker software to be able to
give a general statement about the accuracy of this solution.

Due to the fact that the framework works on both,
desktop computers and mobile devices, we are now able to
compare (a) the desktop solution with a hardware-based eye

127Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

tracker, (b) the hardware-based eye tracker combined with
the in-browser calibration, (c) the mobile solution with the
software-based eye tracker and a calibration process written
in native Android code and (d) the software-based eye
tracker combined with the in-browser calibration.

TABLE 1. OVERVIEW OF OUR DIFFERENT TEST-SETTINGS

calibration Desktop Mobile

native a c

in-browser b d

We invited people to an appropriate user test to find out

if the results are comparable and probably determine a factor
to compare the accuracy of those solutions. We tested the
four different calibration methods with 45 subjects. Most of
them had never used an eye tracker before, neither a
stationary one nor a mobile one.

A. Testing a calibration

It is at first required to calibrate the gaze tracking
software to test a calibration. The calibration shows
reference points on the display and meanwhile collects gaze
data of the subject to determine the mapping function from
raw data to gaze points. The calibration checker acts in a
similar way, after collecting data it saves the reference
points’ coordinates with the actual gaze points' coordinates
in a plain text format. Subsequent to the user test, we
aggregated and evaluated the collected data.

B. Test conditions

Both, the stationary eye tracker and the mobile device,
were placed on a table to avoid influences of movement of
the hardware. The subjects sat on chairs and were told to
move as little as possible. We tested in a low-distraction
environment and under constant conditions concerning
lighting to reduce ambient impacts on the results.

C. Test procedure

Every subject was asked to test both, the stationary gaze
tracker as well as the mobile solution. Both devices support
a native calibration and our in-browser calibration, so every
subject had to calibrate and evaluate four times. We shuffled
the order of calibration processes randomly between subjects
to avoid systematic errors.

In every situation, the calibration procedure was started
first. Afterwards, the calibration checker was started to
collect data for the evaluation of the calibration.

SMI provides a proprietary calibration method built into
the software shipped with the hardware. Since SMI does not
disclose its calibration algorithms, we cannot provide any
information on them.

When calibrating the SMI device, the software creates a
plain text configuration file. This file contains calibration
parameters in the form of (a) screen points from the
calibration, (b) numeric RAWLEFT and RAWRIGHT
values and (c) numeric COEFFLEFT and COEFFRIGHT
values and is used by the SMI software to map the raw data
to screen coordinates. The iTrackServer then sends the
resulting data of the software to a websocket, which makes it
impossible to use the SMI eye tracker raw data in an

uncalibrated state. Since the in-browser calibration needs to
be tested with an uncalibrated gaze tracker, we overwrote
the values of (b) and (c) in the mentioned file with random
numbers. The resulting calibration file was then loaded into
the SMI calibration software to simulate an uncalibrated
state.

D. Evaluation

The collected data consists of plain-text files containing
the two-dimensional coordinates of the reference points and
the actual gaze coordinates for each of the calibration
methods. The absolute distance between the reference point
and the actual gaze point describes the mean absolute error
(MAE).

TABLE 2. STATISTICAL DATA OF THE EVALUATION

 Desktop Kindle

 Browser Native Browser Native

MAE [px] 89.6 80.0 176.9 163.7

Std deviation [px] 15.7 14.9 27.2 25.0

Sample size 20,812 20,330 19,260 18,780

Outlier count 271 977 1,023 834

Outlier-ratio [%] 1.30 4.81 5.31 4.44

The aggregated data contains between 1.30 % and

5.31 % outliers, which are points with distances greater than
the threshold of 500 pixels (marked grey in TABLE 3
below). This threshold is about half the display size of the
mobile device, so we decided to reject those outliers from
further processing. These outliers can occur (a) through
distraction of the subject, followed by a gaze point outside
of the calibrated area or even outside of the monitor, (b) by
saccades of the eyes of the subject, which are not
measureable or (c) due to measuring inaccuracy of the gaze
tracking hard- or software (also due to external influences
like reflections).

TABLE 3. NUMBER OF GAZE POINTS WITH A DISTANCE TO THE

REFERENCE GREATER THAN GIVEN ERROR

 Desktop Kindle

Error [px] Browser Native Browser Native

> 0 9,196 8,712 8,160 8,160

> 1 9,196 8,711 8,160 8,160

> 10 9,195 8,532 8,096 8,136

> 100 5,749 1,852 5,351 5,610

> 500 170 401 414 475

> 1,000 63 231 155 82

> 10,000 3 205 0 0

> 100,000 3 205 0 0

Excluding those outliers, the mean distances between the

reference points and the gaze points vary from about
80 pixels (desktop) up to about 180 pixels (mobile device).
In Figure 5, these mean absolute errors are shown with the
standard deviation (SD). Compared to the desktop eye

128Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

tracking solution, the mean distance between the reference
and the actual gaze point of the mobile solution is more than
twice as high which gives hints to a greater inaccuracy of the
webcam based gaze detection quality.

Figure 5. Mean absolute error (MAE) between the reference points and the

gaze points in pixels with standard deviations

Figure 6 shows the calibration result from one of the test
persons with the SMI eye tracker using the in-browser
calibration. Crosses illustrates the reference points shown on
the screen, the point near each of the crosses is the collected
gaze data. Figure 7 shows the data from the same subject
using the mobile gaze tracker with the in-browser calibration
as well. Again, the cross illustrate the reference points,
whereas the collected gaze data is shown as squares (upper
reference), triangles (right), lines (lower) and circles (left).

Figure 6. Calibration checker result from the SMI eye tracker, the cross
show the target, the points show the actual values

As can be seen in the graph, the accuracy of the mobile
gaze tracker using the same algorithm as the desktop is
comparatively poor. About 26 % of the collected gaze points
show an error less than 100 pixels, which is approximately
one third of the amount of the desktop’s native eye tracker
(In-Browser calibration: 64 %, native calibration: 74 %).

The desktop eye tracker is a solution for professional
use, providing binocular optics with purpose-built infrared

illumination and proprietary software. In contrast, the
mobile solution is built from a consumer tablet with a single
front camera. Keeping these facts in mind, the mobile
solution is in fact not as accurate as the desktop solution, but
quite usable to get an estimate of the gaze point of the user.
In the next section, we introduce possible applications for
eye tracking.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

y
[p

x]

Figure 7. Calibration checker result from the Kindle tablet, the cross show

the target, the other signs show the actual values

VI. POSSIBLE APPLICATIONS

Eye tracking does not necessarily require high precision
gaze tracking hardware. Depending on the context of use, it
might be sufficient to be able to distinguish a few screen
points.

A. E-Learning

In the area of E-Learning, gaze tracking provides new
possibilities for both, the learners and lecturers. For instance,
the individual learning process could be supported by
automatic adaption of content or interfaces. By deriving
information about the emotional and cognitive state of a
user, we can adapt the learning environment and content to
their specific needs. For example, the system can provide
additional information (e.g. a “Bubble Help”) if it discovers
that the user has problems in understanding the content. It is
also possible to classify different types of learners (e.g.
“visualizer”, “verbalizer”, “intermediate”) in order to be able
to present the knowledge in the most suitable form.
Furthermore the accessibility can be extended by supplying
an additional input device.

The lecturer can also take advantage by better
understanding how people learn. He can evaluate peoples’
eye movement with heat maps, determining which parts of
the learning matter seem to be the most interesting parts for
a particular learner.

B. Accessibility

Moreover, gaze tracking is an interesting field of
research for accessibility. Providing hardware-independent
gaze tracking can optimize functionalities on websites or in
software. People with disabilities can take advantage of this
technology, even if they do not own purpose-built gaze
trackers.

129Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

Providing different ways to navigate through web
contents improves the accessibility of a website. However, it
is not standardized how to connect miscellaneous gaze
trackers with web applications, which can be done using our
gaze tracking framework.

C. Games

Games, especially browser-based games, can take
advantage from this technology to provide a new user
experience and enable attention-awareness. Using eye
tracking as an input device, it is possible to replace the
mouse or keyboard input with gaze data, e.g. for moving
around in a virtual world.

Furthermore, gaze-supporting games can respond to the
user’s gaze with changing graphics, e.g. supply additional
information for the gameplay when looking in one of the
screen corners. An interdisciplinary field of use are serious
games and e-learning games.

VII. CONCLUSION AND OUTLOOK

In this work we have presented a concept of providing
gaze data to web applications in a generic way. The concrete
implementation of the calibration functionality is kept
intentionally very simple and could be substituted by more
advanced algorithms. It is also thinkable, that other gaze
trackers afford higher polynomial mapping functions to
achieve accurate results.

User tests proved the capability of our approach for two
possible systems. We looked at two extremities, a desktop
computer in combination with a purpose-built eye tracker
and a low-cost solution on an unmodified tablet without any
external hardware.

As expected, the accuracy is highly dependent on the
quality of the supplied raw data. Inaccuracies actually limit
the practical use in applications. Primarily real-time usage,
such as forms of user interactions, are very critical and
demand high accuracy and low latency.

For the purpose of antagonizing this issue, one could
deploy alternative user-interaction techniques. In some case
it may be feasible to use eye or head gestures. Gestures do
not require absolute precision and are therefore more robust
with regard to noise and calibration inaccuracies. In spite of
those advantages, gestures are not always suitable and
cannot fully substitute a gaze pointer. On the other hand, we
expect that the accuracy, especially of low-cost solutions,
will be improved dramatically in the near future.

With this work, we made a contribution for the AAMS
project towards innovative, auto-adaptive E-Learning
environments of tomorrow. The very next steps will include
the integration of our framework into the E-Learning system
developed and used in the project AAMS called Adaptive
Learning Module (ALM) and the implementation of several
gaze tracking-based functionalities.

ACKNOWLEDGMENTS

This research has been conducted within the
ScienceCampus Tübingen “Informational Environments”,
an interdisciplinary research collaboration of the Knowledge
Media Research Center and the University of Tübingen,
with funding from the German state of Baden-Württemberg,

Ministry of Science, Research and the Arts. This publication
reflects only the authors' views and the funding agency is
not liable for any use that may be made of the information
contained herein.

We thank all students, who voluntarily participated in
our user studies.

REFERENCES

[1] Qualcomm Technologies Inc. Snapdragon SDK for

Android. [Online] Available from: https://developer.

 qualcomm.com/software/snapdragon-sdk-android.

[2] F. Alt, A. Shirazi, A. Schmidt, and J. Mennenöh. "Increa-

sing the user's attention on the web". In the 7th Nordic

Conference, 544. DOI=10.1145/2399016.2399099.

[3] Android. WebView. [Online] Available from: http://

developer.android.com/reference/android/webkit/WebView.

 html.

[4] R. Biedert, G. Buscher, S. Schwarz, M. Möller, A. Dengel,

and T. Lottermann. "The text 2.0 framework". In: the 2010

workshop, 114–117. DOI=10.1145/2002333.2002351.

[5] C.-C. Chang and C.-J. Lin. 2011. "LIBSVM: A library for

support vector machines." In: ACM Transactions on

Intelligent Systems and Technology 2, 3, 27:1‐27:27.

[6] L. Copeland and T. Gedeon. "The effect of subject fami-

liarity on comprehension and eye movements during rea-

ding". In: the 25th Australian Computer-Human Interaction

Conference, 285–288. DOI=10.1145/2541016.2541082.

[7] H. Drewes, R. Atterer, and A. Schmidt. 2007. "Detailed

Monitoring of User’s Gaze and Interaction to Improve

Future e-Learning". In: Proceedings of the 4th International

Conference on Universal Access in Human-computer

Interaction: Ambient Interaction. UAHCI’07. Springer-

Verlag, Berlin, Heidelberg, 802–811.

[8] H. Drewes, A. de Luca, and A. Schmidt. "Eye-gaze inter-

action for mobile phones". In: the 4th international confe-

rence on mobile technology, applications, and systems and

the 1st international symposium, 364. DOI=10.1145/13780

 63.1378122.

[9] M. L. Dybdal, J. S. Agustin, and J. P. Hansen. "Gaze input

for mobile devices by dwell and gestures". In: the Sym-

posium, 225. DOI=10.1145/2168556.2168601.

[10] A. Hyrskykari, P. Majaranta, A. Aaltonen, and K.-J. Räihä.

"Design issues of iDICT". In: the symposium, 9–14.

DOI=10.1145/355017.355019.

[11] R. J. K. Jacob. "What you look at is what you get: eye

movement-based interaction techniques". In: the SIGCHI

conference, 11–18. DOI=10.1145/97243.97246.

[12] M. Kumar. 2007. "GUIDe Saccade detection and smoothing

algorithm". February 2007.

[13] M. Kumar, J. Klingner, R. Puranik, T. Winograd, and A.

Paepcke. 2008. "Improving the Accuracy of Gaze Input for

Interaction". In: Proceedings of the 2008 Symposium on Eye

Tracking Research & Applica

 tions.

[14] O. Špakov. 2012. "Comparison of eye movement filters

used in HCI". In: Proceedings of ETRA'12 Symposium on

Eye Tracking Research & Applications.

[15] M. Porta. "Implementing eye-based user-aware e-learning".

In: Proceeding of the twenty-sixth annual CHI conference

extended abstracts, 3087. DOI=10.1145/1358628.1358812.

[16] D. Rozado, A. El Shoghri, and R. Jurdak. 2015. "Gaze

dependant prefetching of web content to increase speed and

130Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

comfort of web browsing". In: International Journal of

Human-Computer Studies 78, 31–42.

[17] S. Stellmach and R. Dachselt. "Investigating gaze-supported

multimodal pan and zoom". In: the Symposium, 357.

DOI=10.1145/2168556.2168636.

[18] V. Cantoni, C. J. Perez, M. Porta, and S. Ricotti. 2012.

"Exploiting eye tracking in advanced e-learning systems".

In: Proceedings of the 13th International Conference on

Computer Systems and Technologies.

[19] C. Ware and H. H. Mikaelian. 1987. "An evaluation of an

eye tracker as a device for computer input". SIGCHI Bull.

18, 4, 183–188.

[20] B. Wassermann, A. Hardt, and G. Zimmermann. 2012.

"Generic Gaze Interaction Events for Web Browsers: Using

the Eye Tracker as Input Device". In: WWW2012

Workshop: Emerging Web Technologies, Facing the Future

of Education, 6.

[21] X. Zhang, X. Ren, and H. Zha. 2008. "Improving Eye

Cursor’s Stability for Eye Pointing Tasks". In: Proceedings

of the SIGCHI Conference on Human Factors in Computing

Systems. CHI ’08. ACM, New York, NY, USA, 525–534.

DOI=10.1145/1357054.1357139.

[22] ScienceCampus Tübingen. [Online] Available from:

https://www.wissenschaftscampus-tuebingen.de/www/en/

 index.html?ref=folder5.

[23] K. Scheiter. Knowledge Media Research Center Tübingen.

[Online] Available from: https://www.iwm-tuebingen.de/-

www/en/mitarbeiter/ma.html?uid=kscheiter.

[24] R. Plötzner. University of Education Freiburg. [Online]

Available from: https://www.ph-freiburg.de/imb/institut/in-

stitutsleitung.html.

[25] A. Renkl. University of Freiburg. [Online] Available from:

https://www.psychologie.uni-freiburg.de/Members/renkl.

[26] G. Zimmermann. Stuttgart Media University. [Online]

Available from: https://www.hdm-stuttgart.de/Forschuung_

 transfer/forschungsschwerpunkte/responsive_media_experi-

ence/team/zimmermann.

[27] E. Weisstein. 2016. [Online] Available from: http://math

 world.wolfram.com/LeastSquaresFitting.html

131Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

